1932

Abstract

Mammalian bodies have more than a billion cells per cubic centimeter, which makes whole-body cell (WBC) profiling of an organism one of the ultimate challenges in biology and medicine. Recent advances in tissue-clearing technology have enabled rapid and comprehensive cellular analyses in whole organs and in the whole body by a combination of state-of-the-art technologies of optical imaging and image informatics. In this review, we focus mainly on the chemical principles in currently available techniques for tissue clearing and staining to facilitate our understanding of their underlying mechanisms. Tissue clearing is usually conducted by the following steps: () fixation, () permeabilization, () decolorizing, and () refractive index (RI) matching. To phenotype individual cells after tissue clearing, it is important to visualize genetically encoded fluorescent reporters and/or to stain tissues with fluorescent dyes, fluorescent labeled antibodies, or nucleic acid probes. Although some technical challenges remain, the chemical principles in tissue clearing and staining for WBC profiling will enable various applications, such as identifying cellular circuits across multiple organs and measuring their dynamics in stochastic and proliferative cellular processes, for example, autoimmune and malignant neoplastic diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111315-125001
2016-10-06
2025-01-22
The full text of this item is not currently available.

Literature Cited

  1. Alnuami AA, Zeedi B, Qadri SM, Ashraf SS. 2008. Oxyradical-induced GFP damage and loss of fluorescence. Int. J. Biol. Macromol. 43:182–86 [Google Scholar]
  2. Amat F, Hockendorf B, Wan Y, Lemon WC, McDole K, Keller PJ. 2015. Efficient processing and analysis of large-scale light-sheet microscopy data. Nat. Protoc. 10:1679–96 [Google Scholar]
  3. Amat F, Lemon W, Mossing DP, McDole K, Wan Y. et al. 2014. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11:951–58 [Google Scholar]
  4. Andersen AP, Hasselager E, Hoyer P-E, Moller M, Prento P. et al. 2012. Theory and Strategy in Histochemistry: A Guide to the Selection and Understanding of Techniques Berlin: Springer Science & Business Media [Google Scholar]
  5. Aoyagi Y, Kawakami R, Osanai H, Hibi T, Nemoto T. 2015. A rapid optical clearing protocol using 2,2′-thiodiethanol for microscopic observation of fixed mouse brain. PLOS ONE 10:e0116280 [Google Scholar]
  6. Barton KN, Buhr MM, Ballantyne JS. 1999. Effects of urea and trimethylamine N-oxide on fluidity of liposomes and membranes of an elasmobranch. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276:R397–406 [Google Scholar]
  7. Becker K, Jährling N, Saghafi S, Weiler R, Dodt HU. 2012. Chemical clearing and dehydration of GFP expressing mouse brains. PLOS ONE 7:e33916 [Google Scholar]
  8. Bentley MV, Kedor E, Vianna RF, Collett JH. 1997. The influence of lecithin and urea on the in vitro permeation of hydrocortisone acetate through skin from hairless mouse. Int. J. Pharm. 146:255–62 [Google Scholar]
  9. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. 2010. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25:1468–86 [Google Scholar]
  10. Brejc K, Sixma TK, Kitts PA, Kain SR, Tsien RY. et al. 1997. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. PNAS 94:2306–11 [Google Scholar]
  11. Brizzee KR, Eddy DE, Harman D, Ordy JM. 1984. Free radical theory of aging: effect of dietary lipids on lipofuscin accumulation in the hippocampus of rats. AGE 7:9–15 [Google Scholar]
  12. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802–5 [Google Scholar]
  13. Chen F, Tillberg PW, Boyden ES. 2015. Expansion microscopy. Science 347:543–48 [Google Scholar]
  14. Chhetri RK, Amat F, Wan Y, Hockendorf B, Lemon WC, Keller PJ. 2015. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat. Methods 12:1171–78 [Google Scholar]
