1932

Abstract

Haptic perception uses signals from touch receptors to detect, locate, and mentally represent objects and surfaces. Research from behavioral science, neuroscience, and computational modeling advances understanding of these essential functions. Haptic perception is grounded in neural circuitry that transmits external contact to the brain via increasingly abstracted representations. Computational models of mechanical interactions at the skin predict peripheral neural firing rates that initiate the processing chain. Behavioral phenomena and associated neural processes illustrate the reciprocal relationship by which perception supports action and action gates experience. The interaction of sensation and action is evident in how features of surfaces and objects such as softness and curvature are encoded. By incorporating touch sensations in conjunction with motor control, biologically embedded prosthetics enhance user capabilities and may elicit feelings of ownership. Efforts to create virtual haptic experience with advanced technologies underscore the complexity of this fundamental perceptual channel and its relation to action.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-011624-101129
2025-01-17
2025-04-05
The full text of this item is not currently available.

Literature Cited

  1. Abraira VE, Ginty DD. 2013.. The sensory neurons of touch. . Neuron 79:(4):61839
    [Crossref] [Google Scholar]
  2. Basdogan C, Giraud F, Levesque V, Choi S. 2020.. A review of surface haptics: enabling tactile effects on touch surfaces. . IEEE Trans. Haptics 13::45070
    [Crossref] [Google Scholar]
  3. Bays PM, Flanagan JR, Wolpert DM. 2006.. Attenuation of self-generated tactile sensations is predictive, not postdictive. . PLOS Biol. 4::28184
    [Crossref] [Google Scholar]
  4. Bensmaia SJ, Hollins M. 2005.. Pacinian representations of fine surface texture. . Atten. Percept. Psychophys. 67::84254
    [Crossref] [Google Scholar]
  5. Bensmaia SJ, Hsiao SS, Denchev PV, Killebrew JH, Craig JC. 2008.. The tactile perception of stimulus orientation. . Somatosensory Mot. Res. 25::4959
    [Crossref] [Google Scholar]
  6. Bensmaia SJ, Tyler DJ, Micera S. 2023.. Restoration of sensory information via bionic hands. . Nat. Biomed. Eng. 7::44355
    [Crossref] [Google Scholar]
  7. Blakemore SJ, Wolpert DM, Frith CD. 1999.. The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. . Neuroimage 10:(4):44859
    [Crossref] [Google Scholar]
  8. Burns DA, Klatzky RL, Peshkin MA, Colgate JE. 2022.. A low-parameter rendering algorithm for fine textures. . IEEE Trans. Haptics 15::5761
    [Crossref] [Google Scholar]
  9. Callier T, Saal HP, Davis-Berg EC, Bensmaia SJ. 2015.. Kinematics of unconstrained tactile texture exploration. . J. Neurophysiol. 113:(7):301320
    [Crossref] [Google Scholar]
  10. Cauna N, Mannan G. 1958.. The structure of human digital Pacinian corpuscles (corpuscula lamellosa) and its functional significance. . J. Anat. 92:(1):120
    [Google Scholar]
  11. Cavdan M, Doerschner K, Drewing K. 2021.. Task and material properties interactively affect softness explorations along different dimensions. . IEEE Trans. Haptics 14::60313
    [Crossref] [Google Scholar]
  12. Chapman CE, Beauchamp E. 2006.. Differential controls over tactile detection in humans by motor commands and peripheral reafference. . J. Neurophysiol. 96::166475
    [Crossref] [Google Scholar]
  13. Chapman CE, Bushnell MC, Miron D, Duncan GH, Lund JP. 1987.. Sensory perception during movement in man. . Exp. Brain Res. 68::51624
    [Crossref] [Google Scholar]
  14. Cheeseman J, Norman J, Kappers A. 2016.. Dynamic cutaneous information is sufficient for precise curvature discrimination. . Sci. Rep. 6::25473
