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Abstract

This article provides an overview of recent developments in mediation anal-
ysis, that is, analyses used to assess the relative magnitude of different path-
ways and mechanisms by which an exposure may affect an outcome. Tra-
ditional approaches to mediation in the biomedical and social sciences are
described. Attention is given to the confounding assumptions required for a
causal interpretation of direct and indirect effect estimates. Methods from the
causal inference literature to conduct mediation in the presence of exposure-
mediator interactions, binary outcomes, binary mediators, and case-control
study designs are presented. Sensitivity analysis techniques for unmeasured
confounding and measurement error are introduced. Discussion is given to
extensions to time-to-event outcomes and multiple mediators. Further flex-
ible modeling strategies arising from the precise counterfactual definitions
of direct and indirect effects are also described. The focus throughout is on
methodology that is easily implementable in practice across a broad range
of potential applications.
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INTRODUCTION

Methodology for mediation to assess the importance of various pathways and mechanisms has
expanded dramatically over the past decade. The topic of mediation has traditionally been more in
the provenance of social scientists and psychologists, and training and education on methodological
approaches for mediation have been less common in epidemiology and public health. Many of the
recent methodologic advances have, however, come out of the causal inference, biostatistics, and
epidemiologic research communities. This review takes the reader through what some of these
advances have been, with an eye toward those developments that may be useful in the practice
of epidemiology and public health research. A full book-length overview of these topics is now
available (47), and the present review in some sense serves as a guide to that fuller treatment of
the subject. A similar review is also available on the topic of interaction (48). The present article
provides a succinct overview of methodology for mediation; describes when and in which contexts
traditional approaches are valid and in which settings other analytic approaches need to be sought
out; and points to relevant papers and relevant sections of the book-length overview for further
reading.

TRADITIONAL APPROACHES TO MEDIATION ANALYSIS

Investigators have utilized two traditional approaches to mediation analysis, sometimes referred to
respectively as the difference method and the product method (or product-of-coefficients method).
We consider each in turn.

The Difference Method

The difference method has been employed more frequently in epidemiology and the biomedi-
cal sciences. It consists of fitting two regression models. Let A denote an exposure of interest,
M a potential mediator, Y an outcome, and C a set of baseline covariates. The first regression
model for the difference method is simply a regression of the outcome Y on the exposure A and
covariates C:

E[Y |a, c ] = φ0 + φ1a + φ′
4c .

The coefficient, φ1, is interpreted as the total effect of the exposure A on the outcome Y. The
second regression is similar but includes the mediator as a variable in the regression as well:

E[Y |a, m, c ] = θ0 + θ1a + θ2m + θ ′
4c .

If the exposure coefficient of the first regression, φ1, without the mediator, goes down consid-
erably when comparing it with the exposure coefficient in the second regression, θ1, when adding
the mediator, this is thought to be indicative of mediation because it seems as though the mediator
explains some of the effect of the exposure on the outcome. The difference between these two
coefficients is sometimes interpreted as a mediated or indirect effect (IE):

IE = φ1 − θ1.

The exposure coefficient itself, θ1, in the model that includes the mediator is then generally taken
as a measure of the direct effect (DE) because the effect on the outcome appears to remain even
when control has been made for the mediator:

DE = θ1.
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We return in the next section to the assumptions under which the interpretation of these estimates
as direct and indirect effects is valid.

The Product Method

A slightly different method, sometimes called the product method or the product-of-coefficients
method, is used with more frequency in the social sciences. The approach was made popular in
part by a paper by Baron & Kenny (5), though it had been proposed earlier (3, 14, 20, 33). With
the product method, two regressions are again employed. We once again regress the outcome on
the exposure, the mediator, and the covariates:

E[Y | a, m, c ] = θ0 + θ1a + θ2m + θ ′
4c .

We then regress the mediator itself on the exposure and the covariates:

E[M | a, c ] = β0 + β1a + β ′
2c .

The direct effect is once again taken as θ1, the exposure coefficient in the outcome regression model
that includes the mediator. The indirect effect, however, is taken as the product of β1 and θ2, i.e.,
the exposure coefficient in the mediator model times the mediator coefficient in the outcome
model. The product β1θ2, taken as a measure of the indirect effect, thus has a seemingly intuitive
interpretation as the effect of the exposure on the mediator times the effect of the mediator on the
outcome.

