1932

Abstract

We review some recent developments in the statistical mechanics of isolated quantum systems. We provide a brief introduction to quantum thermalization, paying particular attention to the eigenstate thermalization hypothesis (ETH) and the resulting single-eigenstate statistical mechanics. We then focus on a class of systems that fail to quantum thermalize and whose eigenstates violate the ETH: These are the many-body Anderson-localized systems; their long-time properties are not captured by the conventional ensembles of quantum statistical mechanics. These systems can forever locally remember information about their local initial conditions and are thus of interest for possibilities of storing quantum information. We discuss key features of many-body localization (MBL) and review a phenomenology of the MBL phase. Single-eigenstate statistical mechanics within the MBL phase reveal dynamically stable ordered phases, and phase transitions among them, that are invisible to equilibrium statistical mechanics and can occur at high energy and low spatial dimensionality, where equilibrium ordering is forbidden.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031214-014726
2015-03-10
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/6/1/annurev-conmatphys-031214-014726.html?itemId=/content/journals/10.1146/annurev-conmatphys-031214-014726&mimeType=html&fmt=ahah

Literature Cited

  1. Sakurai JJ. 1985. Modern Quantum Mechanics Menlo Park, CA: Benjamin/Cummings [Google Scholar]
  2. Trabesinger A. 2012. Nat. Phys. Insight 8:263 [Google Scholar]
  3. Cirac JI, Zoller P. 2012. Nat. Phys. Insight 8:264–66 [Google Scholar]
  4. Bloch I, Dalibard J, Nascimbene S. 2012. Nat. Phys. Insight 8:267–76 [Google Scholar]
  5. Blatt R, Roos CF. 2012. Nat. Phys. Insight 8:277–84 [Google Scholar]
  6. Aspuru-Guzik A, Walther P. 2012. Nat. Phys. Insight 8:285–91 [Google Scholar]
  7. Houck AA, Tureci HE, Koch J. 2012. Nat. Phys. Insight 8:292–99 [Google Scholar]
  8. Kardar M. 2007. Statistical Physics of Particles Cambridge, UK: Cambridge Univ. Press, 1st ed.. [Google Scholar]
  9. Polkovnikov A, Sengupta K, Silva A, Vengalatorre M. 2011. Rev. Mod. Phys. 83:863–83 [Google Scholar]
  10. Anderson PW. 1958. Phys. Rev. 109:1492–505 [Google Scholar]
  11. Huse DA, Nandkishore R, Oganesyan V, Pal A, Sondhi SL. 2013. Phys. Rev. B 88:014206 [Google Scholar]
  12. Fleishman L, Anderson PW. 1980. Phys. Rev. B 21:2366–77 [Google Scholar]
  13. Altshuler BL, Gefen Y, Kamenev A, Levitov LS. 1997. Phys. Rev. Lett. 78:2803–6 [Google Scholar]
  14. Gornyi IV, Mirlin AD, Polyakov DG. 2005. Phys. Rev. Lett. 95:206603 [Google Scholar]
  15. Basko DM, Aleiner IL, Altshuler BL. 2006. Ann. Phys. 321:1126–205 [Google Scholar]
  16. Oganesyan V, Huse DA. 2007. Phys. Rev. B 75:155111 [Google Scholar]
  17. Pal A, Huse DA. 2010. Phys. Rev. B 82:174411 [Google Scholar]
  18. Imbrie JZ. arXiv:1403.7837