    [Crossref] [Google Scholar]
  15. Chirila AM, Rankin G, Tseng SY, Emanuel AJ, Chavez-Martinez CL, et al. 2022.. Mechanoreceptor signal convergence and transformation in the dorsal horn flexibly shape a diversity of outputs to the brain. . Cell 185:(24):454159
    [Crossref] [Google Scholar]
  16. Conner JM, Bohannon A, Igarashi M, Taniguchi J, Baltar N, Azim E. 2021.. Modulation of tactile feedback for the execution of dexterous movement. . Science 374:(6565):31623
    [Crossref] [Google Scholar]
  17. Coquery JM. 1978.. Role of active movement in control of afferent input from skin in cat and man. . In Active Touch, ed G Gordon , pp. 16169. Oxford, UK:: Pergamon Press
    [Google Scholar]
  18. Deflorio D, Di Luca M, Wing AM. 2022.. Skin and mechanoreceptor contribution to tactile input for perception: a review of simulation models. . Front. Hum. Neurosci. 16::862344
    [Crossref] [Google Scholar]
  19. Delhaye BP, Jarocka E, Barrea A, Thonnard J-L, Edin B, Lefèvre P. 2021.. High-resolution imaging of skin deformation shows that afferents from human fingertips signal slip onset. . eLife 10::e64679
    [Crossref] [Google Scholar]
  20. Delhaye BP, O'Donnell MK, Lieber JD, McLellan KR, Bensmaia SJ. 2019.. Feeling fooled: Texture contaminates the neural code for tactile speed. . PLOS Biol. 17:(8):e3000431
    [Crossref] [Google Scholar]
  21. Douglas PR, Ferrington DG, Rowe MJ. 1978.. Coding of information about tactile stimuli by neurones of the cuneate nucleus. . J. Physiol. 285::493513
    [Crossref] [Google Scholar]
  22. Dövencioǧlu DN, Üstün FS, Doerschner K, Drewing K. 2022.. Hand explorations are determined by the characteristics of the perceptual space of real-world materials from silk to sand. . Sci. Rep. 12:(1):14785
    [Crossref] [Google Scholar]
  23. Elias LJ, Succi IK, Schaffler MD, Foster W, Gradwell MA, et al. 2023.. Touch neurons underlying dopaminergic pleasurable touch and sexual receptivity. . Cell 186:(3):57790.e16
    [Crossref] [Google Scholar]
  24. Fleming MS, Luo W. 2013.. The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors. . Front. Biol. 8::40820
    [Crossref] [Google Scholar]
  25. Friesen RF, Klatzky RL, Peshkin MA, Colgate JE. 2021.. Building a navigable fine texture design space. . IEEE Trans. Haptics 14:(4):897906
    [Crossref] [Google Scholar]
  26. George JA, Kluger DT, Davis TS, Wendelken SM, Okorokova EV, et al. 2019.. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. . Sci. Robot. 4:(32):eaax2352
    [Crossref] [Google Scholar]
  27. Gershon P, Klatzky RL, Palani H, Giudice NA. 2016.. Visual, tangible, and touch-screen: comparison of platforms for displaying simple graphics. . Assist. Technol. 28:(1):16
    [Crossref] [Google Scholar]
  28. Giri GS, Maddahi Y, Zareinia K. 2021.. An application-based review of haptics technology. . Robotics 10:(1):29
    [Crossref] [Google Scholar]
  29. Green BG. 2009.. Temperature perception on the hand during static versus dynamic contact with a surface. . Atten. Percept. Psychophys. 71:(5):118596
    [Crossref] [Google Scholar]
  30. Green BG, Schoen KL. 2005.. Evidence that tactile stimulation inhibits nociceptive sensations produced by innocuous contact cooling. . Behav. Brain Res. 162::9098
    [Crossref] [Google Scholar]
  31. Grigorii RV, Colgate JE, Klatzky R. 2022.. The spatial profile of skin indentation shapes tactile perception across stimulus frequencies. . Sci. Rep. 12:(1):13185
    [Crossref] [Google Scholar]
  32. Grigorii RV, Klatzky R, Colgate E. 2021.. Data-driven playback of natural tactile texture via broadband friction modulation. . IEEE Trans. Haptics 15::42940
