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Abstract

Public health research has witnessed a rapid development in the use of
location, environmental, behavioral, and biophysical sensors that provide
high-resolution objective time-stamped data. This burgeoning field is stim-
ulated by the development of novel multisensor devices that collect data
for an increasing number of channels and algorithms that predict relevant
dimensions from one or several data channels. Global positioning system
(GPS) tracking, which enables geographic momentary assessment, permits
researchers to assess multiplace personal exposure areas and the algorithm-
based identification of trips and places visited, eventually validated and com-
plemented using a GPS-based mobility survey. These methods open a new
space-time perspective that considers the full dynamic of residential and
nonresidential momentary exposures; spatially and temporally disaggregates
the behavioral and health outcomes, thus replacing them in their immedi-
ate environmental context; investigates complex time sequences; explores
the interplay among individual, environmental, and situational predictors;
performs life-segment analyses considering infraindividual statistical units
using case-crossover models; and derives recommendations for just-in-time
interventions.
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THE CONCEPTUAL GROUNDS OF MOBILE SENSING
IN PUBLIC HEALTH RESEARCH

Public health research has witnessed a rapid development in the use of wearable sensors, i.e.,
location, environmental, behavioral, and biophysical sensing devices that provide data at regular
intervals. To develop a comprehensive overview of this literature (see Figure 1 for a summary
of concepts) and provide recommendations for future research (Table 1), a narrative review of
this emerging literature was conducted. As detailed in Supplemental Material 1, this review
focused on sensor-based studies in the field of public health (e.g., studies on physical activity,
dietary behavior, addictions, mental health) that assessed environmental exposures using either
global positioning system (GPS) data or a dedicated device; of particular interest were studies that
combined several tools.

Mobile Sensing as a Source of Objective Data

Public health research has extensively used self-reported data from a posteriori questionnaires as
proxies of the objective measurements that were lacking, e.g., for physical activity, sleep patterns,
travel modes used, and regularly visited places. Self-reported data misclassify study participants to a
significant extent, e.g., for physical activity and travel behavior (46, 80). A benefit of mobile sensing
as an alternative source for these dimensions is to provide objective data to reduce misclassification.

Data collection Analysis and interpretation

« Multisensor studies

« Wearable sensors of:
° Location
°© Behavior

° Environmental
exposures

° Health/physiology

« Complementation of
passive sensor data
° Diaries —
alignment issues
°© GPS-based
mobility survey
° Ecological
momentary
assessment

« Geographic
momentary
assessment

« Geographically explicit

ecological momentary
assessment

Figure 1

« Algorithm processing of sensor data
° Physical activity
o Sedentary time
° Body posture
° Energy expenditure
° Qutdoor time
°Sleep
° Social contacts

« Algorithms for:
° Place recognition
°Trip recognition
° Activity recognition
°Transport mode recognition
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° Non-area-based measures
° Area-based variables

« Personal exposure areas
° Activity space variables

° Daily path area (to avoid spatial
misclassification)

°Which buffering radius?
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« Life-segment momentary
analyses
° Short-term intensive
longitudinal data

° Dynamic multiplace
exposure

° Spatiotemporally
disaggregated outcomes

° Infraindividual statistical
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within-person differences

« Analytical biases

° Selection bias (due to
nonwear of devices, etc.)

° Selective daily mobility bias
(confounding)

°Time-varying confounders

« Identification of:
° Individual predictors
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« Recommendations for
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Overview of concepts related to sensor-based data collection protocols and related life-segment analyses for

environment and health studies in public health.
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Table 1 Recommendations and research agenda for the development of sensor-based momentary environmental studies in

the field of public health

Domain

Recommendations

Regarding the theoretical
bases of studies

The dramatic development of sensors conveys a risk of technology-driven research, which has to be
addressed through the a priori development of sound hypotheses and through the critical
assessment of whether each sensor and algorithm provides sufficiently reliable and valid data.

Investigators will have to develop theoretical models that account for individual and environmental
factors but also for situational factors and which take into account how the latter interact with the
former, as relevant to the conception and implementation of fine-tuned intervention programs.

Regarding data collection

Studies should increasingly collect multiple channels of relevant time-stamped data by using
separate devices and integrative multisensor devices (without altering the participants’ behavior).

Scholars will have to develop integrated protocols, including passive and active devices collecting
data across most relevant domains, including location, environmental exposures, behaviors,
psychology, and health status.

Researchers will have to develop multiple strategies to disaggregate temporally and spatially the
exposures but also the behavioral, psychological, and health outcomes, e.g., through passive
sensing, GPS-based surveys, and EMA.

