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Abstract

Human cytomegalovirus (HCMV) infection, the most common cause of
congenital disease globally, affecting an estimated 1 million newborns annu-
ally, can result in lifelong sequelae in infants, such as sensorineural hearing
loss and brain damage. HCMV infection also leads to a significant disease
burden in immunocompromised individuals. Hence, an effective HCMV
vaccine is urgently needed to prevent infection and HCMV-associated dis-
eases.Unfortunately, despitemore than five decades of vaccine development,
no successful HCMV vaccine is available. This review summarizes what we
have learned from acquired natural immunity, including innate and adaptive
immunity; the successes and failures of HCMV vaccine human clinical trials;
the progress in related animal models; and the analysis of protective immune
responses during natural infection and vaccination settings. Finally, we pro-
pose novel vaccine strategies that will harness the knowledge of protective
immunity and employ new technology and vaccine concepts to inform next-
generation HCMV vaccine development.
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1. INTRODUCTION

Human cytomegalovirus (HCMV), a double-stranded DNA virus with the largest genome
(around 235 kbp) of known human viruses, belongs to the human betaherpesvirus family (1).
HCMV infection causes persistent, life-long infection in broad types of host cells mediated by
four major envelope glycoprotein complexes (GCs): glycoprotein B (gB) oligomer, gM/gN dimer,
gH/gL/gO trimer, and gH/gL/UL128/UL130/UL131A pentamer complex (PC) through distinct
entry mechanisms (1, 2).

Although primary HCMV infection in immunocompetent individuals is typically asymp-
tomatic (3), congenital HCMV infection often causes long-lasting sequelae in newborns
worldwide such as brain damage, sensorineural hearing loss, and neurodevelopmental delay
(4, 5). Congenital HCMV affects 0.5–2% of all live-born infants globally (6). In the United States
alone, approximately 30,000 congenital HCMV infections occur annually, of which more than
5,000 infections lead to permanent disabilities (7). Additionally, HCMV infection leads to life-
threatening diseases in immunocompromised individuals, such as solid organ transplant recipients
and acquired immunodeficiency syndrome (AIDS) patients (8, 9). Furthermore, reinfection or
reactivation can often occur when seropositive individuals contract newHCMV strains or a latent
virus in seropositive subjects is activated, leading to viral replication (10). Altogether, HCMV
infection in these populations is an immense public health and economic burden (11). Therefore,
an effective HCMV vaccine is urgently needed to prevent infection and HCMV-associated
diseases in those affected populations and to reduce associated healthcare costs (7).

Unfortunately, no successful HCMV vaccine is yet available despite more than 50 years of vac-
cine development (12). The challenges that hinder effective HCMV vaccine development include
the following: (a)HCMVeffectively evades the host immune responses (12); (b) immune correlates
of protection (CoPs) remain elusive (13, 14); (c) relevant animal models to assess vaccine efficacy
need further development (15); and (d) broadly and potent neutralizing antibodies (NAbs) have
proven difficult to elicit (12). Yet, recent advances in understanding natural immunity, the lessons
learned in HCMV vaccine clinical trials, and immune correlates analyses in both natural infection
and vaccination settings are encouraging for the hope for an effective HCMV vaccine (13, 14,
16). New findings from related animal models and new technology advances from other vaccine
pursuits set the stage for novel vaccine strategies and rational design of a next-generation HCMV
vaccine, potentially accelerating the licensing of a successful HCMV vaccine by breaking current
barriers to vaccine development (Figure 1).

2. NATURALLY ACQUIRED IMMUNITY FROM HCMV INFECTION

A comprehensive understanding of immune responses mounted during natural HCMV infection
and transmission helps identify the components of protective immunity (17), offering opportuni-
ties to mimic these immune responses through immunization (17). Meanwhile, HCMV infection
is able to evade the immune responses, and dissection of these evasion mechanisms may provide
useful information for effective vaccine strategies (18, 19). To maximize the protective efficacy, we
should consider harnessing both innate and adaptive immunity (12), further described below.

2.1. Natural Killer Cells: The First Line of Defense Against HCMV Infection

Innate immune responses serve as the first line of defense against viral infection and allow the
host to rapidly exert antiviral functions (20). Among them, natural killer (NK) cell responses are
the most well-documented innate memory response to HCMV infection (20). Following HCMV
primary infection,NK cells are rapidly activated to kill the infected cells and prevent severe disease
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Schematic of next-generation HCMV vaccine development strategies. Dissection of protective immune responses during natural
HCMV infection, the development of animal models, and lessons learned from human clinical trials led to our next-generation HCMV
vaccine development proposal. These findings from iterative studies will further facilitate the highly relevant animal model
development and a deep understanding of the protective immune component from both infection and vaccination settings to guide
future HCMV vaccine development. Stepwise, hopefully, an effective HCMV vaccine will be licensed to the clinic by employing these
strategies. Abbreviations: gB, glycoprotein B; HCMV, human cytomegalovirus; PC, pentamer complex. Figure adapted from images
created with BioRender.com.

by releasing inflammatory cytokines and chemokines (21). Furthermore, it is well documented that
severe cytomegalovirus (CMV) disease can develop in individuals who lack NK cells, suggesting
the importance of NK cells to mitigate consequences of HCMV infection (22, 23).

However, HCMV has developed strategies to effectively escape recognition by NK cells and
prevent NK cell killing through virus-encoded gene products (18, 19, 24), such as UL18, UL40,
UL16, UL141, UL142, and UL83, which inhibit the CD155 ligand presentation for the NK
cell activating receptor NKG2D on infected cells (25, 26). Therefore, when live-attenuated or
disabled viral vaccine platforms are employed, deleting these genes that inhibit NK cell killing on
CMV-infected cells could be relevant in controlling infection (27).
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Recent studies indicated that NK cells may have a memory phenotype, despite historically
being considered innate immune cells (28–31). One relevant piece of evidence regarding NK
memory came from the mouse model of CMV infection: Liver-resident NK cells can control
murine cytomegalovirus (MCMV) infection at initial infection sites in an interleukin (IL)-12-
dependent manner. Moreover, NK recall responses were rapidly mounted upon the MCMV
rechallenge and further enhanced the protection (32). Further analysis indicated these NK mem-
ory responses were related to the MCMV-encoded glycoprotein m12 (32). Following acute
HCMV infection, NKG2C+ NK cells, one unique subset of NK cells, were rapidly expanded,
became NKG2Chi, and acquired CD57, a carbohydrate antigen expressed on highly mature cells
within the CD56dimCD16+ NK cell compartment (33, 34). This specialized NK cell population
(NKG2C+) was persistent in HCMV seroconverted individuals (35–37), indicating the adaptive
features of this subset of NK cells (33, 38, 39).