    [Crossref] [Google Scholar]
  33. Hollins M, Risner SR. 2000.. Evidence for the duplex theory of tactile texture perception. . Atten. Percept. Psychophys. 62::695705
    [Crossref] [Google Scholar]
  34. Jarocka E, Pruszynski JA, Johansson RS. 2021.. Human touch receptors are sensitive to spatial details on the scale of single fingerprint ridges. . J. Neurosci. 41:(16):362234
    [Crossref] [Google Scholar]
  35. Johansson RS. 1978.. Tactile sensibility in the human hand: receptive field characteristics of mechanoreceptive units in the glabrous skin area. . J. Physiol. 281::10125
    [Crossref] [Google Scholar]
  36. Johansson RS, Westling G. 1984.. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. . Exp. Brain Res. 56:(3):55064
    [Crossref] [Google Scholar]
  37. Johnson KO, Lamb GD. 1981.. Neural mechanisms of spatial tactile discrimination: neural patterns evoked by Braille-like dot patterns in the monkey. . J. Physiol. 310::11744
    [Crossref] [Google Scholar]
  38. Jörntell H, Bengtsson F, Geborek P, Spanne A, Terekhov AV, Hayward V. 2014.. Segregation of tactile input features in neurons of the cuneate nucleus. . Neuron 83:(6):144452
    [Crossref] [Google Scholar]
  39. Kaas JH, Merzenich MM, Killackey HP. 1983.. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. . Annu. Rev. Neurosci. 6::32556
    [Crossref] [Google Scholar]
  40. Kaas JH, Nelson RJ, Sur M, Dykes RW, Merzenich MM. 1984.. The somatotopic organization of the ventroposterior thalamus of the squirrel monkey, Saimiri sciureus. . J. Comp. Neurol. 226::11140
    [Crossref] [Google Scholar]
  41. Kaim L, Drewing K. 2011.. Exploratory strategies in haptic softness discrimination are tuned to achieve high levels of task performance. . IEEE Trans. Haptics 4::24252
    [Crossref] [Google Scholar]
  42. Kalagher H, Jones SS. 2011.. Young children's haptic exploratory procedures. . J. Exp. Child Psychol. 110:(4):592602
    [Crossref] [Google Scholar]
  43. Kappers AM, Oen MFS, Junggeburth TJ, Plaisier MA. 2022.. Hand-held haptic navigation devices for actual walking. . IEEE Trans. Haptics 15:(4):65566
    [Crossref] [Google Scholar]
  44. Kilteni K, Ehrsson HH. 2017.. Sensorimotor predictions and tool use: Hand-held tools attenuate self-touch. . Cognition 165::19
    [Crossref] [Google Scholar]
  45. Kilteni K, Ehrsson HH. 2022.. Predictive attenuation of touch and tactile gating are distinct perceptual phenomena. . iScience 25:(4):104077
    [Crossref] [Google Scholar]
  46. Klatzky RL, Lederman SJ, Pellegrino J, Doherty S, McCloskey B. 1989.. Procedures for haptic object exploration versus manipulation. . In Vision and Action: The Control of Grasping, ed. M Goodale , pp. 11027. Norwood, NJ:: Ablex
    [Google Scholar]
  47. Kuchenbecker KJ. 2018.. Haptics and haptic interfaces. . In Encyclopedia of Robotics, ed. M Ang, O Khatib, B Siciliano . Berlin:: Springer. https://doi.org/10.1007/978-3-642-41610-1_19-1
    [Google Scholar]
  48. Lansky P, Sanda O, He J. 2006.. The parameters of the stochastic leaky integrate-and-fire neuronal model. . J. Comput. Neurosci. 21::21123
    [Crossref] [Google Scholar]
  49. Lederman SJ. 1974.. Tactile roughness of grooved surfaces: the touching process and effects of macro- and microsurface structure. . Percept. Psychophys. 16::38595
    [Crossref] [Google Scholar]
  50. Lederman SJ, Klatzky RL. 1987.. Hand movements: a window into haptic object recognition. . Cogn. Psychol. 19::34268
    [Crossref] [Google Scholar]
  51. Lederman SJ, Klatzky RL. 1997.. Relative availability of surface and object properties during early haptic processing. . J. Exp. Psychol. Hum. Percept. Perform. 23::1680707
