1932

Abstract

Maps provide a data framework for the statistical analysis of georeferenced data observations. Since the middle of the twentieth century, the field of spatial statistics has evolved to address key inferential questions relating to spatially defined data, yet many central statistical properties do not translate to spatially indexed and spatially correlated data, and the development of statistical inference for mapped data remains an active area of research. Rather than review statistical techniques, we review the different ways the maps of georeferenced data can influence statistical analysis, focusing especially on maps as data visualization, maps as data structures, and maps as statistics themselves, i.e., summaries of underlying patterns with accompanying uncertainty. The categories provide connections to disparate literatures addressing spatial analysis including data visualization, cartography, spatial statistics, and geography. We find maps integrate spatial analysis from motivating questions, informing analytic methods, and providing context for results.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-032921-040851
2024-04-22
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/statistics/11/1/annurev-statistics-032921-040851.html?itemId=/content/journals/10.1146/annurev-statistics-032921-040851&mimeType=html&fmt=ahah

Literature Cited

  1. Andrienko N, Andrienko G. 2006.. Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach. Berlin:: Springer-Verlag
    [Google Scholar]
  2. Andrienko N, Andrienko G, Fuchs G, Slingsby A, Turkay C, Wrobel S. 2020.. Visual Analytics for Data Scientists. Cham, Switz.:: Springer Nature
    [Google Scholar]
  3. Anselin L. 1995.. Local indicators of spatial association: LISA. . Geogr. Anal. 27::93116
    [Crossref] [Google Scholar]
  4. Armstrong MP, Rushton G, and Zimmerman DL. 1999.. Geographically masking health data to preserve confidentiality. . Stat. Med. 18::497525
    [Crossref] [Google Scholar]
  5. Ascher M. 1995.. Models and maps from the Marshall Islands: a case in ethnomathematics. . Hist. Math. 22::34770
    [Crossref] [Google Scholar]
  6. Baddeley A, Rubak E, Turner R. 2016.. Spatial Point Patterns: Methodology and Applications with R. Boca Raton, FL:: CRC
    [Google Scholar]
  7. Baddeley AJ, Silverman BW. 1984.. A cautionary example for the use of second order methods for analyzing point patterns. . Biometrics 40::108993
    [Crossref] [Google Scholar]
  8. Banerjee S, Carlin BP, Gelfand AE. 2015.. Hierarchical Modeling and Analysis for Spatial Data. Boca Raton, FL:: CRC. , 2nd ed..
    [Google Scholar]
  9. Bartlett MS. 1964.. The spectral analysis of two-dimensional point processes. . Biometrika 51::299311
    [Crossref] [Google Scholar]
  10. Bertin J. 1983.. Semiology of Graphics: Diagrams, Networks, Maps. Madison:: Univ. Wisc. Press
    [Google Scholar]
  11. Besag J, York J, Mollié A. 1991.. Bayesian image restoration, with two applications in spatial statistics (with discussion). . Ann. Inst. Stat. Math. 43::159
    [Crossref] [Google Scholar]
  12. Blangiardo M, Cameletti M. 2015.. Spatial and Spatio-temporal Bayesian Models with R-INLA. Boca Raton, FL:: CRC
    [Google Scholar]
  13. Breiman L. 2001.. Statistical modeling: the two cultures (with comments and rejoinder). . Stat. Sci. 16::199231
    [Crossref] [Google Scholar]
  14. Box GEP, Hunter WG, Hunter JA. 1978.. Statistics for Experimenters. New York:: Wiley
    [Google Scholar]
  15. Brewer CA. 1994.. Color use guidelines for mapping and visualization. . In Visualization in Modern Cartography, ed. AM MacEachren, DRF Taylor , pp. 12347. Oxford, UK:: Pergamon
    [Google Scholar]
  16. Brewer CA 1996.. Guidelines for selecting colors for diverging schemes on maps. . Cartographic J. 33::7986
    [Crossref] [Google Scholar]
  17. Carroll L. 1982.. The Complete Illustrated Works. New York:: Gramercy
    [Google Scholar]
  18. Chiu SN, Stoyan D, Kendall W, Menke J. 2013.. Stochastic Geometry and its Applications. New York:: Wiley. , 3rd ed..
    [Google Scholar]
  19. Clayton DG, Kaldor J. 1987.. Empirical Bayes estimates of age-standardized relative risk for use in disease mapping. . Biometrics 43::67182
    [Crossref] [Google Scholar]
  20. Cliff AD, Ord JK. 1973.. Spatial Autocorrelation. London:: Pion
    [Google Scholar]
  21. Cowan J. 1996.. A Mapmaker's Dream: The Meditations of Fra Mauro, Cartographer to the Court of Venice. Boston:: Shambhala
    [Google Scholar]
  22. Cressie NAC. 1993.. Statistics for Spatial Data. New York:: Wiley
    [Google Scholar]
  23. Cressie NAC, Wikle CK. 2011.. Statistics for Spatio-Temporal Data. New York:: Wiley
    [Google Scholar]