  15. Chiang AS, Lin WY, Liu HP, Pszczolkowski MA, Fu TF. et al. 2002. Insect NMDA receptors mediate juvenile hormone biosynthesis. PNAS 99:37–42 [Google Scholar]
  16. Chung K, Deisseroth K. 2013. CLARITY for mapping the nervous system. Nat. Methods 10:508–13 [Google Scholar]
  17. Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS. et al. 2013. Structural and molecular interrogation of intact biological systems. Nature 497:332–37 [Google Scholar]
  18. Cody CW, Prasher DC, Westler WM, Prendergast FG, Ward WW. 1993. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32:1212–18 [Google Scholar]
  19. Costantini I, Ghobril JP, Di Giovanna AP, Mascaro AL, Silvestri L. et al. 2015. A versatile clearing agent for multi-modal brain imaging. Sci. Rep. 5:9808 [Google Scholar]
  20. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY. 1995. Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20:448–55 [Google Scholar]
  21. Díaz RS, Monreal J, Regueiro P, Lucas M. 1992. Preparation of a protein-free total brain white matter lipid fraction: characterization of liposomes. J. Neurosci. Res. 31:136–45 [Google Scholar]
  22. Dodt HU, Leischner U, Schierloh A, Jährling N, Mauch CP. et al. 2007. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4:331–36 [Google Scholar]
  23. Dong J, Solntsev KM, Tolbert LM. 2006. Solvatochromism of the green fluorescence protein chromophore and its derivatives. J. Am. Chem. Soc. 128:12038–39 [Google Scholar]
  24. dos Santos AM. 2012. Thermal effect on Aequorea green fluorescent protein anionic and neutral chromophore forms fluorescence. J. Fluoresc. 22:151–54 [Google Scholar]
  25. Dowson J. 1983. A comparison of autofluorescence emission spectra of bleached neuromelanin in non-diseased substantia nigra with spectra of other intraneuronal pigments in non-diseased and diseased tissue. Acta Neuropathol. 61:196–200 [Google Scholar]
  26. Economo MN, Clack NG, Lavis LD, Gerfen CR, Svoboda K. et al. 2016. A platform for brain-wide imaging and reconstruction of individual neurons. eLife 5:e10566 [Google Scholar]
  27. Epp JR, Niibori Y, Liz Hsiang HL, Mercaldo V, Deisseroth K. et al. 2015. Optimization of CLARITY for clearing whole-brain and other intact organs. eNeuro 2: doi: 10.1523/ENEURO.0022-15.2015 [Google Scholar]
  28. Ertürk A, Becker K, Jährling N, Mauch CP, Hojer CD. et al. 2012. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7:1983–95 [Google Scholar]
  29. Feng Y, Yu ZW, Quinn PJ. 2002. Effect of urea, dimethylurea, and tetramethylurea on the phase behavior of dioleoylphosphatidylethanolamine. Chem. Phys. Lipids 114:149–57 [Google Scholar]
  30. Greene RF Jr., Pace CN. 1974. Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J. Biol. Chem. 249:5388–93 [Google Scholar]
  31. Hama H, Hioki H, Namiki K, Hoshida T, Kurokawa H. et al. 2015. ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18:1518–29 [Google Scholar]
  32. Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T. et al. 2011. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14:1481–88 [Google Scholar]
  33. Helander KG. 1994. Kinetic studies of formaldehyde binding in tissue. Biotech. Histochem. 69:177–79 [Google Scholar]
  34. Hirashima T, Adachi T. 2015. Procedures for the quantification of whole-tissue immunofluorescence images obtained at single-cell resolution during murine tubular organ development. PLOS ONE 10:e0135343 [Google Scholar]
  35. Hopwood D. 1967. Some aspects of fixation with glutaraldehyde. A biochemical and histochemical comparison of the effects of formaldehyde and glutaraldehyde fixation on various enzymes and glycogen, with a note on penetration of glutaraldehyde into liver. J. Anat. 101:83–92 [Google Scholar]
  36. Hopwood D. 1972. Theoretical and practical aspects of glutaraldehyde fixation. Histochem. J. 4:267–303 [Google Scholar]
  37. Horecker BL. 1943. The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions. J. Biol. Chem. 148:173–83 [Google Scholar]