With these two methods, the product method and the difference method, the question naturally
arises about how they compare. Fortunately, for a continuous outcome and mediator with linear
regression models fit by ordinary least squares, the two approaches coincide. Numerically we
will always have (25) for our mediated effect that β1θ2 = φ1 − θ1. However, this is not the case
with logistic regression models. With logistic regression with a binary outcome, the product and
difference methods do not give numerically identical results. We return below to this question of
which, if either, of these methods for logistic regression is valid.

CONFOUNDING ASSUMPTIONS FOR MEDIATION ANALYSIS

Fairly strong assumptions are needed for the estimates of direct and indirect effects to be inter-
preted causally. First, as in ordinary observational studies, control must be made for exposure-
outcome confounding (Assumption A1). Second, because with direct and indirect effects we are
also drawing conclusions about the effects of the mediator on the outcome, control must be made
for mediator-outcome confounding (Assumption A2). Third, because mediation analysis is essen-
tially about the exposure changing the mediator (and that change in the mediator affecting the
outcome), control must also be made for exposure-mediator confounding (Assumption A3). Fi-
nally, for standard estimates, as above, to be interpreted as direct and indirect effects, there should
be no mediator-outcome confounder that is itself affected by the exposure (Assumption A4). We
now consider each of these confounding assumptions in more detail.

Graphically, one might picture the first three assumptions as in Figure 1. These three
assumptions—control for exposure-outcome, mediator-outcome, and exposure-mediator
confounding—essentially amount to controlling for the variables C1, C2, and C3 in Figure 1, cor-
responding with exposure-outcome confounders, mediator-outcome confounders, and exposure-
mediator confounders, respectively. In practice, some of the covariates may affect all the exposure,
mediator, and outcome, and the covariates may also affect each other. None of this is problematic
and the covariate groups C1, C2, and C3 need not be distinguished from one another. What is
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A M YC 

Figure 1
Relations between exposure A, mediator M, and outcome Y, and confounders.

important is that the covariates included in the regression models above suffice to control for
exposure-outcome, mediator-outcome, and exposure-mediator confounding (Assumptions A1–
A3). These are, of course, strong assumptions; in a later section, we consider sensitivity analysis,
which allows us to assess how robust our direct and indirect effect estimates are to violations in
these assumptions and how substantial a violation in the assumptions would have to be in order
to considerably alter our inferences about direct and indirect effects.

We have thus far considered the first three of the assumptions described above. The fourth
assumption is that none of the mediator-outcome confounders are themselves affected by the
exposure. Diagrammatically, in Figure 1, this assumption essentially corresponds to there being
no arrow from the exposure A to the mediator-outcome confounder C2. If the exposure did affect
a mediator-outcome confounder C2, then this would be problematic for the estimation of direct
and indirect effects because the variable C2 would then itself also be a mediator for the effect of
the exposure A on the outcome Y and one that itself also confounded the effect of the mediator
of interest, M, on the outcome Y. The fourth assumption would thus be violated in a setting such
as that depicted in Figure 2 because in this figure L affects both the mediator M and outcome
Y and is itself affected by exposure A. Addressing scenarios such as this (when another variable
is both a mediator and a confounder for our mediator of interest, M) is more complicated. We
consider this setting in a later section in which we discuss concepts and methods for handling
multiple mediators. For the next several sections, however, we assume that this fourth assumption
of no mediator-outcome confounders affected by the exposure also holds. Another way to think
about the fourth assumption is that there should be relatively little time between the exposure

A M YC

L

Figure 2
A mediator-outcome confounder L that is itself affected by the exposure A.
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and the mediator. If a substantial gap exists, then the fourth assumption requires that nothing
on the pathway from the exposure to the mediator itself also independently affects the outcome.
This assumption likely becomes increasingly less plausible the more time that elapses between the
exposure and the mediator.

The confounding assumptions for mediation analysis are extremely important. Violations in
these assumptions can give rise to very misleading results. Assumptions A1 (control for exposure-
outcome confounding) and A3 (control for exposure-mediator confounding) correspond to as-
sumptions typically made in observational studies for total effects. What distinguishes the assump-
tions required in the mediation context is that control must also be made for mediator-outcome
confounding (Assumption A2). This assumption is not necessary for the analysis of total effects,
but it is needed for the analysis of direct and indirect effects. Moreover, to estimate direct and
indirect effects, this assumption is needed even if the exposure has been randomized. The assump-
tion of control for mediator-outcome confounding is not needed for the analysis of total effects in
a randomized trial, but it is needed for the analysis of direct and indirect effects. It is needed even
in the randomized trial context because, in a trial, although the exposure has been randomized,
the mediator typically has not been. Once we start reasoning about direct and indirect effects, we
are considering the effects of not only the exposure but also the mediator as well. Once again,
failure to control for mediator-outcome confounding in a randomized trial can substantially bias
estimates of direct and indirect effects.