Future research will benefit from additional studies that combine GPS receivers for exposure
assessment with passive sensors other than classical accelerometers (e.g., advanced sensors for
posture detection, biological sensors) and with EMA.

To interpret data from passive sensors, researchers critically need detailed time-use information (on
periods spent in trips and trip stages and at visited places). T'o accomplish this goal, I recommend
performing GPS-based prompted recall web mapping surveys, although they are costly.

Regarding data preparation
and data analysis

Efforts will be needed to develop sound measures of environmental exposures based on GPS tracks
that take into account the activity context (e.g., measures of exposures based only on trip-related
GPS points, specific to particular travel modes, distinguishing between outdoor and indoor
locations).

Using time-stamped GPS data, investigators will also have to account for the cumulated durations
of exposures and identify the relevant induction periods.

Such refined measures of exposures will have to be compared with more traditional variables and
validated against perceptions of the corresponding exposures or relevant behavioral/health
outcomes.

Researchers will have to carefully adapt the GPS-based measures of exposures to mitigate the risk of
selective daily mobility biases by modifying the spatial footprint (i.e., which places, which trips)
used for exposure calculations.

To fully correct selective daily mobility biases, scholars will have to assess which destinations were
visited only because the previous or next one was visited (chain destinations) and to collect data on
the premeditated versus incidental use of services.

Rather than aggregating the sensor data only at the individual level, researchers are encouraged to
also develop analytical designs that consider infraindividual statistical units and preferably
meaningful units such as trips or stays at visited places.

Researchers should take care to address at the analytical stage, or at least at the interpretational
stage, the different forms of bias that threaten life-segment analyses, including residual
confounding by time-varying confounders.

Regarding
recommendations for
interventions

When conceiving their sensor-based research protocols and implementing their life-segment
analyses, researchers should develop recommendations of concrete just-in-time interventions that
provide the right type and amount of support to the right person at the right time in the right place.

Abbreviations: EMA, ecological momentary assessment; GPS, global positioning system.
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Moreover, relying on passive sensing makes it possible to dedicate questionnaires to dimensions
whose measurement requires self-report (e.g., environmental perceptions, emotional states).

A New Space-Time Perspective in Public Health Research

Previous neighborhood and health literature has restrictively focused on residential environments
(13, 14,43, 51). Exclusively investigating residential neighborhood exposures implies a substantial
misclassification of the total environmental exposure (18) [a phenomenon referred to as spatial
misclassification (25)]. To move beyond this fragmented consideration of space, various strategies
were developed to collect more detailed data on the various places visited by people across space
and time. Whereas web mapping surveys of the regular places visited permit one to expand the
exposure information collected along the spatial continuum (62), GPS tracking allows one to
expand it also along the time continuum, yielding high-resolution space-time data (83).

I argue that the continuous monitoring of participants with wearable sensors sets the basis for
a novel and complementary perspective for understanding human behavior and health in their
environmental contexts (as summarized in Figure 1) (11, 45). This effort toward microspatial and
temporal scales requires a shift in the driving theoretical models and analytical methodologies.
Whereas classical studies are grounded in the abstract view of individuals connected to their
residential neighborhoods without any time-use information available, these novel studies can
identify the detailed succession of places visited over an observation period. While traditional
studies therefore consider static and uniform exposures, this novel approach takes into account the
full dynamic of exposures, analyzing momentary exposures (11) as an opportunity to operationalize
the time—geography perspective (35). On the outcome side, whereas traditional studies often
involve variables (e.g., self-reported) aggregating information over a relatively long period (45),
mobile sensing studies can disaggregate spatially and temporally the dimensions of interest (11).
As a consequence, there is a loose connection between contexts and behaviors or health outcomes
in classical studies; in contrast, these new studies can contextualize behaviors and health states
in their immediate environments (42). The classical approach focuses on individuals, comparing
individual-level units through standard multilevel regression analyses, whereas these novel studies
analyze a set of short monitoring periods or life segments for each individual, allowing each person
to be compared with herself/himself.

The ability to correlate time-stamped information from various sensors leads to the devel-
opment of short-term effect studies exploring dynamics at a microtemporal scale. Although
these studies cannot directly identify the medium- or long-term predictors of diseases, they are
well suited to investigate the contexts of behaviors and the immediate determinants of acute
health/behavioral responses as a pathway to chronic effects on health.

These high space-time granularity data offer the opportunity to test novel hypotheses at an
unprecedentedly fine scale (45), e.g., on the environmental triggers of behavior. Also, complex
time sequences of phenomena (temporal ordering of exposures, situations, behaviors, and health
states) can be analyzed to uncover the genesis of behavior or transient health states (immediate
precipitants, chains of phenomena). For example, associations between environmental factors and
blood glucose have been investigated at the population level with individuals as statistical units,
but the day-to-day human-environment interactions, behavioral choices, and life events that cause
blood glucose to fluctuate remain unexplored (21).