  38. Hou B, Zhang D, Zhao S, Wei M, Yang Z. et al. 2015. Scalable and DiI-compatible optical clearance of the mammalian brain. Front. Neuroanat. 9:19 [Google Scholar]
  39. Hua L, Zhou R, Thirumalai D, Berne BJ. 2008. Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. PNAS 105:16928–33 [Google Scholar]
  40. Isosaka T, Matsuo T, Yamaguchi T, Funabiki K, Nakanishi S. et al. 2015. Htr2a-expressing cells in the central amygdala control the hierarchy between innate and learned fear. Cell 163:1153–64 [Google Scholar]
  41. Jedlovszky P, Idrissi A. 2008. Hydration free energy difference of acetone, acetamide, and urea. J. Chem. Phys. 129:164501 [Google Scholar]
  42. Johnsen S, Widder EA. 1999. The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering. J. Theor. Biol. 199:181–98 [Google Scholar]
  43. Ke MT, Fujimoto S, Imai T. 2013. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci. 16:1154–61 [Google Scholar]
  44. Ke MT, Nakai Y, Fujimoto S, Takayama R, Yoshida S. et al. 2016. Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Rep. 14:2718–32 [Google Scholar]
  45. Keller PJ, Ahrens MB. 2015. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron 85:462–83 [Google Scholar]
  46. Keller PJ, Ahrens MB, Freeman J. 2015. Light-sheet imaging for systems neuroscience. Nat. Methods 12:27–29 [Google Scholar]
  47. Kilsdonk EP, Yancey PG, Stoudt GW, Bangerter FW, Johnson WJ. et al. 1995. Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270:17250–56 [Google Scholar]
  48. Kim SY, Cho JH, Murray E, Bakh N, Choi H. et al. 2015. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. PNAS 112:E6274–83 [Google Scholar]
  49. Kneen M, Farinas J, Li YX, Verkman AS. 1998. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys. J. 74:1591–99 [Google Scholar]
  50. Kristinsson HG, Hultin HO. 2004. Changes in trout hemoglobin conformations and solubility after exposure to acid and alkali pH. J. Agric. Food Chem. 52:3633–43 [Google Scholar]
  51. Kurihara D, Mizuta Y, Sato Y, Higashiyama T. 2015. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142:4168–79 [Google Scholar]
  52. Kuwajima T, Sitko AA, Bhansali P, Jurgens C, Guido W, Mason C. 2013. ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 140:1364–68 [Google Scholar]
  53. Leblond F, Davis SC, Valdes PA, Pogue BW. 2010. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J. Photochem. Photobiol. B Biol. 98:77–94 [Google Scholar]
  54. Lee E, Choi J, Jo Y, Kim JY, Jang YJ. et al. 2016. ACT-PRESTO: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci. Rep. 6:18631 [Google Scholar]
  55. Lee H, Park JH, Seo I, Park SH, Kim S. 2014. Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine. BMC Dev. Biol. 14:48 [Google Scholar]
  56. Leung H. 1987. Influence of water activity on chemical reactivity. Water Activity: Theory and Applications to Food LB Rockland, LR Beuchat, Inst. Food Technol., Int. Union Food Sci. Technol 27–54 New York: Marcel Dekker [Google Scholar]
  57. Li D, Zhang X, Loni Y, Sunz X. 2006. Inactivation of hemoglobin by hydrogen peroxide and protection by a reductant substrate. Life Sci. J. 3:52–58 [Google Scholar]
  58. Liu H, Beauvoit B, Kimura M, Chance B. 1996. Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity. J. Biomed. Opt. 1:200–11 [Google Scholar]
  59. Manicam C, Pitz S, Brochhausen C, Grus FH, Pfeiffer N, Gericke A. 2014. Effective melanin depigmentation of human and murine ocular tissues: an improved method for paraffin and frozen sections. PLOS ONE 9:e102512 [Google Scholar]
  60. Mehta S, Zhang J. 2011. Reporting from the field: genetically encoded fluorescent reporters uncover signaling dynamics in living biological systems. Annu. Rev. Biochem. 80:375–401 [Google Scholar]
  61. Metz B, Kersten GF, Baart GJ, de Jong A, Meiring H. et al. 2006. Identification of formaldehyde-induced modifications in proteins: reactions with insulin. Bioconjug. Chem. 17:815–22 [Google Scholar]