As an example of such bias, Strong et al. (34) consider the effects of a randomized cognitive
behavioral therapy intervention on depressive symptoms at three months follow-up and found
there to be a beneficial effect: Those who had received the therapy had lower depressive symp-
toms in follow-up. However, those in the therapy arm had, at three months follow-up, higher rates
of antidepressant use. This observation led to questions regarding whether the cognitive behav-
ioral therapy intervention had a beneficial effect on depressive symptoms only because it resulted
in higher antidepressant use or whether the intervention affected depressive symptoms through
other pathways by changing thought and behavioral patterns. If the intervention were beneficial
only because of higher antidepressant use, then the cognitive-behavioral aspects of the interven-
tion could be abandoned and a more cost-effective intervention, focusing only on antidepressant
adherence, could be employed. To address this question, if we apply the traditional approaches
to mediation analysis above to the Strong et al. (34) data and regress depressive symptoms on
antidepressant use and therapy, then the coefficient for antidepressant use in this regression is
positive (47). With a naı̈ve analysis, it may appear that antidepressants increase depression. The
effect mediated by antidepressant use thus looks to be harmful, and the direct effect is larger than
the total effect. In short, we get nonsense from the traditional approach if we ignore mediator-
outcome confounding. What is almost certainly occurring here is that those using antidepressants
are likely also those in more difficult contexts, e.g., those who are having relationship troubles or
who have lost loved ones. The confounding between antidepressant use and depressive symptoms
(i.e., mediator-outcome confounding) is so severe that we even get the direction of the regression
coefficient for antidepressant use wrong. See VanderWeele (47, section 3.4) for further discussion
of this example and reanalysis of the data.

Once again, this highlights the fact that if we are interested in mediation analysis, then we must
control for mediator-outcome confounders. This necessity applies to the traditional approaches
to mediation analysis described above, and it also applies to more recent methods described below.
With either the traditional approaches or with the more recent approaches, for direct and indirect
effects estimates to have a causal interpretation, we need Assumptions A1–A4. If researchers were
to more regularly design studies so as to collect data on potential mediator-outcome confounders
and adjust for these in mediation analysis, inferences about direct and indirect effects would be
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more likely to be valid. In a subsequent section, we consider sensitivity analysis for such mediator-
outcome confounding.

ALLOWING FOR EXPOSURE-MEDIATOR INTERACTION

In addition to clarifying the confounding assumptions required to estimate direct and indirect
effects, the causal inference literature on mediation has also clarified how mediation analysis can
be conducted and how a total effect can be decomposed into direct and indirect effects, even when
the exposure and the mediator interact in their effects on the outcome. Suppose, for example, that
our model for the outcome included an exposure-mediator interaction,

E[Y | a, m, c ] = θ0 + θ1a + θ2m + θ3am + θ ′
4c ,

and that we once again fit a linear regression model for the mediator as was the case with the
product method,

E[M |a, c ] = β0 + β1a + β ′
2c .

If the models are correctly specified and the confounding Assumptions A1–A4 hold, then direct
and indirect effect estimates for a change in the exposure from level a to a∗ (e.g., for a binary
exposure a = 1, a∗ = 0) are given by (52)

DE = {θ1 + θ3(β0 + β1a∗ + β ′
2c )}(a − a∗)

IE = (β1θ2 + β1θ3a)(a − a∗).

Standard errors for these expressions are also available (52), and software to compute these effects
and their standard errors and confidence intervals automatically are available in SAS (Statistical
Analysis System), Stata, and SPSS (Statistical Package for the Social Sciences) (39). The total
effect is the sum of the direct and indirect effects, and sometimes a proportion-mediated mea-
sure is used, obtained by dividing the indirect effect by the total effect [see VanderWeele (47,
section 2.13) for further discussion of the measure and its properties].

Note that when there is no exposure-mediator interaction (i.e., when θ3 = 0), these expressions
simply reduce to θ1 for the direct effect and β1θ2 for the indirect effect, i.e., the same estimates as
those of the product method described above (which also with linear regression coincides with the
difference method). The other terms in the expressions for the direct and indirect effects account
for the presence of exposure-mediator interaction.