2.2. Adaptive Immune Responses

Adaptive immune responses induced by natural HCMV infection include humoral and cellular
responses mediated by B and T lymphocytes, respectively, which serve as key components induced
by conventional vaccination to provide protection (12, 14). A comparative study demonstrated that
maternal immunity prior to conception could partially protect the infant from severe congenital
diseases caused by HCMV infection (40). In this study, infected infants born to mothers who
acquired primary HCMV infection during pregnancy showed higher risk of HCMV-associated
symptoms and long-term sequelae compared to those born to HCMV-seropositive mothers (40),
indicating that maternal adaptive immunity plays a protective role in preventing severe congenital
HCMV disease.

2.2.1. Humoral immune responses to HCMV after infection. PrimaryHCMV infection in-
duces robust humoral responses targeting multiple HCMV antigens, including structural protein
phosphoprotein 65 (pp65), nonstructural immediately early protein IE1, and the envelope GC
(gB, gM/gN, gH/gL/gO, PC) (41, 42) (Figure 2a). These envelope glycoproteins play essential
roles in viral entry into fibroblast, epithelial, and endothelial cells and for viral replication (43).
gB, composed of an ectodomain subunit (gp116) and a polypeptide resembling a type I membrane
protein (gp58), is essential for HCMV viral fusion and is required for entry into all permissive
cell types and for cell-to-cell spread (2). PC is essential for cell entry into epithelial, endothelial,
dendritic, and monocytic cells (44–46), whereas the gH/gL/gO trimer promotes the gB fusion in
all cell types (47).HCMV enters fibroblast cells in a pH-independent manner via fusion at the cell
surface through the gB and gH/gL/gO GC (48). In contrast, the virus enters the epithelial, en-
dothelial, dendritic, and monocytic cells in a pH-dependent fusion mechanism via endocytosis or
micropinocytosis through the gB, gH/gL/gO, and PC (44–47, 49). Of note, placental trophoblasts
are specialized epithelial cells that are an important cell type to block the virus from entering for
prevention of congenital CMV infection (50).

Recent evidence indicates that NAbs play an important role in preventing HCMV infection
and the progression of diseases (51–53); thus, NAb induction is a major goal for vaccine devel-
opment (54). NAb responses mounted during natural infection may block infection of multiple
different cell types (42). NAbs blocking infection of endothelial/epithelial cells arise in serum ear-
lier and with higher magnitude compared to NAbs blocking fibroblast infection (54).

gB-specific antibodies mounted during infection mediate both NAb and non-NAb responses
(55, 56). Recently, structural biology studies revealed insight into the gB prefusion (Figure 2b)
and postfusion (Figure 2c) structure during virus entry into the host (57, 58). There are five anti-
genic domains (ADs) observed in the gB (58) (Figure 2d). After infection, AD-1 elicits the most
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Schematic structure of HCMV and structural and antigenic domain mapping in the gB. (a) A simplified
structural diagram of the HCMV virion. HCMV is a double-stranded DNA virus, with the genome
encapsulated by capsid proteins. Many glycoprotein complexes are displayed on the surface of the virion,
including gM/gN, and gH/gL heterodimers, the gH/gL/gO trimer, and the gH/gL/UL128/UL130/
UL131A PC, viral Fc receptors, and the gB homotrimer. In addition, there are various tegument proteins
between the capsid and viral envelope glycoproteins, including pp65. Focusing on an important immunogen
and essential fusion protein, the prefusion (b) and postfusion (c) gB structures are shown (modeled after
Reference 57) with domains colored to match each structural and antigenic domain shown in panel d. The
domain map is based on the Towne strain. gB includes five structural domains (D-I through D-V) and five
antigenic domains (AD-1 through AD-5). The signal sequence (S) is located at the N terminus before AD-2,
which is composed of site 1 (S1) and site 2 (S2). Domains II, III, and IV are expressed nonlinearly, with a
component of each domain expressed before Domain I and its two incorporated fusions loops. The furin
cleavage site located near the middle of the amino acid sequence is noted with a black line. The MPR (blue),
TM (maroon), and cytosolic domain are located toward the C terminus. Abbreviations: gB, glycoprotein B;
HCMV, human cytomegalovirus; MPR, membrane-proximal region; PC, pentamer complex; TM,
transmembrane. Figure adapted from images created with BioRender.com.

potent antibody response but predominantly mediates non-NAb responses. AD-2 triggers mild
antibody responses and comprises two subantigenic sites: Site 1 is the target for potent NAb in-
duction, while site 2 stimulates only non-NAb responses. AD-3 is located in the cytosolic domain
and does not induce NAbs. AD-4 (Domain II) and AD-5 (Domain I) elicit strong immune re-
sponses and induce NAbs conserved across different strains (58). Hence, AD-2 site 1 (AD2S1),
AD-4, and AD-5 represent the most promising vaccine target candidates in inducing potent and
broadly NAb responses. NAbs targeting PC are able to potently neutralize the infection of en-
dothelial/epithelial cells (42), and antibodies against the UL128 component, but not UL130 or
UL131A, were reported to play a protective role against congenital infection (52).

A large cohort study of 3,461 multiparous women in the southern United States demonstrated
that the congenital HCMV infection rate in infants born to seronegative mothers is 3% com-
pared with a 1% rate from those born to seropositive mothers. This study indicated preexisting
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natural maternal immunity, likely humoral responses, was associated with a 69% reduction in the
risk of vertical transmission in future pregnancies (59). Furthermore, longer intervals between
pregnancies increased the protection against congenital HCMV infection (60). The maturation of
HCMV-specific antibody avidity potentially contributed to this effect (61). Hence, it is important
that new vaccines induce high-avidity protective antibody responses similar to the naturally ac-
quired protective immunity.However,whichHCMV antigen-specific antibody responses mediate
protection still requires exploration and is highly relevant to the vaccine immunogen selection.