    [Crossref] [Google Scholar]
  52. Lesniak DR, Marshall KL, Wellnitz SA, Jenkins BA, Baba Y, et al. 2014.. Computation identifies structural features that govern neuronal firing properties in slowly adapting touch receptors. . eLife 3::e01488
    [Crossref] [Google Scholar]
  53. Lezkan A, Drewing K. 2016.. Going against the grain: Texture orientation affects direction of exploratory movement. . In Haptics: Perception, Devices, Control, and Applications, ed. F Bello, H Kajimot, Y Visell , pp. 43040. Cham, Switz:.: Springer
    [Google Scholar]
  54. Li C, Guan G, Reif R, Huang Z, Wang RK. 2012.. Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography. . J. R. Soc. Interface 9:(70):83141
    [Crossref] [Google Scholar]
  55. Lieber JD, Bensmaia SJ. 2020.. Emergence of an invariant representation of texture in primate somatosensory cortex. . Cereb. Cortex 30:(5):322839
    [Crossref] [Google Scholar]
  56. Limanowski J, Lopes P, Keck J, Baudisch P, Friston K, Blankenburg F. 2020.. Action-dependent processing of touch in the human parietal operculum and posterior insula. . Cereb. Cortex 30::60717
    [Crossref] [Google Scholar]
  57. Marasco PD, Hebert JS, Sensinger JW, Beckler DT, Thumser ZC, et al. 2021.. Neurorobotic fusion of prosthetic touch, kinesthesia, and movement in bionic upper limbs promotes intrinsic brain behaviors. . Sci. Robot. 6:(58):eabf3368
    [Crossref] [Google Scholar]
  58. Martel M, Cardinali L, Roy AC, Farnè A. 2016.. Tool-use: an open window into body representation and its plasticity. . Cogn. Neuropsychol. 33::82101
    [Crossref] [Google Scholar]
  59. McGlone F, Wessberg J, Olausson H. 2014.. Discriminative and affective touch: sensing and feeling. . Neuron 82:(4):73755
    [Crossref] [Google Scholar]
  60. McIntyre S, Hauser SC, Kusztor A, Boehme R, Moungou A, et al. 2022.. The language of social touch is intuitive and quantifiable. . Psychol. Sci. 33:(9):147794
    [Crossref] [Google Scholar]
  61. Messaoudi MD, Menelas B-AJ, Mcheick H. 2022.. Review of navigation assistive tools and technologies for the visually impaired. . Sensors 22:(20):7888
    [Crossref] [Google Scholar]
  62. Middleton A, Ortiz-Catalan M. 2020.. Neuromusculoskeletal arm prostheses: personal and social implications of living with an intimately integrated bionic arm. . Front. Neurorobot. 14::39
    [Crossref] [Google Scholar]
  63. Miller LE, Montroni L, Koun E, Salemme R, Hayward V, Farnè A. 2018.. Sensing with tools extends somatosensory processing beyond the body. . Nature 561::23942
    [Crossref] [Google Scholar]
  64. Milne AO, Orton L, Black CH, Jones GC, Sullivan M, Grant RA. 2021.. California sea lions employ task-specific strategies for active touch sensing. . J. Exp. Biol. 224:(21):jeb243085
    [Crossref] [Google Scholar]
  65. Neubarth NL, Emanuel AJ, Liu Y, Springel MW, Handler A, et al. 2020.. Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception. . Science 368:(6497):eabb2751
    [Crossref] [Google Scholar]
  66. Pacchierotti C, Sinclair S, Solazzi M, Frisoli A, Hayward V, Prattichizzo D. 2017.. Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives. . IEEE Trans. Haptics 10::580600
    [Crossref] [Google Scholar]
  67. Pei YC, Denchev PV, Hsiao SS, Craig JC, Bensmaia SJ. 2009.. Convergence of submodality-specific input onto neurons in primary somatosensory cortex. . J. Neurophysiol. 102:(3):184353
    [Crossref] [Google Scholar]
  68. Peirs C, Seal RP. 2016.. Neural circuits for pain: recent advances and current views. . Science 354:(6312):57884
    [Crossref] [Google Scholar]