BINARY OUTCOMES AND LOGISTIC REGRESSION

A similar approach to that described in the previous section can be applied with a binary outcome
and logistic regression. Suppose we have a binary outcome and a normally distributed continuous
mediator, and we fit a logistic regression model for the outcome, possibly allowing for exposure-
mediator interaction,

logit{P (Y = 1| a, m, c )} = θ0 + θ1a + θ2m + θ3am + θ ′
4c ,

and that we once again fit a linear regression model for the mediator,

E[M | a, c ] = β0 + β1a + β ′
2c .

Provided the outcome is relatively rare (a point to which we return below) and provided that
confounding Assumptions A1–A4 hold and the models are correctly specified, then direct and
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indirect effect estimates on an odds ratio scale are given approximately by (53)

log{ORDE} ∼= {θ1 + θ3(β0 + β1a + β ′
2c + θ2σ

2)}(a − a∗) + 0.5θ2
3 σ 2(a2 − a∗2)

log{ORI E} ∼= (θ2β1 + θ3β1a)(a − a∗),

where σ 2 is the variance of the error term in the regression for the mediator. Once again, standard
errors for these expressions are also available (53), and software to compute these effects and their
standard errors and confidence intervals automatically are available in SAS, Stata, and SPSS (39).
For a rare outcome, a proportion-mediated measure can be obtained from the direct and indirect
effect odds ratios by the formula ORDE(ORIE−1)/(ORDEORIE−1).

If there is no exposure-mediator interaction (i.e., if θ3 = 0), these expressions simply reduce to
exp(θ1) for the direct effect and exp(β1θ2) for the indirect effect. Thus, we once again have product
method-type expressions. We had noted above that the product method and the difference method
do not coincide for logistic regression. However, if the outcome is rare (and there is no interaction
in the model) then the product method and difference method do at least approximately coincide
(53).

However, if the outcome is not rare (10% is often used as a cutoff ), then the product method
and the difference method can and do diverge, and, in fact, neither of these approaches nor the
expressions given above are valid for the direct and indirect effects. We return to this issue shortly.
One way around the problem if the outcome is common is to replace the logistic regression
model above with a log-binomial model. If we use a log-binomial model for the outcome, then
the expressions above are valid for the direct and indirect effects on a risk ratio scale and, in the
absence of interaction, the product and difference methods will coincide. Software for estimating
direct and indirect effects with log-binomial models is also available (39).

The problem with binary outcomes that are not rare pertains to the fact that logistic regres-
sion uses the odds ratio, which is a measure that is “noncollapsible” (11), and thus marginal and
conditional odds ratios are not directly comparable. With a common outcome, the odds ratios
with the mediator in the model versus the odds ratios without the mediator are thus not directly
comparable, which leads to problems with the difference method. The problem arises because as
we add covariates to the logistic regression model (even if these are not confounders), the coeffi-
cients tend to increase in magnitude (cf. 32). When the outcome is common, the odds ratio does
not approximate the risk ratio, and the extent of this lack of approximation can vary with the other
covariates in the models.

If we add the mediator to the logistic regression outcome model, then the coefficient of the ex-
posure in the logistic regression may go down somewhat because of mediation but go up somewhat
because of the additional variable in the model. It might, then, appear as though the coefficient of
the exposure does not change at all even though there is, in fact, mediation. We would then draw
the wrong conclusion from the difference method. In fact, because of this noncollapsibility of odds
ratios, it can be shown that, with logistic regression, the difference method is conservative for me-
diation. If one uses the difference method and if the confounding assumptions hold, the difference
method will generally underestimate the indirect effect when used with logistic regression (19).
Thus if the difference method with logistic regression indicates the presence of a mediated effect,
then there is, in fact, evidence for a mediated effect. Yet, if the difference method does not indicate
a nonzero estimate of the indirect effect, one cannot assume that there is no mediation; there may
still be mediation, but the difference method does not allow one to draw conclusions in this case
because the difference method is conservative. When the outcome is rare, odds ratios approximate
risk ratios and these problems vanish. When the outcome is common, we can circumvent these
issues by fitting a log-linear model rather than a logistic model. Further discussion is given in
VanderWeele (47, chapter 2).
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One final point is worth noting when using binary outcomes. Our discussion so far is relevant
for estimating direct and indirect effects with cohort data. Often in epidemiologic studies, data are
available from a case-control study. With a case-control study design in which sampling is done
on the basis of the outcome Y, the estimates from the logistic regression model for that outcome
can be used in the analysis. However, the regression model for the mediator needs to be modified
to account for the sampling design. To do so, one can use a weighting technique (53), or, if the
outcome is rare, a much simpler approach is to fit the mediator model only among the controls.
With a rare outcome, the distribution of the mediator among the controls will be a very close
approximation to the distribution of the mediator in the underlying population; therefore, the
direct and indirect effect estimates with the mediator model fit only among the controls will give
a very close approximation to the direct and indirect effects. Software for estimating direct and
indirect effects for a case-control design is also available (39).