A recent paper showed that the maternal monocyte-mediated antibody-dependent cellular
phagocytosis (ADCP) and a high-avidity immunoglobulin G (IgG) binding to HCMV envelope
glycoproteins were associated with a decreased risk of congenitalHCMV infection (62).Moreover,
HCMV-specific IgG engagement of FcγRI and FcγRIIA, which mediate non-NAb responses,
was enhanced in nontransmitting mother-infant dyads and strongly correlated with ADCP re-
sponses (62). These findings suggest that Fc-mediated effector functions including ADCP protect
against placental HCMV transmission. Similarly, other Fc-mediated IgG functionalities such as
antibody-dependent cellular cytotoxicity (ADCC) (63) and antibody-dependent complement de-
position (63) correlated with the vaccine-induced protection in other viral vaccine studies (63–65).
It is worthwhile to further explore these antibody functionalities in HCMV infection and vaccine
design.

Nevertheless,HCMV envelope glycoproteins utilize multiple strategies to escape humoral im-
mune responses. These immune evasion mechanisms include (a) strain polymorphism (particu-
larly in gH and gN antigens) to contribute to humoral response evasion, (b) epitope competition
(e.g., non-neutralizing epitopes compete with neutralizing epitopes in gB antigen) to mislead the
humoral responses, (c) Fc receptor-mediated endocytosis (e.g., specific domain of gH), (d) glycan
shielding to mask vulnerable epitopes (highly glycosylated envelope proteins such as gB and gO
antigens), and (e) cell-to-cell spread to avoid antibody-mediated inhibition (reviewed in 2). These
humoral immunity evasion strategies represent challenges for the envelope glycoprotein-based
vaccine immunogen design, which should be addressed in next-generation vaccine development
through iterative antigen design.

2.2.2. T lymphocyte–mediated cellular immune responses during HCMV infection.
Upon CMV infection, the T lymphocyte–mediated cellular responses including CD4+ and CD8+

T cell–mediated antiviral functionalities can potently suppress viral replication and protect from
severe disease. In fact, it is estimated that at least 10% of the total T cell repertoire is committed
to HCMV specificity in seropositive individuals (66). T cell responses mounted during primary
CMV infection mainly target conserved viral functional antigens such as IE1 and matrix protein
pp65 (67–69). Several dominant T cell epitopes were identified in pp65 (70–73) and IE1 antigens
(74, 75).

Although the protective role of CMV-specific CD8+ cytolytic T cell responses against disease
has been repeatedly documented in immunocompromised individuals, such as solid organ trans-
plant recipients and AIDS patients (76–79), some reports also support that CMV-specific CD8+

T cells contribute to protection from congenital HCMV infection (80).Likely, the breadth but not
the magnitude of the antigen-specific CD8+ T cell and effector memory CD8+ T cell population
plays a major protective role (76–78, 80).

Recent human studies also demonstrated the maternal pp65-specific memory CD4+ T cellular
responses, but not IE1- or IE2-specific CD4+ T cell responses, correlated with the protection
from vertical transmission in congenital CMV infection (81, 82). Moreover, the IgG avidity index
also correlated with the protection in the same cohort, suggesting CD4+ T cells may cooperate
with mature antibody responses to mediate this protection.The nonhuman primate (NHP)model
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of congenital HCMV infection has also indicated the importance of maternal CD4+ T cells in
protection from congenital HCMV transmission and disease (83).

Similar to the NK cell responses, primary HCMV infection evades HCMV-specific CD8+

T cell responses by downregulating class I major histocompatibility complex expression in virus-
infected cells using several different viral proteins [unique short (US) 2, US3, US6, and US11]
(84). Fully understanding the cellular response escape mechanisms of HCMV will benefit future
vaccine design (85).

3. ANIMAL MODELS FOR HCMV VACCINE EVALUATION TO DE-RISK
VACCINE HUMAN CLINICAL DEVELOPMENT

While some HCMV vaccines have begun phase 1 clinical trials without in vivo preclinical testing,
animal models can be instrumental in assessing the immunogenicity, efficacy, and optimization
of vaccine regimens and predicting success of clinical trials. To date, the vaccines trialed to pre-
vent HCMV acquisition have focused primarily on eliciting NAbs, which can be assessed using
many different animal models, including mice, rabbits, guinea pigs, or NHPs. For example, en-
veloped virus-like particles (eVLPs) expressing the ectodomain of Towne strain gB fused with the
transmembrane and cytosolic domains of vesicular stomatitis virus (VSV)Gproteinweremore im-
munogenic than eVLPs expressing native gB when tested in mice (86). The outcome from a phase
1 clinical trial (NCT0286798) (87) for this eVLP vaccine by VBI Vaccines Inc. was promising, but
phase 2 has yet to begin despite the design of a phase 2 trial that was expected to begin by the end
of 2019 (88).More recently, the gB and PCmessenger RNA (mRNA) vaccine (mRNA-1647) from
Moderna elicited potent and durable NAbs responses in mice and cynomolgus macaques (89).

Due to the high seroprevalence of HCMV and ease of reinfection in humans, vaccine devel-
opment should shift away from prevention of viral acquisition to focus more on viral containment
and prevention of disease, including immunocompromised patients, who are the most at risk for
HCMV-related complications. This includes prevention of vertical HCMV transmission in preg-
nant individuals and prevention of viremia in transplant recipients (90). Thus far, CoPs against
transmission and disease in these settings have not been fully defined, but evidence suggests that
multiple antigen targets will be needed and that NAbs alone are not sufficient for protection (14,
16, 62, 76, 83, 91–95). Thus, defining preclinical efficacy by any specific vaccine-elicited immune
response is likely not sufficient to predict efficacy in human trials andmay explain themoderate ef-
ficacy of vaccines tested in late clinical trials thus far. For example, early studies of a Pfizer vaccine
tested in rhesus macaques including rhesus macaque CMV (RhCMV) PC, gB, and a pp65 expres-
sion plasmid formulated with QS21 (saponin adjuvant) induced NAbs similar to those elicited
by natural infection, which has historically been considered the gold standard for vaccine im-
munogenicity (96). Despite vaccine-induced NAb and T cell responses as measured by gamma
interferon ELISPOT greater than that observed following natural infection, animals were not
protected from infection or viral dissemination following oral RhCMV challenge. The efficacy of
this vaccine in preventing vertical transmission has yet to be assessed, but this does demonstrate
that NAbs and T cell responses meeting previously set standards may not be sufficient to prevent
viral acquisition. It is also important to note that immune CoPs may be different for prevention of
viral acquisition in seronegative individuals, vertical transmission during pregnancy, and control
of viremia following solid organ transplant. Thus, until definitive immune CoPs have been de-
fined for each high-risk population, more informative approaches are necessary to better evaluate
vaccines at the preclinical stage of development.