  62. Metz B, Kersten GF, Hoogerhout P, Brugghe HF, Timmermans HA. et al. 2004. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J. Biol. Chem. 279:6235–43 [Google Scholar]
  63. Murray E, Cho JH, Goodwin D, Ku T, Swaney J. et al. 2015. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163:1500–14 [Google Scholar]
  64. Nienhaus K, Nienhaus GU. 2014. Fluorescent proteins for live-cell imaging with super-resolution. Chem. Soc. Rev. 43:1088–106 [Google Scholar]
  65. Ntziachristos V. 2010. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7:603–14 [Google Scholar]
  66. Ode KL, Ueda HR. 2015. Seeing the forest and trees: whole-body and whole-brain imaging for circadian biology. Diabetes Obes. Metab. 17:Suppl. 147–54 [Google Scholar]
  67. Ogawa S, Lee TM, Nayak AS, Glynn P. 1990. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Reson. Med. 14:68–78 [Google Scholar]
  68. Oh SW, Harris JA, Ng L, Winslow B, Cain N. et al. 2014. A mesoscale connectome of the mouse brain. Nature 508:207–14 [Google Scholar]
  69. Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ. 1996. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–95 [Google Scholar]
  70. Pal SK, Peon J, Zewail AH. 2002. Biological water at the protein surface: dynamical solvation probed directly with femtosecond resolution. PNAS 99:1763–68 [Google Scholar]
  71. Pallotto M, Watkins PV, Fubara B, Singer JH, Briggman KL. 2015. Extracellular space preservation aids the connectomic analysis of neural circuits. eLife 4:e08206 [Google Scholar]
  72. Palmer WM, Martin AP, Flynn JR, Reed SL, White RG. et al. 2015. PEA-CLARITY: 3D molecular imaging of whole plant organs. Sci. Rep. 5:13492 [Google Scholar]
  73. Petty HR. 1993. Molecular Biology of Membranes: Structure and Function Berlin: Springer Science & Business Media [Google Scholar]
  74. Pletnev S, Shcherbo D, Chudakov DM, Pletneva N, Merzlyak EM. et al. 2008. A crystallographic study of bright far-red fluorescent protein mKate reveals pH-induced cis-trans isomerization of the chromophore. J. Biol. Chem. 283:28980–87 [Google Scholar]
  75. Priyakumar UD, Hyeon C, Thirumalai D, Mackerell AD Jr. 2009. Urea destabilizes RNA by forming stacking interactions and multiple hydrogen bonds with nucleic acid bases. J. Am. Chem. Soc. 131:17759–61 [Google Scholar]
  76. Ragan T, Kadiri LR, Venkataraju KU, Bahlmann K, Sutin J. et al. 2012. Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat. Methods 9:255–58 [Google Scholar]
  77. Rekas A, Alattia JR, Nagai T, Miyawaki A, Ikura M. 2002. Crystal structure of Venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. J. Biol. Chem. 277:50573–78 [Google Scholar]
  78. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. 2014. iDISCO: A simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159:896–910 [Google Scholar]
  79. Schnell SA, Staines WA, Wessendorf MW. 1999. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J. Histochem. Cytochem. 47:719–30 [Google Scholar]
  80. Schwarz MK, Scherbarth A, Sprengel R, Engelhardt J, Theer P, Giese G. 2015. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains. PLOS ONE 10:e0124650 [Google Scholar]
  81. Sealy R, Felix C, Hyde J, Swartz H. 1980. Structure and reactivity of melanins: influence of free radicals and metal ions. Free Radic. Biol. 4:209–59 [Google Scholar]
  82. Sharpe J. 2004. Optical projection tomography. Annu. Rev. Biomed. Eng. 6:209–28 [Google Scholar]
  83. Shimomura O. 1979. Structure of the chromophore of Aequorea green fluorescent protein. FEBS Lett. 104:220–22 [Google Scholar]
  84. Shimomura O, Johnson FH, Saiga Y. 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59:223–39 [Google Scholar]
  85. Shokeen M, Anderson CJ. 2009. Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). Acc. Chem. Res. 42:832–41 [Google Scholar]
  86. Shu X, Shaner NC, Yarbrough CA, Tsien RY, Remington SJ. 2006. Novel chromophores and buried charges control color in mFruits. Biochemistry 45:9639–47 [Google Scholar]