Environmental, Situational, and Individual Factors

One reason why novel hypotheses can be tested is that sensor-based momentary studies allow
investigators to take into account situational factors, in addition to the more commonly considered
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individual and environmental factors. Individual and environmental characteristics are relatively
permanent factors connected to individuals or environments in a more or less intrinsic way.
Conversely, situational factors refer to transient circumstances in space and time that are more or
less contingent for the individual and environment visited. Examples of situational characteristics
include the hour of the day, the day of the week, and the season; the weather; the number and
nature of persons present around ego and their type of interactions with ego; the particular reason
for being in a place and the type of activity in which ego is engaged; the transient mood and
emotional state of ego; the recent history of ego (e.g., activities over the previous hours).

Situational factors have received much consideration in alcohol and drug addiction research, as
obvious determinants of these behaviors (32). Their assessment through objective measurement
strategies should allow them to be systematically investigated as independent factors or modifiers
of individual/environmental influences. Accounting for situational factors is particularly relevant
to the development of just-in-time interventions (56), as alluded below.

DATA COLLECTION AND PROCESSING: EMERGING PRACTICES
The Toolkit of Sensors and Related Challenges

The toolkit of sensors employed in public health and epidemiologic studies comprises a growing
set of devices, allowing researchers to measure various aspects of the “external exposome” (54).

A growing number of sensing opportunities. Figure 2 reports examples of wearable sensors
categorized into three domains: behavioral sensors, environmental sensors, and physiological and
health sensors. Details on these sensors and bibliographic references are provided in Supplemental
Material 2.

Other tools collect data pertaining to several of these domains of information. For example,
pictures from wearable cameras have been used to assess the environments visited [e.g., parks
(57), presence of food (73) or alcohol (17) marketing signs] and behaviors [e.g., dietary behavior
(58), the types of children’s destinations (16), sedentary behaviors (50), or travel durations (48)].
However, the resulting images are burdensome to convert into usable information in the absence
of efficient image-processing algorithms.

Various devices or systems of devices collect several channels of data, either from a unique type
or from differing types of sensors. For example, the VitaMove system collects data from several
accelerometers placed on different parts of the body, e.g., on the trunk and on the thigh, allowing
the detection of body postures (7). Other examples of multisensor devices include the SenseDoc,
which combines a GPS receiver and an accelerometer; the BioPatch, which records triaxial ac-
celerations, heart rate, and respiratory rate; the multisensor board, which senses accelerometry,
barometric pressure, humidity, temperature, light, audio, and GPS (42); and the Personal Air
Quality Monitor, which integrates, in addition to sensors of gazes and concentrations of particles
by particle size, a GPS receiver, an accelerometer, and a basic sound pressure monitor.

Smartphones also incorporate various embedded sensors (57). Moreover, they are pro-
grammable; have large touch screens; are able to link to external devices through wireless connec-
tions (and thus can serve as a hub for managing multiple streams of data); are able to transmit data
to distant servers; have remote monitoring capabilities, powerful processors, and large amounts
of memory; and are familiar to a growing fraction of the population (22). However, battery life
remains an issue when simultaneously using several functionalities of the smartphone (23).

The challenges for manufacturers and researchers. Among the challenges faced by hardware
developers, one key issue is the miniaturization of sensors, which is critical when asking participants
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« Body temperature
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« Ambulatory blood pressure
« Respiratory rate
« Electrodermal activity
« Blood glucose

Figure 2

Examples of environmental, behavioral, and health and physiological sensors for public health research.

to carry several sensors. A second issue is the autonomy of sensor devices, in relation to both
battery life and memory size. The durability of consumables (e.g., stickers to fix devices on the
body, electrodes, filters for air pollution monitors) is also important. A third issue is the ability of
sensors to transmit their data to central servers, e.g., through SIM cards integrated in the device,
through Bluetooth communication with a smartphone, or using a Wi-Fi connection (57). The
continuous transmission of data during the data collection period allows researchers to monitor
the compliance of participants and the current status of the device (i.e., working or not) to address
data collection problems (21). Moreover, if all data in their detailed format can be automatically
uploaded to the servers (which might be infeasible or induce high transfer costs), such real-time
transmission eases investigators’ access to the data and reduces the risk of data loss during the
collection and download phases. In addition to reducing the cost of sensors, a final challenge is to
improve the operability of devices, which all have different cables or card readers and software for
accessing the data. The automatic upload and integration of numerous streams of data in a unified
computer platform (42) remain a relatively medium-term target, as experienced in the RECORD
MultiSensor study (28) and other multisensor studies (57).