Another challenge to effective preclinical vaccine testing is that animal models of HCMV in-
fection are limited by virus species specificity. Each species has its own CMV species, which differs
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significantly from that of other species due to millennia of divergent coevolution (97, 98). Thus,
any vaccine platform that relies on replication of live-attenuated or replication-defective (single
cycle) HCMV will not yield meaningful immunogenicity results when tested in preclinical mod-
els. Furthermore, as a result of these animal model limitations, CMV challenge studies must be
performed with vaccine targets and challenge viruses adapted to themodel organism.Additionally,
if the goal of the vaccine is to prevent vertical HCMV transmission, the translational application
of animal models is further limited to guinea pigs and NHPs by model species’ placental biology
and the established ability of their respective species-specific CMV to cross the placenta (99–102).

Preclinical models have been used for proof-of-concept studies for some HCMV vaccine
strategies, but thus far, the concepts investigated have yet to translate effectively to the clinic.
A DNA vaccine encoding guinea pig CMV (GPCMV) gB administered before conception was
protective against congenital CMV infection in the guinea pig model (103). However, clinical
trials of ASP0113 (NCT02103426, NCT01974206, NCT01877655), a DNA vaccine expressing
HCMV gB and pp65, were primarily assessed in the setting of organ transplantation but did not
meet efficacy end points for reduction in the need for antivirals and/or prevention of viremia,
CMV disease, and end-organ disease (104–106). Deletion of key viral proteins involved in im-
mune evasion mechanisms has been assessed as a way to produce safer live-attenuated vaccine
strains. GP83 is a major tegument protein, homolog of HCMV pp65, expressed by GPCMV.
This protein has been considered a key target of host T cell immunity and has also been impli-
cated in innate immune evasion mechanisms (107). Preconception vaccination with an attenuated
GPCMV with a GP83 deletion was effective in preventing placental infection and fetal mortality
(10% in vaccinated dams versus 70% in placebo control dams), providing support for pp65 dele-
tion as an approach for producing a live-attenuated HCMV vaccine (108). Similarly, deletion of a
viral chemokine homolog closely related to the macrophage inflammatory protein 1α gene family
in GPCMV resulted in attenuation in vivo but elicited protective immune responses, resulting
in reduced maternal viremia, congenital pup infection, and pup mortality (109). Together with
several other studies, these results suggest that deletion of immune evasion genes is an effective
means of viral attenuation in animal models. However, live-attenuated CMV vaccines have not
been the focus of HCMV clinical trials in the last two decades, likely because they pose more
potential risks than most other vaccine platforms because the virus may still be able to establish
latency depending on the manner of attenuation. Furthermore, live-attenuated vaccines are gen-
erally not recommended for pregnant individuals, a key target population for HCMV vaccination,
due to the potential for the virus to cross the placenta and harm the fetus.

4. HUMAN CLINICAL TRIALS OF HCMV VACCINE CANDIDATES

The global need for an HCMV vaccine has made it an attractive target for vaccine development,
and thus several vaccine platforms have been trialed in humans. Outside of live-attenuated or
disabled HCMV vaccine candidates, several HCMV proteins are commonly integrated into the
vaccine design, including gB, PC, pp65, IE1, and IE2. In clinical trials, healthy adults are usually
involved in phase 1 studies to investigate the safety and the immunogenicity of the HCMV vac-
cine. In phase 2 or 3 studies, study participants are either healthy adults or high-risk patients for
HCMV infection. These patients include women of childbearing age (congenital HCMV infec-
tion) and transplant and AIDS patients. Because the immune CoP for HCMV vaccine remains
elusive, besides safety, the outcome measures of clinical trials have varied. The common immune
end points are antibody binding to HCMV antigens, HCMV-specific NAb, and T cell responses.

Below we outline the HCMV vaccine strategies that have been completed or are currently
ongoing from ClinicalTrials.gov (https://clinicaltrials.gov/). Specifically, we review the details
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of HCMV vaccine clinical trials related to congenital CMV infection, including vaccine design
(vaccinemodalities and encoded antigens), study participants, and outcomemeasures (summarized
in Table 1).

4.1. Live-Attenuated and Disabled-Infectious Single Cycle Vaccine

Live-attenuated vaccine and disabled-infectious single cycle vaccine contain replication-impaired
or replication-deficient HCMV virions. The HCMV strains AD169 (110), Towne (111–113),
and Toledo (114–117) have been proposed in live-attenuated vaccine design. The live-attenuated
Towne vaccine was given to HCMV-seronegative women of childbearing age (average mater-
nal age: 33 years). However, the infection rates between the Towne vaccinees and the placebo
group were similar, and the HCMV-specific binding antibodies and NAb response was tenfold
lower than with HCMV-seropositive women. These results suggest the Towne vaccine failed to
provide protection against HCMV infection (112). The Towne vaccine was later investigated in
HCMV-seronegative adults in phase 1 clinical trials (NCT00370006,NCT00373412) with no up-
dated results posted. Because the Towne strain might be too attenuated to provide protection, four
Towne-Toledo strain chimera vaccines have been proposed and tested in HCMV-seropositive in-
dividuals (117) and HCMV-seronegative male adults (NCT01195571) (116). Both phase 1 studies
showed that the Towne-Toledo strain chimera vaccine was well tolerated, and chimera 4 appeared
to be the most immunogenic.