BINARY MEDIATORS

A similar regression-based approach to estimating direct and indirect effects is also applicable to
binary mediators. Suppose that the mediator is binary and the outcome is continuous and that the
following models are correctly specified, which allows for exposure-mediator interaction:

E[Y = 1|a, m, c ] = θ0 + θ1a + θ2m + θ3am + θ ′
4c

logit{P (M = 1|a, c )} = β0 + β1a + β ′
2c .

If the models are correctly specified and the confounding Assumptions A1–A4 hold, then direct
and indirect effect estimates are given by

DE = θ1(a − a∗) + θ3(a − a∗)
exp(β0 + β1a∗ + β ′

2c )
1 + exp(β0 + β1a∗ + β ′

2c )

IE = (θ2 + θ3a)
{

exp(β0 + β1a + β ′
2c )

1 + exp(β0 + β1a + β ′
2c )

− exp(β0 + β1a∗ + β ′
2c )

1 + exp(β0 + β1a∗ + β ′
2c )

}
.

Once again these are simply a combination of the regression coefficients of the two regression
models. Likewise, if both the mediator and the outcome are binary and we fit two logistic regression
models

logit{P (Y = 1|a, m, c )} = θ0 + θ1a + θ2m + θ3am + θ ′
4c

logit{P (M = 1|a, c )} = β0 + β1a + β ′
2c ,

then, if the models are correctly specified and the confounding Assumptions A1–A4 hold, then
the direct and indirect effects are given by

ORDE ∼= exp(θ1a){1 + exp(θ2 + θ3a + β0 + β1a∗ + β ′
2c )}

exp(θ1a∗){1 + exp(θ2 + θ3a∗ + β0 + β1a∗ + β ′
2c )}

ORI E ∼= {1 + exp(β0 + β1a∗ + β ′
2c )}{1 + exp(θ2 + θ3a + β0 + β1a + β ′

2c )}
{1 + exp(β0 + β1a + β ′

2c )}{1 + exp(θ2 + θ3a + β0 + β1a∗ + β ′
2c )} .

Software to estimate direct and indirect effects with binary mediators is also available (39).

SENSITIVITY ANALYSIS FOR UNMEASURED CONFOUNDING

We have emphasized above that the assumptions needed to draw conclusions about direct and
indirect effects, Assumptions A1–A4, are quite strong and will often be violated in applications. It
is therefore important to assess how robust one’s conclusions are about direct and indirect effects
to violations in the assumptions being made. Sensitivity analysis techniques help one assess, for
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example, how strong an unmeasured confounder would have to be related to both the mediator
and to the outcome to substantially change conclusions being drawn about the direct and indirect
effects. Several sensitivity analysis techniques for mediation have been proposed in the literature
[12, 15, 35, 42; see chapter 3 of VanderWeele (47) for an overview of many of these methods].

Here we focus on one very recent sensitivity analysis technique (8) that has broad applicability
and makes relatively few assumptions and is thus of potential use in a wide range of potential
applications. The technique uses two sensitivity analysis parameters. It assumes that exposure-
outcome confounding (Assumption A1) and exposure-mediator confounding (Assumption A3) are
controlled but that there might be unmeasured mediator-outcome confounders (i.e., Assumption
A2 is violated), although it assumes that none of these is affected by the exposure (i.e., Assumption
A4 is satisfied). Thus, we consider a causal structure such as that in Figure 3. Consider a binary
outcome and let U be an unmeasured mediator-outcome confounder and let

γ = max m
maxu P (Y = 1|A = 1, m, c , u)
minu P (Y = 1|A = 1, m, c , u)

denote the maximum risk ratio relating U and the outcome Y among the exposed subjects across
strata of the mediator, conditional on covariates. This parameter is the maximum ratio by which
U can increase the likelihood of the outcome Y via pathways other than through M. Second, let

λ = maxu,m
P (u|A = 1, m, c )
P (u|A = 0, m, c )

denote the maximum risk ratio relating U and the exposure across different conditional levels of
M. This second parameter is somewhat more difficult to interpret. If both A and U affect M, then
conditional on M, there will be an association between A and U even if neither affects the other.
We are specifying the maximum of these associations. Some intuition for this parameter can be
gained in noting that over many scenarios (10) the association between A and U within strata of
M will generally be smaller than the magnitude of the ratio association between A and M and also
smaller than that between U and M, and in the opposite direction. Thus, these can be helpful in
specifying possible values of the second sensitivity analysis parameter λ.