Challenges faced by researchers include the many decisions to be made for the configuration of
each sensor and processing of its data (49, 81), the choice of the monitoring period length to capture
the patterns of interest (41), and the field strategies to deploy to minimize behavioral reactivity (83)
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(alteration of a person’s behavior due to the burden of devices or social desirability bias) or to reduce
dropout (strategies may include support from staff, financial incentives, feedback to participants,
etc.). Another issue, in addition to assessing the performance of sensing in each domain, is to
determine the maximum number of sensors or burden that participants can accept (57), which
depends on the type of sensors and other aspects of the protocol and on the characteristics and
motivation of participants (e.g., patients or not). Another important challenge for the future of
sensor-based data collections is to better grasp the respective benefits of intensive studies over a
well-defined number of days compared with less controlled and less intensive data collections over
longer periods of time (e.g., with a smartphone over several months) (44).

GPS Tracking in Public Health Research

Compared with the declarative data obtained from travel surveys or diaries (13), GPS receivers
provide objective time-stamped location data (49) with limited burden on participants (18). In most
circumstances, the positional error of GPS receivers is small compared with the buffer radiuses
selected for exposure assessment.

Geographic momentary assessment. In allowing researchers to work with time-indexed geo-
graphic coordinates (45) and to replicate a person’s space-time path (22), GPS receivers open a new
research era of geographic momentary assessment (52). Geographic momentary assessment has
several key benefits: (#) It permits investigators to link the various locations visited throughout the
day with environmental factors, providing an accurate accounting of the person—place dynamics
(52) and environmental conditions to which individuals are exposed (environmental characteri-
zation) (21); (/) it allows investigators to focus on the transport behavior as a source of physical
activity, air pollution and noise exposures, stress, etc.; and (¢) it provides a basis for assessing the
time use, activity patterns, and space-time budgets of study participants.

The automatic identification of places visited, trips, activities, and transport modes. In
many GPS-based studies, researchers process GPS points without information on whether they
correspond to a visited place or to a trip and without information on transport modes. Such data
have limitations, both for understanding behaviors and for environmental exposure assessment.

Certain studies have relied on a manual identification of trips through a visual inspection of
GPS data in a geographic information system. For example, some studies manually isolated trips
to and from school (37, 74). Other studies manually extracted information on home-work trips
in adults (19, 59). To reduce the burden of data processing, other studies have applied automatic
algorithms (#) for the recognition of places visited and resulting assessment of trips between them,
(&) for the assessment of particular places or trips, and (¢) for the recognition of travel modes.

Regarding the identification of places and trips, certain studies have used a cluster detection
algorithm to detect stationary places (38), whereas other have relied on a definition of stops as
aggregates of successive GPS points within a certain spatial range lasting for a minimum duration
and with speeds below a certain threshold (47). Another study developed a complex algorithm based
on kernel density estimation to identify the places visited (corresponding to elevated densities of
GPS points possibly generated through multiple visits to the place) (12, 76).

Regarding the assessment of visits to specific places, a study attributed clusters of successive
GPS points to very specific types of facilities (e.g., athletic facility, entertainment facility, green
space, religious facility, restaurant, retail) using geographic information system data without any
confirmation from participants (64). Another study assumed that participants visited a fast-food
restaurant in the case of spatial concordance for a certain duration between the participants’
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GPS location and the corresponding service identified in a geographic information system (70).
Without confirmation from participants, this approach [also followed in other studies (47)] is risky
and probably insufficiently accurate, e.g., in settings where services are located on the ground floor
of buildings also used for other functions or where various services are located very close to each
other. Studies also attempted to identify specific trips automatically, such as home-school trips
(20), for example as trips that started and ended within 40 meters of home and school (38). Similarly,
another study identified the transport activity of children during leisure time (79), a construct that
would be difficult to self-report.

Some of the GPS-based algorithms that identify places visited and trips also retrieve the trans-
port modes used in trips (55). The Personal Activity Location Measurement System (PALMS) (8)
has been used in the largest number of studies in the field of public health. The Moves smartphone
application is also an option. As reviewed elsewhere (10, 71), algorithms for mode recognition can
be classified into criteria-based approaches [involving somewhat debatable expert rules, such as
cutoffs applied to speed (20)] and machine-learning approaches. The latter are subdivided into su-
pervised and unsupervised methods (10). Supervised methods first derive a prediction model from
a data set of trips with known modes (from manual classification or participants’ reports), which
is then used to predict modes in another data set (4, 31). Heterogeneity in the generation model
between the training and the target samples would lead to misclassification. Such models have
been developed to predict modes either at the trip level (4) or for small windows of, for example,
1 minute (where a posteriori smoothing is then needed to mitigate incoherent switching between
different modes) (29). Unsupervised methods do not need a database of trips with preclassified
modes. Rather, considering that the different motorized and nonmotorized modes each have their
own distribution of speeds, they attempt to classify the trips into modal categories on the basis of
the distribution of speeds in each trip segment, removing the need for manual labeling (10, 53).