Although no safety issues have emerged from these early phase trials, the replication and la-
tency of live-attenuated viruses remain concerns. Therefore, replication-defective HCMV vac-
cines, such as the V160 vaccine based on the AD169 strain, were developed (118, 119). The safety
profile, route of administration, and immunogenicity of V160 were tested in phase 1 clinical tri-
als (NCT03840174, NCT01986010), and it was shown to be well tolerated in healthy adults and
capable of eliciting humoral and cellular response comparable to natural immunity (120–122). A
detailed monoclonal antibody (mAb) characterization showed that V160 elicited a broad range
of potent antibody responses, including PC- and gHgL-specific NAbs, as well as gB-, pp65-, and
pp28-specific mAbs with minimal or no neutralizing activity (122). Additionally, V160 was shown
to induce polyfunctional pp65- and IE1-specific CD4+ and CD8+ T cell responses with clono-
type diversity (121). These promising results led to this vaccine entering a phase 2 clinical trial
(NCT03486834) to investigate the vaccine efficacy by two-dose or three-dose regimen in healthy
HCMV-seronegative female adolescents and women of childbearing age. Although V160 was well
tolerated and immunogenic, vaccine efficacy reached only 42.4% in the three-dose group and
32.0% in the two-dose group (123), which may be seen as too low to move into phase 3 trials.
Yet, continuing to hold promising vaccines to such a high bar for efficacy against HCMV acquisi-
tion may cause the field to halt clinical development on vaccines that could provide reduction of
congenital transmission and disease in immunocompromised patients.

Additionally, live-attenuated RhCMV strain 68-1 (RhCMV68-1) as a vaccine vector expressing
simian immunodeficiency virus (SIV) antigens [human immunodeficiency virus (HIV) counterpart
in the rhesus macaque model] significantly broadened the immune response compared to the con-
ventional vaccine vectors and protected 55% of vaccinated rhesus macaques via nonclassical HLA-
E-restrictedCD8+ Tcells upon SIV challenge (124).Furthermore, the sameRhCMV68-1 vaccine
vector expressing Mycobacterium tuberculosis proteins elicited protective immunity to efficiently
control tuberculosis-associated disease in the rhesus macaque challenge model. Yet, the protection
was not mediated by nonclassical CD8+ T cells (125). Similarly, rhesus macaques were protected
against malaria challenge by a highly durable T cell response upon immunization with four Plas-
modium knowlesi antigens delivered in the RhCMV68-1 vector (126). These studies have revealed
the high potential of CMV as a vaccine vector that may broadly protect across diseases (127).
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4.2. Adjuvanted Recombinant Protein Vaccine

HCMV gB has been identified as one of the major vaccine targets due to its essential role in
virion fusion with the target cells and ability to elicit both NAb (55) and non-NAb responses (56,
91). MF59-adjuvanted gB (gB/MF59) vaccine is composed of the squalene adjuvant MF59 and
monomer gB expressed in recombinant Chinese hamster ovary cells. The immunization schedule
(0, 1, 6 months) and dosage (20-μg gB) were determined in adults after comparing the data from
HCMV gB ELISA and plaque-reduction assays (128). Another phase 1 study of the gB/MF59
vaccine was conducted in toddlers aged 12 to 35 months. Interestingly, not only was the vaccine
well tolerated in toddlers, but also the gB-specific antibody response was shown to be significantly
higher than that of adults (129), suggesting that HCMV vaccination in childhood could be a fea-
sible solution to reduce HCMV infection. Later, the gB/MF59 vaccine was tested in phase 2 clin-
ical trials in healthy HCMV-seronegative postpartum (NCT00125502) and adolescent females
(NCT00133497, NCT00815165) as a strategy to prevent congenital infection. The gB/MF59
vaccine demonstrated 50% and 45% efficacy against HCMV acquisition in postpartum women
and adolescents, respectively (130, 131), yet it did not proceed to the next stage due to this mod-
erate vaccine efficacy.

Besides the gB/MF59 vaccine, another adjuvanted gB subunit vaccine, GSK1492903A, has
been developed by GlaxoSmithKline, and adjuvanted recombinant PC and gB were tested in
healthy adults (NCT05089630).

4.3. DNA Vaccine

DNA vaccine is composed of plasmids encoding vaccine antigens. Two DNA vaccines have been
studied in clinical trials, CyMVectin (withdrawn) and VCL-CT02. The VCL-CT02 vaccine is
a poloxamer-formulated bivalent DNA vaccine composed of two plasmids, encoding the AD169
strain gB ectodomain, and mutated AD169 strain pp65 (132). The phase 1 clinical trials for the
VCL-CT02 vaccine showed it was well tolerated and elicited more effective antigen-specific
T cell responses than the gB-specific antibody responses (133). The VCL-CT02 vaccine was later
renamed as ASP0113 and was assessed in healthy adults and HCMV-seronegative dialysis pa-
tients in a phase 1 trial (NCT02103426). Consistent with previous results, the ASP0113 vaccine
elicited memory T cell response but minimal humoral response in HCMV-seronegative vacci-
nees. These results have concluded that the HCMV DNA vaccine appears to be most effective
in eliciting antigen-specific cellular immunity. The ASP0113 vaccine is now being investigated in
hematopoietic stem cell transplantation (HSCT) donors and recipients in phase 2 and 3 clinical
trials (NCT00285259, NCT01903928, NCT01974206, NCT01877655).

4.4. Messenger RNA Vaccine

mRNA vaccine is vaccine antigens in modified mRNA form encapsulated by lipid nanoparticles
(LNPs) or liposomes. ModernaTX, Inc. tested two mRNA vaccines, with the mRNA-1647
vaccine composed of one mRNA from gB and five mRNAs from PC and the mRNA-1443
candidate composed of pp65. Both vaccines were evaluated in healthy adults in phase 1 clinical
trials (NCT03382405, NCT05105048). The mRNA-1647 vaccine showed a persistent immune
response 6 months after the third dose and high NAb titer specifically on epithelial cells. The
NAb titers of HCMV-seronegative vaccinees showed a 2.8- to 17.0-fold increase in epithelial
cells and 0.8- to 5.0-fold increase in fibroblasts compared to HCMV-seropositive individuals.
Additionally, the NAb titer of HCMV-seropositive vaccinees demonstrated a 4.0- to 7.1-fold
increase in fibroblasts and a 13.4- to 40.8-fold increase on epithelial cells and robust epithelial
cell neutralization responses achieved by inclusion of PC into vaccine design.
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Several changes were made before the mRNA-1647 vaccine entered phase 2 clinical trials,
including altering the ratio of mRNA components, optimizing the manufacturing process, and
transitioning from liquid to the lyophilized power (commercial formulation). The safety and im-
munogenicity of the modified mRNA-1647 vaccine were then dose optimized in phase 2 clinical
trials (NCT04232280, NCT04975893), and now healthy female adults aged 18 to 40 are be-
ing recruited into a phase 3 clinical trial employing a 100-μg dose. The vaccine efficacy of the
mRNA-1647 vaccine (NCT05085366) will be primarily determined by monitoring seroconver-
sion of HCMV antigens that are not gB or PC as a marker of HCMV infection.