  69. Peters RM, Staibano P, Goldreich D. 2015.. Tactile orientation perception: an ideal observer analysis of human psychophysical performance in relation to macaque area 3b receptive fields. . J. Neurophysiol. 114:(6):307696
    [Crossref] [Google Scholar]
  70. Phillips JR, Johansson RS, Johnson KO. 1992.. Responses of human mechanoreceptive afferents to embossed dot arrays scanned across fingerpad skin. . J. Neurosci. 12::82739
    [Crossref] [Google Scholar]
  71. Pruszynski JA, Flanagan JR, Johansson RS. 2018.. Fast and accurate edge orientation processing during object manipulation. . eLife 7::e31200
    [Crossref] [Google Scholar]
  72. Pruszynski JA, Johansson RS. 2014.. Edge-orientation processing in first-order tactile neurons. . Nat. Neurosci. 17::14049
    [Crossref] [Google Scholar]
  73. Quindlen JC, Stolarski HK, Johnson MC, Barocas VH. 2016.. A multiphysics model of the Pacinian corpuscle. . Integr. Biol. 8::111125
    [Crossref] [Google Scholar]
  74. Richardson BA, Vardar Y, Wallraven C, Kuchenbecker KJ. 2022.. Learning to feel textures: predicting perceptual similarities from unconstrained finger-surface interactions. . IEEE Trans. Haptics 15:(4):70517
    [Crossref] [Google Scholar]
  75. Roberts RD, Loomes AR, Allen HA, Di Luca M, Wing AM. 2020.. Contact forces in roughness discrimination. . Sci. Rep. 10:(1):5108
    [Crossref] [Google Scholar]
  76. Rosenbaum DA, Dawson AM, Challis JH. 2006.. Haptic tracking permits bimanual independence. . J. Exp. Psychol. Hum. Percept. Perform. 32:(5):126675
    [Crossref] [Google Scholar]
  77. Saal HP, Delhaye BP, Rayhaun BC, Bensmaia SJ. 2017.. Simulating tactile signals from the whole hand with millisecond precision. . PNAS 114:(28):E5693702
    [Crossref] [Google Scholar]
  78. Sadato N. 2005.. How the blind “see” Braille: lessons from functional magnetic resonance imaging. . Neuroscientist 11:(6):57782
    [Crossref] [Google Scholar]
  79. Saunders I, Vijayakumar S. 2011.. The role of feed-forward and feedback processes for closed-loop prosthesis control. . J. NeuroEng. Rehabil. 8::60
    [Crossref] [Google Scholar]
  80. Schiltz F, Delhaye BP, Thonnard JL, Lefevre P. 2022.. Grip force is adjusted at a level that maintains an upper bound on partial slip across friction conditions during object manipulation. . IEEE Trans Haptics 15:(1):27
    [Crossref] [Google Scholar]
  81. Seki K, Fetz EE. 2012.. Sensory gating in cortex and spinal cord. . J. Neurosci. 32:(3):890902
    [Crossref] [Google Scholar]
  82. Shadmehr R, Smith MA, Krakauer JW. 2010.. Error correction, sensory prediction, and adaptation in motor control. . Annu. Rev. Neurosci. 33::89108
    [Crossref] [Google Scholar]
  83. Shergill SS, White TP, Joyce DW, Bays PM, Wolpert DM, Frith CD. 2013.. Modulation of somatosensory processing by action. . NeuroImage 70::35662
    [Crossref] [Google Scholar]
  84. Spencer PS, Schaumburg HH. 1973.. An ultrastructural study of the inner core of the Pacinian corpuscle. . J. Neurocytol. 2:(2):21735
    [Crossref] [Google Scholar]
  85. Srinivasan MA, LaMotte RH. 1995.. Tactual discrimination of softness. . J. Neurophysiol. 73:(1):88101
    [Crossref] [Google Scholar]
  86. Strong RM, Troxel DE. 1970.. An electrotactile display. . IEEE Trans. Man-Mach. Syst. 11::7279
    [Crossref] [Google Scholar]
  87. Suresh AK, Greenspon CM, He Q, Rosenow JM, Miller LE, Bensmaia SJ. 2021.. Sensory computations in the cuneate nucleus of macaques. . PNAS 118:(49):e2115772118
    [Crossref] [Google Scholar]
  88. Suresh AK, Saal HP, Bensmaia SJ. 2016.. Edge orientation signals in tactile afferents of macaques. . J. Neurophysiol. 116::264755
    [Crossref] [Google Scholar]