It can be shown (8) that if Figure 3 represents the correct causal structure, then the maximum
ratio that such an unmeasured confounder can decrease the direct effect or increase the indirect

A M YC

U

Figure 3
An unmeasured confounder U of the mediator-outcome relationship.
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effect is given by

B = γ λ

γ + λ − 1
.

Thus, to get a corrected estimate (understood as the most that such an unmeasured confounder
can alter the direct and indirect effects) we can take our direct and indirect effects estimates and
their confidence intervals from the observed data and divide the direct effect estimate and both
limits of its confidence interval by the bias factor B and then multiply the indirect effect estimate
and both limits of its confidence interval by the bias factor B to obtain such corrected estimates.
The actual mechanics of this technique are fairly simple in practice. The technique holds under
the assumption that Figure 3 is the correct causal structure, i.e., that we have only unmeasured
mediator-outcome confounding and that our other confounding Assumptions (A1, A2, and A4)
hold.

We do not know, of course, what the sensitivity analysis parameters, γ and λ, are, but we
can vary them to see how large they must be before estimates change in meaningful ways or, for
example, are reduced to the null. In practice, reporting an entire table of corrected direct and
indirect effect estimates across a whole range of sensitivity analysis parameters can be helpful.
This can be done by putting increasingly large values of one sensitivity analysis parameter λ on
the rows and the other parameter γ on the columns and reporting the corrected estimates and
confidence intervals for each of these settings. Doing so gives the reader considerable information
on how sensitive estimates are to violations in the assumptions. At the very least, however, it is
good practice to report how much unmeasured confounding would be required to reduce the
direct effect estimate to the null and also how much confounding would be required to reduce
to confidence interval to include the null. This can all be done in a relatively straightforward
manner.

The technique we have described here is relevant for binary outcomes. However, similar
techniques can be used for continuous, count, and time-to-event outcomes and can also be applied
on a difference rather than a ratio scale. The reader is referred to Ding & VanderWeele (8) for
further discussion of the technique.

MEASUREMENT ERROR AND MISCLASSIFICATION

Recent work has addressed the impact of measurement error and misclassification on direct and
indirect effect estimates. Several correction methods are now available (18, 23, 40, 38, 51) that em-
ploy regression calibration techniques, SIMEX (Simulation Extrapolation) methods, methods of
moments estimators, weighting approaches, and the EM (Expectation-Maximization) algorithm.
Other work has also considered differential measurement error of the mediator (23). Software is
available to implement some of these various techniques, but resources are still somewhat limited.
The reader is referred to the relevant papers (18, 17, 40, 38, 51) for further information or to
VanderWeele (47, section 3.5). Here we focus on some additional intuitive results concerning the
direction of the bias subject to nondifferential measurement error of the mediator, or exposure,
or outcome.

We begin with the potential measurement error or misclassification of the mediator. If the
mediator is binary or if both the mediator and outcome are continuous, and there is no exposure-
mediator interaction, then one can show (28, 51) that the indirect effect will be biased toward the
null and the direct effect will be biased away from the null. The intuition here is that measurement
error or misclassification of the mediator will weaken the association between the mediator and the
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outcome. As the indirect effect can often be thought of as the product of the effect of the exposure on
the mediator and that of the mediator on the outcome, this indirect effect will be biased downward
by the measurement error weakening the association between the mediator and the outcome. In
addition, because the indirect effect is biased toward the null, the direct effect will be biased away
from the null. This intuition always holds either if the mediator is binary or if both the mediator
and outcome are continuous and if there is no exposure-mediator interaction. It will often hold
in other scenarios (e.g., if the mediator has three or more levels or is continuous with exposure-
mediator interaction), but it will not always hold in these other scenarios. Correction techniques
(40, 38) can still be used in these other scenarios if it is unclear whether the intuition applies.

Other work has considered the biases of direct and indirect effect estimators in the presence of
nondifferential measurement error of the exposure or the outcome (18, 17). For nondifferential
measurement error of the outcome, both direct and indirect effects are unbiased for continuous
outcomes, and both are biased toward the null for dichotomous outcomes (18). Drawing intu-
itive conclusions about the direction of the bias of direct and indirect effects is thus relatively
straightforward in the context of measurement error of the outcome.