4.5. Virus-Like Particle Vaccine

Virus-like particle (VLP) vaccine, a nanostructure vaccine composed of viral structural capsid pro-
teins, lacks the viral genetic materials and is thus noninfectious. The eVLP structure consists of an
outermosaic lipidmembrane embedded by viral glycoproteins and an internal matrix protein layer
(134). The VBI-1501 vaccine is an eVLP vaccine produced by cotransfecting the plasmid DNA
encoding structural protein and the protein of interest: the group antigen (Gag) gene of murine
leukemia virus and the plasmid DNA expressing fusion gB-G protein (VSV), respectively, in hu-
man embryonic kidney 293T cells. Unlike the conventional gB, gB-G protein is a recombinant
protein composed of the gB ectodomain from the HCMVTowne strain fused with the transmem-
brane and cytosolic domain from VSVG protein. Although no direct evidence was demonstrated,
the fusion of the VSV G protein domains has been purported to retain the prefusion structure of
gB, the conformation necessary to elicit the gB-specific humoral response associated with preven-
tion of viral entry and cell fusion. The VBI-1501 vaccine was tested in a mouse model and elicited
more potent NAb responses in fibroblast and epithelial cells but not better proliferative CD4+

T cell responses than the recombinant gB protein vaccine (86). In 2018, the VBI-1501 vaccine
with and without aluminum phosphate adjuvant (APA) was tested in HCMV-seronegative adults
in a phase 1 clinical trial (NCT02826798). Compared to the placebo group, the vaccine was well
tolerated with different vaccine doses, and the 2-μg dose with APA group showed the highest gB-
specific antibody and NAb responses. VBI Vaccines Inc. announced in 2019 that they plan to test
higher doses of the VBI-1501 vaccine in a phase 2 clinical trial.

4.6. Viral Vectored Vaccine

Viral vectored vaccines are recombinant attenuated viral vectors encoding the vaccine antigens.
Because these vectors can elicit robust cytotoxic T lymphocyte (CTL) responses, the viral vec-
tored vaccines have been tested in lymphoma or transplant patients who suffer from HCMV in-
fection (135). The outcome measures of these clinical trials usually target the T cell responses,
and HCMV-specific T cell antigens are commonly included in the viral vector vaccine. For ex-
ample, pp65 is commonly included in viral vector HCMV vaccine because pp65 was discovered
as an important target of CTLs. Several HCMV viral vectored vaccines have been tested in early
phase clinical studies, including the ALVAC-CMV (vCP260), AVX601,HCMV-MVA triplex, and
HB-101 vaccines.

The ALVAC-CMV vaccine and HCMV-MVA triplex are made of a highly attenuated
replication-deficient vaccinia virus strain from the poxvirus family. Due to the large genome size
and capacity to encode the foreign gene insertion, vaccinia virus is commonly applied as a viral
vector in vaccine design. The long history of vaccinia-vectored vaccine development also fills
the large-scale manufacturing skill gaps, accelerating the vaccine manufacturing process (135).
The ALVAC-CMV vaccine is a canarypox vector vaccine expressing HCMV pp65, while the
HCMV-MVA triplex vaccine is the modified vaccinia Ankara (MVA) strain encoding HCMV
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pp65, IE1-exon 4, and IE2-exon5 (136, 137). The safety profile of both vaccines was tested in
healthy adults in phase 1 clinical trials (136, 138; and NCT03383055, respectively). In clinical
trials, both vaccines showed that the HCMV-specific T cell response was successfully expanded.

The AVX601 and HB-101 vaccines are both bivalent vaccines encoding slightly different anti-
gens. The AVX601 vaccine is a bivalent alphavirus replicon vaccine expressing HCMV gB and
pp65/IE1 fusion protein. The AVX601 vaccine was shown to be well tolerated in healthy adults
in a phase 1 clinical trial (NCT00439803) and elicited polyfunctional CD4+ and CD8+ T cell
responses. Although the AVX601 vaccine was claimed to elicit NAb responses, this response
was measured against virus-like replicon particles instead of directly targeting HCMV strains
(137). The HB-101 vaccine is composed of two replication-deficient lymphocytic choriomeningi-
tis viruses expressingHCMVpp65 and gB, respectively. Before entering clinical trials, theHB-101
vaccine was shown to provide protection in the guinea pig model of congenital CMV infection
(139). Additionally, the HB-101 vaccine elicited a robust T cell response in a mouse model and
a potent NAb response in both mouse and rabbit models (140). The safety profile and immuno-
genicity of the HB-101 vaccine were examined in HCMV-seronegative healthy adults in a phase
1 clinical trial (NCT02798692). This vaccine specifically elicited a polyfunctional pp65-specific
CD8+ T cell response and a dose-dependent gB-binding and NAb response (141). The promising
results in both cellular and humoral response led to the HB-101 vaccine entering a phase 2 clinical
trial (NCT03629080) to investigate the vaccine efficacy in kidney transplant patients.

4.7. Peptide Vaccine

One of the advantages of the peptide vaccine including viral peptide antigens is to stimulate
epitope-specific T cell response. The only HCMV peptide vaccine tested in clinical trials is the
HCMVpp65-A∗0201 peptide vaccine (CMVPepVax), which includes the HLA-A∗0201-specific
pp65 CD8 T cell epitope, the P2 epitope of tetanus toxin or pan HLA DR-binding epitope, and
the PF03512676 adjuvant. The PF03512676 adjuvant is a CpG DNA adjuvant also known as
CpG 7909 and CpG 2006, a synthetic single-stranded phosphorothioate DNA containing CpG
motifs. The safety and the immunogenicity profile of the HCMVpp65-A∗0201 peptide vaccine
delivered subcutaneously in healthy adults has been assessed in phase 1 trials (NCT00712634,
NCT00722839, NCT01588015). The function and kinetics of the HCMV-specific T cell immu-
nity of this vaccine were later investigated in a phase 2 clinical trial (NCT02396134).