  89. Takahashi-Iwanaga H, Shimoda H. 2003.. The three-dimensional microanatomy of Meissner corpuscles in monkey palmar skin. . J. Neurocytol. 32:(4):36371
    [Crossref] [Google Scholar]
  90. Tamè L, Longo MR. 2023.. Emerging principles in functional representations of touch. . Nat. Rev. Psychol. 2::45971
    [Crossref] [Google Scholar]
  91. Thaler L, Goodale MA. 2016.. Echolocation in humans: an overview. . Wiley Interdiscip. Rev. Cogn. Sci. 7:(6):38293
    [Crossref] [Google Scholar]
  92. Versteeg C, Chowdhury RH, Miller LE. 2021.. Cuneate nucleus: the somatosensory gateway to the brain. . Curr. Opin. Physiol. 20::20615
    [Crossref] [Google Scholar]
  93. Voudouris D, Fiehler K. 2017.. Enhancement and suppression of tactile signals during reaching. . J. Exp. Psychol. Hum. Percept. Perform. 43:(6):123848
    [Crossref] [Google Scholar]
  94. Wang Y, Baba Y, Lumpkin EA, Gerling GJ. 2016.. Computational modeling indicates that surface pressure can be reliably conveyed to tactile receptors even amidst changes in skin mechanics. . J. Neurophysiol. 116::21828
    [Crossref] [Google Scholar]
  95. Weber AI, Saal HP, Lieber JD, Cheng JW, Manfredi LR, et al. 2013.. Spatial and temporal codes mediate the tactile perception of natural textures. . PNAS 110:(42):1710712
    [Crossref] [Google Scholar]
  96. Wiertlewski M, Friesen RF, Colgate JE. 2016.. Partial squeeze film levitation modulates fingertip friction. . PNAS 113::921015
    [Crossref] [Google Scholar]
  97. Wijntjes MWA, Sato A, Hayward V, Kappers AML. 2009.. Local surface orientation dominates haptic curvature discrimination. . IEEE Trans. Haptics 2::94102
    [Crossref] [Google Scholar]
  98. Williams SR, Chapman CE. 2000.. Time course and magnitude of movement-related gating of tactile detection in humans. II. Effects of stimulus intensity. . J. Neurophysiol. 84::86375
    [Crossref] [Google Scholar]
  99. Williams SR, Shenasa J, Chapman CE. 1998.. Time course and magnitude of movement-related gating of tactile detection in humans. I. Importance of stimulus location. . J. Neurophysiol. 79:(2):94763
    [Crossref] [Google Scholar]
  100. Wolfe J, Levi D, Kluender K, Bartoshuk L, Herz R, et al. 2020.. Sensation and Perception. Oxford, UK:: Oxford Univ. Press. , 6th ed..
    [Google Scholar]
  101. Wolpert DM, Ghahramani Z. 2000.. Computational principles of movement neuroscience. . Nat. Neurosci. 3::121217
    [Crossref] [Google Scholar]
  102. Woo SH, Lumpkin EA, Patapoutian A. 2015.. Merkel cells and neurons keep in touch. . Trends Cell Biol. 25:(2):7481
    [Crossref] [Google Scholar]
  103. Wu B, Klatzky RL. 2018.. A recursive Bayesian updating model of haptic stiffness perception. . J. Exp. Psychol. Hum. Percept. Perform. 44:(6):94152
    [Crossref] [Google Scholar]
  104. Xu C, Wang Y, Gerling GJ. 2021.. An elasticity-curvature illusion decouples cutaneous and proprioceptive cues in active exploration of soft objects. . PLOS Comput. Biol. 17:(3):e1008848
    [Crossref] [Google Scholar]
  105. Zhu M, Biswas S, Dinulescu SI, Kastor N, Hawkes EW, Visell Y. 2022.. Soft, wearable robotics and haptics: technologies, trends, and emerging applications. . Proc. IEEE 110:(2):24672
    [Crossref] [Google Scholar]
  106. Zimmerman A, Bai L, Ginty DD. 2014.. The gentle touch receptors of mammalian skin. . Science 346:(6212):95054
    [Crossref] [Google Scholar]
  107. Zöllner AM, Holland MA, Honda KS, Gosain AK, Kuhl E. 2013.. Growth on demand: reviewing the mechanobiology of stretched skin. . J. Mech. Behav. Biomed. Mater. 28::495509
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-psych-011624-101129
Loading
/content/journals/10.1146/annurev-psych-011624-101129
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error