  87. Sompuram SR, Vani K, Messana E, Bogen SA. 2004. A molecular mechanism of formalin fixation and antigen retrieval. Am. J. Clin. Pathol. 121:190–99 [Google Scholar]
  88. Spalteholz W. 1914. Über das Durchsichtigmachen von menschlichen und tierischen Präparaten Leipzig, Ger: S. Hirzel [Google Scholar]
  89. Staudt T, Lang MC, Medda R, Engelhardt J, Hell SW. 2007. 2,2′-Thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc. Res. Tech. 70:1–9 [Google Scholar]
  90. Steinke H, Wolff W. 2001. A modified Spalteholz technique with preservation of the histology. Ann. Anat. 183:91–95 [Google Scholar]
  91. Stepanenko OV, Stepanenko OV, Kuznetsova IM, Shcherbakova DM, Verkhusha VV, Turoverov KK. 2012. Distinct effects of guanidine thiocyanate on the structure of superfolder GFP. PLOS ONE 7e48809 [Google Scholar]
  92. Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T. et al. 2014. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157:726–39 [Google Scholar]
  93. Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR. 2015. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protoc. 10:1709–27 [Google Scholar]
  94. Susaki EA, Ueda HR. 2016. Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem. Biol. 23:137–57 [Google Scholar]
  95. Sylwestrak EL, Rajasethupathy P, Wright MA, Jaffe A, Deisseroth K. 2016. Multiplexed intact-tissue transcriptional analysis at cellular resolution. Cell 164:792–804 [Google Scholar]
  96. Tainaka K, Kubota SI, Suyama TQ, Susaki EA, Perrin D. et al. 2014. Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159:911–24 [Google Scholar]
  97. Teale FW. 1959. Cleavage of the haem-protein link by acid methylethylketone. Biochim. Biophys. Acta 35:543 [Google Scholar]
  98. Tomer R, Ye L, Hsueh B, Deisseroth K. 2014. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9:1682–97 [Google Scholar]
  99. Treweek JB, Chan KY, Flytzanis NC, Yang B, Deverman BE. et al. 2015. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat. Protoc. 10:1860–96 [Google Scholar]
  100. Tsien RY. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67:509–44 [Google Scholar]
  101. Tuchin VV. 2015. Tissue optics and photonics: light-tissue interaction. J. Biomed. Photonics Eng. 1:98–134 [Google Scholar]
  102. Tuchin VV, Maksimova IL, Zimnyakov DA, Kon IL, Mavlyutov AH, Mishin AA. 1997. Light propagation in tissues with controlled optical properties. J. Biomed. Opt. 2:401–17 [Google Scholar]
  103. Usha R, Ramasami T. 2002. Effect of hydrogen-bond-breaking reagent (urea) on the dimensional stability of rat tail tendon (RTT) collagen fiber. J. Appl. Polym. Sci. 84:975–82 [Google Scholar]
  104. Ward WW, Prentice HJ, Roth AF, Cody CW, Reeves SC. 1982. Spectral perturbations of the Aequorea green-fluorescent protein. Photochem. Photobiol. 35:803–8 [Google Scholar]
  105. Warner CA, Biedrzycki ML, Jacobs SS, Wisser RJ, Caplan JL, Sherrier DJ. 2014. An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiol. 166:1684–87 [Google Scholar]
  106. Weissleder R. 2001. A clearer vision for in vivo imaging. Nat. Biotechnol. 19:316–17 [Google Scholar]
  107. Xiong H, Zhou Z, Zhu M, Lv X, Li A. et al. 2014. Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging. Nat. Commun. 5:3992 [Google Scholar]
  108. Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK. et al. 2014. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158:945–58 [Google Scholar]
  109. Yarbrough D, Wachter RM, Kallio K, Matz MV, Remington SJ. 2001. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Å resolution. PNAS 98:462–67 [Google Scholar]
  110. Zimmerman SB, Minton AP. 1993. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 22:27–65 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111315-125001
Loading
/content/journals/10.1146/annurev-cellbio-111315-125001
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error