5. IMMUNE CORRELATES OF PROTECTION AGAINST HCMV

One leading strategy to improve on HCMV vaccines is the identification of immune CoPs, which
are immune markers associated with a reduction in the incidence of infection or clinical disease
(142, 143). Immune CoPs may be used to identify potential targets for vaccination or to determine
appropriate vaccine platforms for antigen presentation, and as immunological end points for mea-
suring vaccine efficacy in preclinical trials. The identification of CoPs is particularly important for
vaccine design against HCMV because natural HCMV infection confers only partial protection
from superinfection and vertical transmission (144). Accordingly, efficacious HCMV vaccines will
need to elicit immune responses even more protective than or different from those elicited by nat-
ural infection, and the development of protective HCMV vaccines will likely require rational vac-
cine design, which may be guided by immune CoPs. Previous studies have identified CoPs against
congenital HCMV transmission and viremia in natural infection (reviewed in 14, 94). Indeed,
these immune CoPs have been used to direct the design of HCMV vaccines. Follow-up studies
to historical HCMV clinical trials have also aimed at identifying vaccine-elicited CoPs. The most
efficacious HCMV vaccine to date (gB/MF59) achieved approximately 50% protection in clinical
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trials performed in 2011, but clinical trials of newer HCMV vaccine candidates have not yet im-
proved on this vaccine efficacy (145). A better understanding of the multifaceted vaccine-elicited
immune responses and CoPs may help guide vaccine design, including the selection of more anti-
genic vaccine targets, biologically relevant antigen structures, and appropriate vaccine platforms.

Multiple studies aimed at identifying immune CoPs for the gB/MF59 vaccine. In renal
transplant recipients vaccinated with the gB/MF59, the magnitude and duration of HCMV
viremia were found to be inversely correlated with gB-specific antibody titer, suggesting HCMV
gB-specific IgG responses as a vaccine-elicited CoP (146). Follow-up studies revealed that the
presence of antibodies specifically against the gB epitope antigenic domain-2 (gB AD-2) was
correlated with protection from viremia (147). Yet, surprisingly, serum neutralizing function,
which was previously identified as an immune CoP against congenital HCMV transmission in
multiple mother-infant cohorts (148, 149), was not associated with protection from viremia (150).
Indeed, gB/MF59 vaccination of seronegative transplant recipients (150) and of seronegative
adolescent subjects (91) elicited only minimal NAb and ADCC responses.These results suggested
that gB/MF59 conferred protection from primary infection via a non-neutralizing, non-ADCC
mechanism, such as ADCP. A follow-up correlate study of both the seronegative postpartum
and adolescent vaccinee populations found that the presence of serum antibodies against gB as
expressed on a cell surface,which represents a mix of gB in the prefusion and postfusion conforma-
tions (151), was associated with protection from primary infection (16). These findings suggested
that there may be structural differences in cell-associated and soluble gB, as used in the vaccine,
relevant to the generation of protective immunity. Supporting this, the authors identified gB-
specific mAbs that differentially recognized soluble or cell-associated gB (16). Collectively, these
studies revealed that there may be unique gB/MF59 vaccine-induced CoPs relevant to different
populations that may include gB-specific antibody responses and the presence of antibodies recog-
nizing cell-associated gB.Thus, the gB-based vaccine efficacy could be improved by increasing the
duration of antigen presentation and presenting gB antigens in cell-associated or prefusion forms.

There are several caveats to applying vaccine-elicited CoPs to the design and testing of future
HCMV vaccines. Identified CoPs may not indicate the mechanism of protection, in that they may
be correlative but not causative and should be interpreted accordingly. CoPs may also be spe-
cific to a particular vaccine or platform, limiting their generalizability. Moreover, the end points
for HCMV trials remain unclear, and although vaccine-elicited CoPs against viremia or primary
infection have been identified, these CoPs may not be associated with protection from congen-
ital HCMV transmission. Further studies are required to identify relevant surrogate markers of
infection and disease for HCMV clinical trials and immune CoP studies.

6. NEXT-GENERATION HCMV VACCINE STRATEGIES

The overall immune CoP of HCMV infection is not entirely understood. Yet, harnessing the
newly identified protective host immunity, employing new vaccine technologies, and optimizing
animal models may help rationally inform next-generation HCMV vaccine design. Therefore, we
propose the following next-generation HCMV vaccine development strategies.

6.1. Systematic Dissection of Protective Immunity After Natural Infection

Comprehensive dissection of natural HCMV-specific immune responses that are protective
against reinfection and congenital infection could reveal the protective immunity at the single-
antigen levels, which are relevant to rationally screen immunogens and select vaccine modalities
in future vaccines.Meanwhile, a complete understanding of the molecular mechanism concerning
the interplay between the virus and host, including the pathogenesis mechanism during vertical
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transmission, will also inform HCMV vaccine development, facilitated by other disciplines such
as molecular cell biology and bioinformatics, systems biology, and structural biology.

6.2. Optimization of Antigen Design

Antigen design is central to vaccine development. Therefore, we proposed the strategies detailed
below to improve next-generation vaccine antigen design.

6.2.1. B cell lineage- and structure-based glycoprotein B antigen design to induce the
strong and broadly neutralizing antibodies. The gB/MF59 vaccine achieved partial success
in multiple clinical trials, demonstrating that the gB-specific response is essential for vaccine-
induced protection. Hence, further efforts are required to improve the gB immunogen design
to broaden the coverage of immune responses. However, passive administration of NAbs in hu-
man trials has indicated the protective role of NAbs (152–155). These observations provide the
rationale for B cell lineage- and structure-based antigen design aimed at inducing potent and
broad NAb responses against gB. Yet, antibody responses directed against a crucial gB neutral-
izing epitope, AD2S1, identified as the target of the most potent gB-specific NAb in naturally
infected individuals, were not elicited by this vaccine strategy (16). This lack of response against
the AD2S1 antigenic region combined with a narrow variable gene usage of identified gB AD2S1-
specific mAbs indicates a genetic restriction in B cell lineage induction. Thus, there is a potential
for precursor B cells to be engaged through the antibody-antigen structure-based design of gB
immunogens. One preliminary study defined the B cell lineage development path of two well-
characterized gB AD2S1-specific potently neutralizing mAbs, TRL345 and mAb3-25, and the
VH A33Nmutation was identified as both necessary and sufficient to confer neutralizing function
to the non-neutralizing unmutated common ancestor (UCA) (data were not published) (155a).
Structure-guided engineering can select gB antigen mutants with enhanced binding to the UCA
of potent gB AD2S1-specific mAbs such as TRL345 and test for their ability to elicit NAbs in
small animal models using a sequential immunization strategy (156, 157).