Most transport mode recognition algorithms rely only on GPS data, whereas some have com-
bined GPS and accelerometer data (4). One study identified trip modes from GPS, accelerometer,
and heart rate data; however, investigators used a visual and manual approach rather than an
algorithmic approach (61).

Strategies to complement GPS tracks. It is useful to have data on activities at places and
transport modes to address specific questions, improve the definition of exposures, and address
inferential problems. However, the previous section makes it clear that the automatic assessment
of activities and modes suffers from misclassification. To obtain reliable data, participants’ self-
reported information (69) or validation is needed.

A firstoption is to rely on a separate paper or electronic diary (69). Some studies have a posteriori
linked information on travel modes self-reported in a diary to trips identified from GPS or ac-
celerometer data (19, 59). However, the real-time reporting of information on activities and modes
is burdensome, and a study based on a trip diary over two days showed that the reported data were
already of lower quality on the second day (1). Additionally, one challenge is that the two separate
sources of data on the same trips, the GPS data and the diary data, must be aligned, which implies
approximations. A study reported that the mode was assigned to a bout of activity in the case of
temporal overlap and/or time proximity (68). In another study that matched diary-reported visits
to fast-food restaurants or supermarkets with the corresponding GPS-based visit, allowing a tol-
erance of plus or minus 10 minutes or 30 minutes significantly improved the rate of matching (69).

To reduce misclassification, a different approach developed in the transport research field
involves GPS-based web mapping mobility surveys. GPS data are uploaded into a Web application
that integrates algorithms for processing them and mapping functionalities for displaying the
preanalyzed GPS tracks; on this basis, participants are asked to validate, correct, and complement
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information on the types of places visited and travel modes (2, 3, 75, 82). This approach is also
referred to as prompted recall surveys because the preanalyzed GPS tracks are used to stimulate
participants’ recall. In the RECORD GPS/MultiSensor Studies and MobiliSense project, I use
one of the most advanced applications to date: (#) It segments GPS tracks into visited places, trips,
and unimodal trip stages; (b) it recognizes the places visited from previously reported participants’
regular destinations and general points of interest; (¢) it imputes travel modes from GPS speeds,
self-reported use of transit, and geographic data on transit stops; (4) it allows investigators to
import transit trip itineraries and times from the General Transit Feed Specification data; and
(e) it includes a number of tools for manually editing the GPS tracks (retrieving short stops,
segmenting tracks to create a stop, manual drawing, imputation of street-network itineraries). We
use this tool to derive an accurate schedule of the personal activities and trips over several days,
with edited GPS tracks cleaned from the residual artifacts that would preclude the calculation of
distances; with start and end times of each visit to places, trip, and trip stage; and with validated
information on activities and transport modes. These accurate spatialized time use data are costly
to derive but provide a powerful basis for interpreting the time-stamped data of other sensors.
Map-based prompted recall survey tools can also collect complementary data, e.g., on the social
network contacts involved in activities/trips (23) or on physical activity bouts identified from
accelerometry data (5, 55).

Personal Exposure Area Variables

Wearable sensors capture a range of environmental exposures (57), leading to non-area-based
measures of environmental exposure. The present section focuses on area-based variables of ex-
posures that build on location-aware technologies such as GPS receivers. GPS-based variables, or
environmental variables along the daily path area, have been suggested as a way to operationalize
the notion of activity space (24, 25). Activity spaces relate to the places visited by people during
their daily activities and to the routes between these places (13). Strong discordances have been
reported between residential and GPS-based variables of exposures (25, 67). Differences in ex-
posure have been reported even between the modeled shortest paths and the actual GPS paths
(37).

There are many options, and hence decisions to make, to determine the spatial footprint used
for exposure assessment (13,15, 24) (i.e., the exactarea or polyline used for extracting exposure data
prior to the calculation). Using area delimitations that do not reflect the true exposure area leads to
spatial misclassification (25), as an important component of the overall misclassification of expo-
sures (other sources corresponding to the time of exposure and to the exposure data themselves).