For nondifferential measurement error of the exposure, in the absence of exposure-mediator
interaction, the natural direct effect is biased toward the null, but the indirect effect can be biased in
either direction (17). The intuition for the indirect effect is that measurement error of the exposure
will tend to weaken the exposure-mediator association but will strengthen the mediator-outcome
association. Which of these two consequences is more substantial will determine whether the
indirect effect is biased toward or away from the null. Jiang & VanderWeele (18, 17) also developed
correction methods for direct and indirect effects estimators in the presence of nondifferential
measurement error of the exposure and the outcome.

TIME-TO-EVENT OUTCOMES

A similar approach to mediation analysis can be used with time-to-event outcomes as well. Fuller
discussion is given elsewhere (47), but one can once again specify, for example, either a proportional
hazard model or an accelerated failure time model for a time-to-event outcome and either a
linear or logistic regression for a continuous or binary mediator, respectively. The coefficients
can again be combined to obtain estimates of direct and indirect effects. As was the case with
logistic regression, so also with proportional hazards models, the product and the difference
methods require a rare outcome assumption (e.g., less than 10% by the end of follow-up) to be
applicable (43). The use of accelerated failure time models does not require this assumption. For
a proportional hazards model with a common outcome, a weighting approach can be used (22).
Methods for mediation with time-to-event outcomes have also been developed using additive
hazard models (21). Sensitivity analysis techniques are also available (45). Further discussion of
mediation with time-to-event outcomes can be found in chapter 4 of VanderWeele (47).

MULTIPLE MEDIATORS

Our discussion thus far has concerned only a single mediator. Methods are also available for
multiple mediators. Sometimes an informal approach is used for multiple mediators by assessing
mediation one mediator at a time and then summing the proportion mediated across mediators.
If the mediators affect one another, then this approach fails. Even if the mediators do not affect
one another, this approach will still fail if there are interactions between the effects of the various
mediators on the outcome. A regression-based approach, similar to that described above, for
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assessing the extent to which the effect of an exposure is mediated by an entire set of mediators
can be used to address these settings in which the mediators might affect one another (cf. 54);
these methods can be used even if the ordering of the mediators is unknown. A weighting-based
approach can be used for even greater flexibility (54). VanderWeele (47, chapter 5) provides
additional information and the precise assumptions and methodology required.

A more challenging setting is to assess the effect mediated through one intermediate when
there are other mediators that precede and affect the mediator of interest, such as in Figure 2
above. In this context, direct and indirect effects are generally not identified, even if one has data
on all the variables (4, 47), unless one makes further strong modeling assumptions about linearity
of the models and the absence of certain interactions (7, 16, 36, 57), as is done in a linear structural
equation model. Some progress can be made in this context using sensitivity analysis (16, 36, 57).
As discussed above, in this context one can still assess the effects mediated jointly by the mediator
of interest as well as those preceding it. Certain path-specific effects can also be estimated (47,
55). While structural equation models (SEMs) allow one to assess many effects, they also make
assumptions about linearity and normality for all variables in the model and require that the
relations between all variables are unconfounded (44). Essentially, for an SEM, the confounding
assumptions A1–A4 that are described above are needed not just for a single exposure, mediator,
or outcome, but for every set of variables on the SEM. These are very strong assumptions and will
often not hold. SEMs thus deliver more effects than do the methods described in this article, but
they require much stronger assumptions. They can be useful for hypothesis generation but need
to be interpreted cautiously.

PRECISE COUNTERFACTUAL INTERPRETATION

The recent progress that has been made in methods for mediation has come about through ap-
proaching the question of mediation from a counterfactual-based perspective on causal inference.
We briefly describe here the counterfactual definitions of direct and indirect effects that have
allowed this. Let Ya denote a subject’s outcome if exposure A were set, possibly contrary to fact,
to a. Let Ma denote a subject’s counterfactual value of the intermediate M if exposure A were
set to the value a. Finally, let Yam denote a subject’s counterfactual value for Y if A were set to
a and M were set to m. Robins & Greenland (30) and Pearl (29) gave the following definitions
for controlled direct effects and natural direct and indirect effects based on interventions on the
mediator M. The controlled direct effect of exposure A on outcome Y comparing A = a with A =
a∗ and setting M to m is defined by Y am − Y a∗m and measures the effect of A on Y not mediated
through M—that is, the effect of A on Y after intervening to fix the mediator to some value m.
In contrast with controlled direct effects, natural direct effects fix the intermediate variable for
each individual to the level which it naturally would have been under—for example, the absence
of exposure. The natural direct effect of exposure A on outcome Y comparing A = a with A = a∗