6.2.2. Addition of pentamer complex and glycoprotein H/L/O to broaden the neutraliz-
ing antibody responses. The HCMV PC is currently being included in the vaccine regimen
to broaden the vaccine-induced humoral immunity, particularly NAbs, to block the infection of
epithelial and endothelial cells because HCMV PC was shown to be a major NAb target (42).
Additionally, HCMV gH/gL/gO trimer was demonstrated to promote gB fusion on all cell types,
suggesting gH/gL/gO trimer also plays an essential role in viral entry (47). Hence, gH/gL/gO
trimer could be included in the vaccine regimen, potentially preventing HCMV from escaping
current clinically tested vaccine-elicited NAbs.

6.2.3. T cell–based antigen selection. The pp65-specific CD4+ T cell response has been
shown to potentially contribute to prevention of congenital HCMV infection and thus should
be incorporated into the vaccine regimens to evaluate potency and efficacy (82). In addition, IE1-
specific T cells appeared important to viral load reduction in immunocompromised HCMV pa-
tients (78). Protective responses mediated by IE1-specific immunity could potentially apply to
other populations in the vaccination settings. Hence, the inclusion of IE1 in vaccine design may
improve HCMV vaccine efficacy.

6.3. New Vaccine Approaches to Elicit Both Humoral and Cellular Responses

A vaccine triggering humoral and cellular responses would likely confer maximum protection
against HCMV infection and disease. We propose the following approaches to realize this goal.
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6.3.1. Combination of different vaccinemodalities. It is well known that the optimizedDNA
vaccine and the viral vector platform excel in eliciting strong and broadT cell responses (158–160),
which could be used as a vehicle to deliver T cell–specific antigens such as pp65 and IE1. In con-
trast, the adjuvanted subunit vaccine and LNP-encapsulated nucleoside-modified mRNA vaccine
are good at stimulating potent humoral responses (161–163). These two platforms are more suit-
able for encoding GC antigens such as gB and PC to elicit potent functional antibody responses.
Combining different vaccine modalities in a prime-boost and/or coadministration manner could
maximize both functional cellular and humoral responses (64, 164).

6.3.2. Selection of the appropriate immunization route. Intramuscular (IM) injection is
good at inducing cellular and humoral responses, while intradermal (ID) delivery excels in gener-
ating potent antibody responses (165). Additionally, the in vivo electroporation following IM/ID
delivery ofDNA vaccine significantly increased the vaccine-induced immune responses (166, 167).
Yet, mucosal delivery of a vaccine may be needed to prevent virus acquisition from the mucosal
routes and/or block systemic spread after local virus replication (168).

6.4. Novel Adjuvant to Modulate the Vaccine-Induced Immune Responses

Innate responses triggered by vaccination can be modulated through the novel adjuvants, such as
the molecular adjuvant IL-12, to enhance the memory NK responses (39, 169). However, novel
adjuvant formulation with vaccine antigens still needs further exploration to harness the desired
vaccine-induced responses and enhance the vaccine efficacy and durability (170), key features of a
successful vaccine.

6.5. De-Risking Clinical Vaccine Development Through Highly Relevant
Animal Models and Standard Assay Development

Highly relevant animal model development and standard assay establishment will facilitate vaccine
development. We detail our recommendations below.

6.5.1. Preclinical animal models development. Appropriate preclinical animal models to
evaluate the immunogenicity and efficacy of vaccines will improve the likelihood of developing
a successful HCMV vaccine in clinical trials. The common congenital HCMV transmission ani-
mal models, including the guinea pig or NHPmodel, allow the examination of preclinical vaccine
potency and efficacy for the primary clinical end point and enhance our understanding of viral
transmission and pathogenesis. New animal/challenge models may be needed to shorten the vac-
cine candidates’ research and development process. For example, chimeric rhesus-human CMV
bearing HCMV gB might help evaluate the vaccine efficacy for all HCMV gB-encoded vaccine
antigens/regimens, similar to the simian-human immunodeficiency virus/rhesus macaque model,
which is widely applied in the HIV vaccine field (171, 172).

Additionally, the humanized mouse model reconstructing the human immune system could
be a relevant animal model instrumental in evaluating the immunogenicity of vaccine candidates
and vaccine efficacy upon HCMV challenge. Yet, efforts are still needed to optimize the current
humanized mouse model to recapitulate the different stages of HCMV infection and the complex
immunological host-pathogen interactions (reviewed in 173), potentially accelerating the clinical
translation of HCMV vaccine candidates from the preclinical stage.

6.5.2. Standard assay establishment. Establishing standard assays compatible with good
clinical and laboratory practice environment (174), particularly for identified immune CoPs,
will facilitate preclinical and early clinical vaccine assessment and cross-compare potency for the
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different vaccine platforms/regimens to rationally guide the advanced vaccine human clinical
trial development.

Comprehensively employing these next-generation vaccine strategies will de-risk the vaccine
candidate development and maximize the success of an effective HCMV vaccine.

7. CLOSING REMARKS

Rapid immunogenicity testing and efficacy evaluation for HCMV vaccine candidates against con-
genital transmission in the highly relevant animal models in the preclinical stage for new HCMV
vaccine concepts/regimens will aid in moving the most promising HCMV vaccine candidates into
clinical trials and improving their ultimate chance of success. Depending on the outcome of clini-
cal trials at each stage, vaccine candidates may need to go back to the preclinical stage to optimize
the vaccine strategy/immunogen design by enhanced understanding of the natural protective im-
munity and CoPs.New vaccine adjuvants and technologies could also accelerate the success of the
next-generationHCMVvaccine, eventually leading to improved infant and immunocompromised
patient health by ending the consequences of HCMV disease through immunization.
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