  24. Diggle PJ. 2014.. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns. Boca Raton, FL:: CRC. , 3rd ed..
    [Google Scholar]
  25. Dupont E, Wood SN, Augustin NH. 2022.. Spatial+: a novel approach to spatial confounding. . Biometrics 78::127990
    [Crossref] [Google Scholar]
  26. Dwork C. 2006.. Differential privacy. . In Automata, Languages, and Programming: 33rd International Colloquium, ICALP 2006, Venice Italy, July 10–14, 2006, Proceedings, Part II 33, ed. M Bugliesi, B Preneel, V Sassone, I Wegener , pp. 112. New York:: Springer
    [Google Scholar]
  27. Eco U. 1994.. How to Travel with a Salmon and Other Essays. San Diego, CA:: Harcourt
    [Google Scholar]
  28. Fay RE, Herriot RA. 1979.. Estimates of income for small places: an application of James-Stein procedures to census data. . J. Am. Stat. Assoc. 74::26977
    [Crossref] [Google Scholar]
  29. Fotheringham AS, Brunsdon C, Charlton M. 2003.. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. New York:: Wiley
    [Google Scholar]
  30. Gehlke CE, Biehl K. 1934.. Certain effects of grouping upon the sized of the correlation coefficient in census tract material. . J. Am. Stat. Assoc. Suppl. 29::16970
    [Google Scholar]
  31. Haining R. 2003.. Spatial Data Analysis: Theory and Practice. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  32. Hodges JS, Reich BJ. 2010.. Adding spatially-correlated errors can mess up the fixed effect you love. . Am. Stat. 64::32534
    [Crossref] [Google Scholar]
  33. Koch T. 2011.. Disease Maps: Epidemics on the Ground. Chicago:: Univ. Chicago Press
    [Google Scholar]
  34. Koch T. 2017.. Cartographies of Disease: Maps, Mapping, and Medicine. Redlands, CA:: Esri. Expanded ed.
    [Google Scholar]
  35. Krieger N. 2021.. Ecosocial Theory, Embodied Truths, and the People's Health. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  36. Kurz CF, König AN, Emmert-Fees KMF, Allen L. 2022.. The effect of differential privacy on Medicaid participation among racial and ethnic minority groups. . Health Serv. Res. 57::20713
    [Crossref] [Google Scholar]
  37. Lawson AB. 2006.. Statistical Methods in Spatial Epidemiology. New York:: Wiley
    [Google Scholar]
  38. Lawson AB. 2018.. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. Boca Raton, FL:: CRC. , 3rd ed..
    [Google Scholar]
  39. Lewis-Jones H. 2018.. The Writer's Map: An Atlas of Imaginary Lands. Chicago:: Univ. Chicago Press
    [Google Scholar]
  40. Lyons H. 1928.. The sailing charts of the Marshall Islanders. . Geogr. J. 72::32527
    [Crossref] [Google Scholar]
  41. MacEachren AM. 1979.. Communication effectiveness of choropleth and isopleth maps: the influence of visual complexity. PhD Diss. , Univ. Kansas, Lawrence, KS:
    [Google Scholar]
  42. MacEachren AM. 1994.. Some Truth with Maps: A Primer on Symbolization and Design. Washington, DC:: Assoc. Am. Geogr.
    [Google Scholar]
  43. MacEachren AM. 1995.. How Maps Work: Representation, Visualization, and Design. New York:: Guilford
    [Google Scholar]
  44. Machanavajjhala A, Kifer D, Abowd J, Gerhrke J, Vilhuber L. 2008.. Privacy: theory meets practice on the map. . In 2008 IEEE 24th International Conference on Data Engineering, pp. 27786. Piscataway, NJ:: IEEE
    [Google Scholar]
  45. Maxcy KF. 1926.. An epidemiological study of endemic typhus (Brill's disease) in the southeastern United States: with special reference to its mode of transmission. . Public Health Rep. 41:(52):296795
    [Crossref] [Google Scholar]
  46. Møller J, Waagepetersen RP. 2004.. Statistical Inference and Simulation for Spatial Point Processes. Boca Raton, FL:: CRC
    [Google Scholar]