intervening to set M to what it would have been if exposure had been A = a∗ is formally defined
by Y a M a∗ − Y a∗ M a∗ . Corresponding to a natural direct effect is a natural indirect effect formally
defined by Y aMa − Y aMa∗ . The natural indirect effect assumes that exposure is set to some level
A = a and then compares what would have happened if the mediator were set to what it would
have been if exposure had been a versus what would have happened if the mediator were set to
what it would have been if exposure had been a∗.

Under the confounding Assumptions A1–A4, these effects are identified on average for a pop-
ulation by the methods and expressions shown above. The controlled direct effects require only
Assumptions A1 and A2. Controlled direct effects can also be estimated even when there are
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mediator-outcome confounders affected by the exposure as in Figure 2, although special methods
such as marginal structural models and structural nested models are then needed (41, 56) because
the regression methods above will no longer suffice. For further discussion of Assumptions A1–A4,
their interpretation, and some of the controversies concerning their interpretation, the reader is
directed to Robins & Richardson (31) and VanderWeele (47, sections 2.3 and 7.3).

In the absence of exposure-mediator interaction in the models above, the controlled direct
effects are equal to the natural direct effects. Controlled direct effects cannot in general be used
for effect decomposition or to assess the relevance of a particular pathway (there is generally no
“controlled indirect effect”). However, controlled direct effects are often of greater policy relevance
because they consider the effect of the exposure that would remain under an intervention on the
mediator to fix it to a specific value. Sometimes a proportion eliminated measure is reported that
is defined as the difference between the total and controlled direct effect, divided then by the total
effect; the measure will differ from the proportion mediated in the presence of exposure-mediator
interaction. See VanderWeele (47, sections 2.13 and 2.14) for further discussion.

MORE FLEXIBLE MODELS

In this review, we have considered various parametric models to undertake mediation analysis.
However, the causal inference approach to mediation is very flexible and can be pursued under
any model. The difficulty is that each time the model is changed, new expressions for the effects
have to be derived. The SAS, Stata, and SPSS macros described above (39) consider numerous
different scenarios. However, if greater flexibility is desired, a simulation-based approach has been
developed by Imai et al. (15), which allows investigators to specify much more flexible models for
the outcome and the mediator and then to estimate the direct and indirect effects by simulation.
The approach makes the same confounding Assumptions A1–A4 but allows for more flexible
modeling. Software is available in both R and Stata (6, 37). For further discussion, the reader is
directed to Imai et al. (15), Tingley et al. (37), or VanderWeele (47, sections 2.17 and 2.18).

CONCLUSION

Mediation analysis has expanded rapidly over the past decade. Numerous other methods have
been developed (1, 2, 9, 13, 24, 26, 35, 58), which we could not address in this article. Some of
these are discussed in the book length treatment of mediation (47). Methods have begun to be
developed for handling questions of mediation for time-varying exposures and mediators (50),
but more work remains to be done in this area. These ideas have also found application in health
disparities research (e.g., 27, 49). Concepts and methods are now also available to assess mediation
and interaction simultaneously. A total effect can, in fact, be decomposed into not just two but
four distinct components: the effect due only to mediation, that due only to interaction, that due
to both mediation and interaction, and that due to neither (46). The new methodology considers
how much of the direct effect described above is or is not also due to interaction and how much
of the indirect effect described above is or is not also due to interaction. The approach provides
maximum insight into the phenomena of mediation and interaction simultaneously. SAS code
to implement this type of analysis is also available (46). See VanderWeele (46; 47, chapter 14)
for further discussion. Methodology continues to advance, and further developments in the years
ahead are likely.

The mediation methods discussed in this review can be useful for a number of purposes.
Some potential uses of these ideas and methods include trying to understand etiology, providing
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evidence to confirm and refute theory, assessing the impact of intervening on a mediator when
it is not possible to alter an exposure, and trying to understand why an intervention succeeded
or failed. The application of these techniques makes some strong assumptions and should thus
always be accompanied by sensitivity analysis; in at least some instances, these approaches can give
considerable insight into pathways. Further discussion of motivations for and uses of mediation
analysis is given in VanderWeele (47, section 1.3).
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