  19. Bauer B, Nayak C. 2013. J. Stat. Mech 2013:P09005 [Google Scholar]
  20. Zangara PR, Dente AD, Lucci A, Levstein PR, Pastawski HM. 2013. Phys. Rev. B 88:195106 [Google Scholar]
  21. Vosk R, Altman E. 2013. Phys. Rev. Lett. 110:067204 [Google Scholar]
  22. Pekker D, Refael G, Altman E, Demler E, Oganesyan V. 2014. Phys. Rev. X 4:011052 [Google Scholar]
  23. Vosk R, Altman E. 2014. Phys. Rev. Lett 112:217204 [Google Scholar]
  24. Bahri Y, Vosk R, Altman E, Vishwanath A. arXiv:1307.4092
  25. Chandran A, Khemani V, Laumann CR, Sondhi SL. 2014. Phys. Rev. B 89:144201 [Google Scholar]
  26. Serbyn M, Papic Z, Abanin DA. 2013. Phys. Rev. Lett. 110:260601 [Google Scholar]
  27. Huse DA, Oganesyan V. arXiv:1305.4915
  28. Serbyn M, Papic Z, Abanin DA. 2013. Phys. Rev. Lett. 111:127201 [Google Scholar]
  29. Huse DA, Nandkishore R, Oganesyan V. arXiv:1408.4297
  30. Znidaric M, Prosen T, Prelovsek P. 2008. Phys. Rev. B 77:064426 [Google Scholar]
  31. Monthus C, Garel T. 2010. Phys. Rev. B 81:134202 [Google Scholar]
  32. Berkelbach TC, Reichman DR. 2010. Phys. Rev. B 81:224429 [Google Scholar]
  33. Canovi E, Rossini D, Fazio R, Santoro GE, Silva A. 2011. Phys. Rev. B 83:094431 [Google Scholar]
  34. Canovi E, Rossini D, Fazio R, Santoro GE, Silva A. 2012. New J. Phys. 14:095020 [Google Scholar]
  35. Feigel’man MV, Ioffe LB, Mezard M. 2010. Phys. Rev. B 82:184534 [Google Scholar]
  36. De Luca A, Scardicchio A. 2013. Europhys. Lett. 101:37003 [Google Scholar]
  37. Swingle B. arXiv:1307.0507
  38. Sims R, Stolz G. arXiv:1312.0577
  39. Bar Lev Y, Reichman DR. 2014. Phys. Rev. B 89:220201 [Google Scholar]
  40. Aleiner IL, Altshuler BL, Shlyapnikov GV. 2010. Nat. Phys. 6:900–4 [Google Scholar]
  41. Michal VP, Altshuler BL, Shlyapnikov GV. arXiv:1402.4796
  42. Kjäll JA, Bardarson JH, Pollman F. 2014. Phys. Rev. Lett 113:107204 [Google Scholar]
  43. Khatami E, Rigol M, Relano A, Garcia-Garcia AM. 2012. Phys. Rev. E 85:050102 [Google Scholar]
  44. D’Alessio L, Polkovnikov A. 2013. Ann. Phys. 333:19–33 [Google Scholar]
  45. Ponte P, Chandran A, Papic Z, Abanin DA. arXiv:1403.6480
  46. Rigol M, Dunjko V, Yurovsky V, Olshanii M. 2007. Phys. Rev. Lett. 98:050405 [Google Scholar]
  47. Cassidy AC, Clark CW, Rigol M. 2011. Phys. Rev. Lett. 106:140405 [Google Scholar]
  48. Caux JS, Essler FHL. 2013. Phys. Rev. Lett. 110:257203 [Google Scholar]
  49. Lychkovskiy O. 2013. Phys. Rev. A 87:022112 [Google Scholar]
  50. Deutsch JM. 1991. Phys. Rev. A 43:2046–49 [Google Scholar]
  51. Srednicki M. 1994. Phys. Rev. E 50:888–901 [Google Scholar]
  52. Tasaki H. 1998. Phys. Rev. Lett. 80:1373–76 [Google Scholar]
  53. Rigol M, Dunjko V, Olshanii M. 2008. Nature 452:854–58 [Google Scholar]
  54. Rigol M, Srednicki M. 2012. Phys. Rev. Lett. 108:110601 [Google Scholar]
  55. Rigol M. 2009. Phys. Rev. Lett. 103:100403 [Google Scholar]
  56. Rigol M, Santos LF. . 2010. Phys. Rev. A 82:011604 [Google Scholar]