A preliminary choice to make is whether to use the crude GPS data, filtered GPS data, or
edited and complemented GPS tracks. Then, a buffering strategy must be selected. Buffering
the GPS points or the GPS track polyline will lead to slightly different exposure areas if GPS
sampling is relatively sparse. Selecting a radius is no easy task. When assessing the potential access
to services, very short radiuses should be retained if the aim is to capture the range of sight within
urban contexts to represent a viewshed [e.g., 50 or 100 meters] (67, 70)], whereas larger ones (e.g.,
half mile) (18, 85) could be used if considering that the subject could modify her/his itinerary
on the basis of knowledge of proximate opportunities. When assessing environmental exposures,
whereas relatively large radiuses around the home are used for residential measures to account
for the unobserved patterns of movement around the residence, GPS-based measures can rely on
short radiuses, for example corresponding to the viewshed [e.g., to assess the exposure to built
environment factors with a buffer width of 100 meters (38)], or even extract exposure values along
the track (for air pollution and noise exposures).
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A strategy to refine exposure assessment is to distinguish between different stages of GPS tracks,
e.g., during trips versus at a visited place, outdoors versus indoors, or according to the type of
visited place or transport mode. Investigators can use adaptive radiuses, e.g., shorter for trips than
for visited places or varying in width according to the type of visited place (62). Related strategies
are to ignore episodes in motorized transport where contact with the environment is reduced to
assess the nonmotorized exposure to the food environment (10) or the spatial accessibility only
in pedestrian and bicycling activity spaces (40), or to estimate exposure effects separately for each
transport mode (66). Another emerging improvement is to explicitly account for time durations,
e.g., by assessing the cumulated duration (66) or percentage of time (10) spent near a source of
exposure.

Exposure variables are becoming more algorithm-based. To make sure that these refine-
ments are relevant, researchers should assess whether, compared with the more rudimentary
variables, the novel ones better predict (#) perceptions of the corresponding exposures or
(b) behavioral/health outcomes. Finally, it should be noted that few studies have used GPS data
to define not the exposure but the behavioral outcome (e.g., contextualized physical activity) (26,
77, 84).

Sensor-Based Behavioral Variables

Algorithmic processing of sensor data also provides relevant information on behaviors of interest
in public health. Behavioral dimensions predicted from sensor data include travel behavior, phys-
ical activity and sedentary time, body posture, energy expenditure, time spent outdoors, sleep,
and interactions with social contacts, as briefly reviewed in Supplemental Material 3. These
dimensions are inferred through algorithms that apply to one unique channel of data or to several
channels from different sensors.

Ecological Momentary Assessment

It is often important to complement the objective information provided by wearable sensors with
subjective information that can be obtained only by interacting with the participants (22). The
usual self-report strategy involves retrospective (after-the-fact) assessments and takes a global
perspective averaging information over a recall period (83). However, retrospective recall often
differs from reality (32, 52), leading to differential measurement error.

As a survey strategy, ecological momentary assessment (EMA) (72) aims to attenuate recall
error and memory distortion (22, 32). Its first key characteristic, the momentary component,
is to assess current states in as close to real time as possible, when feelings are fresh (22). The
second key element is the ecological dimension: Survey items are answered in situ to assess the
ongoing experience of participants within its environmental context (22, 30, 52, 72, 83). The third
characteristic of EMA is to sample repeated life segments to capture changes in experience in
short time frames (22, 83).

EMA is typically useful to collect information on emotional status or mood (57); on experiences,
intentions, and decisions; on specific aspects of behavior that cannot be objectively assessed; on
accompanying persons (32); on other situational characteristics; on environmental perceptions
[subjective account of the ecological context (52)]; and on aspects of the environment that cannot
be characterized with sensors or geographic information systems.

Compared with paper diaries, the use of electronic devices such as smartphones or tablets
extends the range of options for administering questionnaires. The strengths of electronic de-
vices for EMA include the ability to manage complex administration schedules; the availability of
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prompting through buzzing and audio alarms (including recall prompts when a survey was missed);
the option to propose interactive voice response surveys (32) or even open-ended questions to
which participants respond through recorded audio messages (22) in addition to text surveys; and
the possibility to perform certain data quality checks.

Modern EMA research uses a wide range of prompting strategies. Participants can be prompted
at a given time, at regular intervals, or at random times within time slots [signal contingent re-
sponding (83)]. Self-initiated reporting is also possible (63) [event-contingent responding (83)].
More complex prompting strategies, referred to as sensor-informed context-sensitive EMA (27,
78), rely on the internal sensors of the smartphone and possibly on external data (e.g., geographic
data) available to the triggering algorithm (52). Questionnaires can be generated when the partic-
ipant arrives at home (if the application has access to coordinates for home), when the participant
is in a green space (57) (if geographic data can be processed), after the smartphone accelerometer
detects an episode of physical activity (27), when the participant is exposed to an environmental
nuisance [e.g., to radiofrequency electromagnetic fields (78)], etc.