  47. Monmonier M. 1996.. How to Lie with Maps. Chicago:: Univ. Chicago Press. , 2nd ed..
    [Google Scholar]
  48. Monmonier M. 2001.. Bushmanders and Bullwinkles: How Politicians Manipulate Electronic Maps and Census Data to Win Elections. Chicago:: Univ. Chicago Press
    [Google Scholar]
  49. Moran PAP. 1950.. Notes on continuous stochastic phenomena. . Biometrika 37::1723
    [Crossref] [Google Scholar]
  50. NRC (Natl. Res. Counc.). 2006.. Learning to think spatially. Rep. , Natl. Acad. Sci. Eng. Med., Washington, DC:
    [Google Scholar]
  51. Neuwirth E. 2022.. RColorBrewer: ColorBrewer palettes. . R Package, version 1.1–3. https://CRAN.R-project.org/package=RColorBrewer
    [Google Scholar]
  52. Olson JM, Brewer CA. 1997.. An evaluation of color selections to accommodate map users with color-vision impairments. . Ann. Assoc. Am. Geogr. 87::10334
    [Crossref] [Google Scholar]
  53. Openshaw S, Taylor PJ. 1979.. A million or so correlation coefficients: three experiments on the modifiable areal unit problem. . In Statistical Applications in the Spatial Sciences, ed. N Wrigley , pp. 12744. London:: Pion
    [Google Scholar]
  54. Paciorek CJ. 2010.. The importance of scale for spatial-confounding bias and precision of spatial regression estimators. . Stat. Sci. 25::10725
    [Crossref] [Google Scholar]
  55. Quick H, Waller LA. 2018.. Using spatiotemporal models to generate synthetic data for public use. . Spatial Spatiotemporal Epidemiol. 27::3745
    [Crossref] [Google Scholar]
  56. Rao JNK. 2003.. Small Area Estimation. New York:: Wiley
    [Google Scholar]
  57. Robinson AH. 1952.. The Look of Maps. Madison:: Univ. Wisc. Press
    [Google Scholar]
  58. Rue H, Held L. 2005.. Gaussian Markov Random Fields: Theory and Applications. Boca Raton, FL:: CRC
    [Google Scholar]
  59. Salichtchev KA. 1982.. Cartography: A Textbook for Geographical Specialities of Universities. Moscow:: Vysshaya Shkola (in Russian). , 3rd ed..
    [Google Scholar]
  60. Snow J. 1855.. On the Mode of Communication of Cholera. London:: John Churchill
    [Google Scholar]
  61. Stein M. 1999.. Interpolation of Spatial Data: Some Theory for Kriging. New York:: Springer-Verlag
    [Google Scholar]
  62. Tobler W. 1970.. A computer movie simulating urban growth in the Detroit region. . Econ. Geogr. 46:(Suppl.):23440
    [Crossref] [Google Scholar]
  63. Tufte ER. 1990.. Envisioning Information. Cheshire, CT:: Graphics
    [Google Scholar]
  64. Tufte ER. 1997.. Visual Explanations. Cheshire, CT:: Graphics
    [Google Scholar]
  65. Tufte ER. 2001.. The Visual Display of Quantitative Information. Cheshire, CT:: Graphics. , 2nd ed..
    [Google Scholar]
  66. Tufte ER. 2006.. Beautiful Evidence. Cheshire, CT:: Graphics
    [Google Scholar]
  67. Tukey J. 1977.. Exploratory Data Analysis. Reading, MA:: Addison-Wesley
    [Google Scholar]
  68. Turnbull D. 2000.. Masons, Tricksters, and Cartographers. Abington, UK: OPA Routledge:
    [Google Scholar]
  69. Wainer H. 1984.. How to display data badly. . Am. Stat. 38::13747
    [Crossref] [Google Scholar]
  70. Waller LA. 2009.. Detection of clustering in spatial data. . In The Sage Handbook of Spatial Analysis, ed. AS Fotheringham, PA Rogerson , pp. 299320. London:: SAGE
    [Google Scholar]
  71. Waller LA. 2014.. Putting spatial statistics (back) on the map. . Spatial Stat. 9::419
    [Crossref] [Google Scholar]
  72. Waller LA. 2022.. Global and local impacts of differential privacy on estimates of health care inequity. . Health Serv. Res. 57::2046
    [Crossref] [Google Scholar]
  73. Waller LA, Gotway CA. 2004.. Applied Spatial Statistics for Public Health Data. New York:: Wiley
    [Google Scholar]
  74. Waller LA, Zhu L, Gotway CA, Gorman DM, Gruenewald PJ. 2007.. Quantifying geographic variations in associations between alcohol distribution and violence: a comparison of geographically weighted regression and spatially varying coefficient models. . Stochastic Environ. Res. Risk Assess. 21::57388
    [Crossref] [Google Scholar]
  75. Weigand T, Moloney KA. 2013.. Handbook of Spatial Point-Pattern Analyses in Ecology. Boca Raton, FL:: CRC
    [Google Scholar]
  76. Wheeler DC, Hickson DA, Waller LA. 2010.. Assessing local model adequacy in Bayesian hierarchical models using the partitioned deviance information criterion. . Comput. Stat. Data Anal. 54::165771
    [Crossref] [Google Scholar]
  77. Wheeler DC, Waller LA. 2008.. Mountains, valleys, and rivers: the transmission of raccoon rabies over a heterogeneous landscape. . J. Agric. Biol. Environ. Stat. 13:(4):388406
    [Crossref] [Google Scholar]
  78. Wilkinson L. 2005.. The Grammar of Graphics. New York:: Springer. , 2nd ed..
    [Google Scholar]
  79. Wickham H. 2016.. ggplot2: Elegant Graphics for Data Analysis. New York:: Springer-Verlag
    [Google Scholar]
  80. Zhou Y, Dominici F, Louis TA. 2010.. A smoothing approach for masking spatial data. . Ann. Appl. Stat. 4::145175
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-statistics-032921-040851
Loading
/content/journals/10.1146/annurev-statistics-032921-040851
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error