  57. Ikeda TN, Watanabe Y, Ueda M. 2011. Phys. Rev. E 84:021130 [Google Scholar]
  58. Ikeda TN, Watanabe Y, Ueda M. arXiv:1202.1965
  59. Dubey S, Silvestri L, Finn J, Vinjanampathy S, Jacobs K. 2012. Phys. Rev. E 85:011141 [Google Scholar]
  60. Steinigeweg R, Herbych J, Prelovsek P. 2013. Phys. Rev. E 87:012118 [Google Scholar]
  61. De Luca A. arXiv:1302.0992
  62. Beugeling W, Moessner R, Haque M. 2014. Phys. Rev. E 89:042112 [Google Scholar]
  63. Steinigeweg R, Niemeyer H, Gogolin C, Gemmer J. 2014. Phys. Rev. Lett. 112:130403 [Google Scholar]
  64. Khlebnikov S, Kruczenski M. arXiv:1312.4612
  65. Mueller MP, Adlam E, Masanes L, Wiebe N. arXiv:1312.7420
  66. Evers F, Mirlin AD. 2008. Rev. Mod. Phys. 80:1355–417 [Google Scholar]
  67. Iyer S, Oganesyan V, Refael G, Huse DA. 2013. Phys. Rev. B 87:134202 [Google Scholar]
  68. Serbyn M, Knap M, Gopalakrishnan S, Papic Z, Yao NY et al. arXiv:1403.0693
  69. Bardarson JH, Pollman F, Moore JE. 2012. Phys. Rev. Lett. 109:017202 [Google Scholar]
  70. Kim H, Huse DA. 2013. Phys. Rev. Lett. 111:127205 [Google Scholar]
  71. Lieb EH, Robinson D. 1972. Commun. Math. Phys. 28:251–57 [Google Scholar]
  72. Bray AJ, Moore MA. 1987. Phys. Rev. Lett. 58:57–60 [Google Scholar]
  73. Nandkishore R, Gopalakrishnan S, Huse DA. 2014. Phys. Rev. B 90:064203 [Google Scholar]
  74. Johri S, Nandkishore R, Bhatt RN. arXiv:1405.5515
  75. Gopalakrishnan S, Nandkishore R. arXiv:1405.1036
  76. Fisher DS. 1995. Phys. Rev. B 51:6411–61 [Google Scholar]
  77. Fendley P. 2012. J. Stat. Mech. 2012:P11020 [Google Scholar]
  78. Fradkin E, Shenker SH. 1979. Phys. Rev. D 19:3682–97 [Google Scholar]
  79. Vishwanath A, Senthil T. 2013. Phys. Rev. X 3:011016 [Google Scholar]
  80. Nandkishore R, Potter AC. arXiv:1406.0847
  81. Harris AB. 1974. J. Phys. Chem. 7:1671–92 [Google Scholar]
  82. Chayes JT, Chayes L, Fisher DS, Spencer T. 1986. Phys. Rev. Lett. 57:2999–3002 [Google Scholar]
  83. Basko DM, Aleiner IL, Altshuler BL. 2007. Phys. Rev. B 76:052203 [Google Scholar]
  84. Kwasigroch MP, Cooper N. 2014. Phys. Rev. A 90:021605(R) [Google Scholar]
  85. Yao NY, Laumann CR, Gopalakrishnan S, Knap M, Mueller M et al. arXiv:1311.7151
  86. Kagan Yu, Maksimov LA. 1984. Zh. Eksp. Teor. Fiz. 87:348–65 [Google Scholar]
  87. Kagan Yu, Maksimov LA. 1984. Sov. Phys. JETP 60:1201–10 [Google Scholar]
  88. Huveneers F, De Roeck W. arXiv:1308.6263
  89. Grover T, Fisher MPA. arXiv:1307.2288
  90. Schiulaz M, Muller M. 2014. AIP Conf. Proc. 1610:11 [Google Scholar]
  91. Huveneers F, De Roeck W. arXiv:1405.3279
  92. Hickey JM, Genway S, Garrahan JP. arXiv:1405.5780
  93. Castelnovo C, Chamon C, Mudry C, Pujol P. 2005. Ann. Phys. 318:2306–44 [Google Scholar]
  94. Grover T. arXiv:1405.1471
/content/journals/10.1146/annurev-conmatphys-031214-014726
Loading
/content/journals/10.1146/annurev-conmatphys-031214-014726
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error