An emerging field combines EMA with geographic momentary assessment (i.e., GPS tracking),
which is designated as geographically explicit EMA (52) or as integration of EMA with activity
space analysis (32). Only very few studies have combined passive geographic tracking with inter-
active survey strategies to collect geolocated self-reported behavioral or perceptual data (22, 32)
and to link momentary experience to objective environmental contexts in place and time (52). For
example, one study correlated exposures to audit-based social and physical disorder within GPS
tracks with self-reports of drug craving (30).

ANALYTICAL AND INTERPRETATIONAL CHALLENGES
IN MOMENTARY INVESTIGATIONS

Life-Segment and Momentary Analytical Design

A number of sensor-based studies collected repeated outcome data for each participant (e.g., ac-
celerometer physical activity, travel modes in trips) but aggregated data in an individual-level
outcome before establishing correlations with GPS-based built environment exposures also ag-
gregated at the individual level (33) or with residential neighborhood variables (36). Other studies
of this kind collected outcome data at the individual level [e.g., current or usual dietary intake or
food purchasing unrelated to the GPS wear period (18, 70, 85)], and thus they had to aggregate
the GPS-based exposure at the individual level. Individual-level analyses of these data may occa-
sionally be subject to the “individual aggregation fallacy” (an equivalent of the ecological fallacy
that led to the development of multilevel/contextual analysis): For example, the consumption of
less-healthy food by people who are exposed to fast-food restaurants more often does not imply
that this unhealthy food consumption occurs after exposure to, and as the result of being exposed
to, fast-food restaurants.

Certain sensor-based studies correlated exposure and outcome data at an infraindividual level.
At a relatively aggregated level, some studies analyzed behavioral outcomes derived from sensors
or diaries at the day level (with days nested within individuals) (60). At a finer grain, many stud-
ies (especially the descriptive physical activity location studies) analyzed data at the level of GPS
data points/accelerometry epochs (9). Although readily available, these extremely short analyti-
cal units may not be ideal for behavior analysis because behavioral choices are made for longer
time episodes (14). Trips and trip stages or stays at visited places are probably more meaningful
analytical units for investigating physical activity or some other behaviors. Only very few studies
could perform trip-level analyses of sensor-based outcomes, including physical activity studies that
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disaggregated the travel mode outcome at the trip level (11, 12, 38) and including one study that
disaggregated a food consumption/purchasing outcome at the trip level (adolescents’ junk-food
purchasing in home-school trips) (66). Another strategy was to analyze physical activity intensity
(derived from combined accelerometry and heart rate monitoring) in short 1-minute epochs but
to take into account the nesting of these periods within identified trips (19). Other relevant periods
of observation that have been used as repeated within-individual statistical units include physical
activity bouts (34) or outdoor episodes (65). Finally, momentary analytical studies also include the
approach that combines GPS-based geographic momentary assessment with EMA to investigate
the immediate residential or nonresidential determinants of affective, perceptual, or behavioral
self-reports (30).

These studies may indicate one of the paths to follow toward the future of environment and
behavior sciences or environmental health sciences. The conceptual benefit of a space-time disag-
gregation of data (including the outcome) includes the ability to investigate the dynamic processes
interrelating places visited, events, experiences, behaviors, and health status and the moment-
to-moment influences involved in these cascades of phenomena (52, 83). With this approach,
investigators can analyze between-person differences in health behaviors and health and their
determinants as commonly done in traditional individual-level multilevel studies, but also within-
person differences, i.e., why a given individual behaves in a different way or exhibits a different
health status than he/she does at a different moment owing to changes in current and preced-
ing situational and environmental factors (83). A strength of the latter approach is to neutralize,
through the exclusive comparison of each participant to herself or himself in exposed and un-
exposed circumstances (52), confounding by stable individual preferences and attitudes. Such a
case-crossover analytical approach has been applied very rarely to date to sensor-based data in
public health studies (11).

From Short-Term to Longer-Term Influences

Studies involving continuous monitoring with sensors are well suited to investigate short-term
responses to exposures. Short-term emotional or health responses are often transient and do not
have a public health significance per se, but they might be important from a mechanistic point of
view, as stimulations regularly repeated over a long period are often the basis for the chronicization
of health effects. Still, empirically demonstrating whether and how such short-term influences
lead to more permanent effects would be important. Thus, an aim for future research would be to
reconcile studies of short-term effects and longer-term effects.

An appropriate design to address this goal is to conduct repeated sensor-based assessments over
multiple waves, e.g., every six months or every year. It would allow researchers to investigate the
impact of longer-term environmental exposures on changes in health status over two or several
waves. Moreover, as a potential pathway for longer-term effects, this design would make it possible
to explore whether the relationship between an environmental exposure and the short-term health
response increases from one wave to the next as evidence of increasing sensitivity over time.

Analytical Biases in Sensor-Based Short-Term Effect Studies

Because of the burden of sensor-based protocols, participants can drop out from the study or
have missing portions of repeated observations. If study dropout or missing data are determined
by the exposure or by a determinant of the exposure and by the outcome or a determinant of
the outcome, then selection biases can distort the association of interest. Such biases can alter
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associations estimated from between-individual but also within-individual comparisons (including
when estimated with case-crossover analysis).

Regarding confounding, associations based on within-individual comparisons are threatened
by time-varying confounders, for example momentary physical activity when assessing the re-
lationship between ambient noise or stressful social interactions and blood pressure (behavioral
confounder) or as another example the type of activity or accompanying persons when investigat-
ing the relationship between place characteristics and well-being (situational confounders).

Moreover, selective daily mobility biases are a major source of confounding for life-segment
and momentary investigations, particularly when assessing the effect of environmental resources
and other contextual factors on behavior. As described previously (13, 14), the structure of the
bias is related () to the fact that the willingness to conduct an activity causally influences both
the visit to places relevant to this activity (exposure) and the practice of the activity (outcome)
during the follow-up; and (b) to the fact that investigators also calculate the spatial accessibility to
environmental resources or contexts from these intentionally visited places (which the participant
would not have visited if he/she had no intention to conduct the activity). A version of this bias
is found in studies of the relationship between the spatial accessibility to or location in green
spaces and physical activity (14) because the GPS-based so-called “accessibility” is also calculated
from green spaces specifically visited to exercise where the participant would otherwise not have
been. Another example relates to studies that correlated the GPS accessibility to food outlets with
dietary consumption or food purchasing (18, 66, 67, 70), where the so-called “exposure” is, in
fact, a mix of exposure and behavior. Considering three successive destinations (A, B, and C) and
assuming that destination B was specifically visited to conduct the behavior, a way to correct this
bias may be to exclude destination B and to replace the trips to and from destination B by the
shortest street network itinerary between A and C when calculating environmental exposures.
Such a correction would be valid only if the visit to the service was premeditated but would do
more harm than good if it was incidental (i.e., visual exposure cuing spontaneous use), in which
case the shortest network itinerary between A and C is more likely to pass through B anyway.
Moreover, calculating exposures from destinations A and C would lead to bias if one of those was
visited just because destination B was visited (to conduct the behavior); in that case, A and/or C
would also have to be removed.

Another example of selective daily mobility bias in studies assessing the effects of environ-
mental characteristics on travel mode choice or related outcomes is to calculate environmental
exposures along the trip itinerary because the exact itinerary that was followed is itself determined
by the chosen mode. Such bias may be mitigated by calculating the exposures, instead, along the
recalculated shortest street network itinerary. A study comparing the actual routes assessed with
GPS receivers with the calculated shortest routes did not find evidence of selective daily mobility
bias (6). This is likely because the association examined (between the built environment and body
mass index) implies a much larger causal distance than that in our example (where the outcome is
the travel mode used): Environmental conditions around a chosen itinerary tell much more about
the chosen mode than about the participant’s body mass index.

CONCLUDING REMARKS: RECOMMENDATIONS
FOR FUTURE RESEARCH

As one attempt to develop a research agenda, Table 1 summarizes a number of recommenda-
tions for the full integration of mobile sensing in future environmental health and neighborhood
and health research. The aim is to set the base of a life-segment epidemiology grounded in
the continuous monitoring of participants with multiple sensors, investigating how momentary
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environmental exposures and situational factors influence health behaviors and health states
through cascades of events, experiences, and affects. These recommendations pertain to the novel
theoretical models needed to support this work, to the multisensor data collection protocols that
have to be developed, and to the processing and analysis of these intensive longitudinal data.

Ultimately, the aim of this sensor-based environmental research is to generate knowledge on
how to create a variety of places (45) and situations that provide optimal environments for healthy
living for each individual profile. The methodology outlined in the present review provides a
path for the development of just-in-time adaptive interventions (themselves based on mobile
and sensing technologies), also referred to as ecological momentary interventions (39). These
approaches are designed to provide the right type/amount of support at the right time in the
right place for the right person (temporal, ecological, and individual sensitivity) by adapting to an
individual’s changing internal and contextual states (56).
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