1932

Abstract

Fluid turbulence is a double-edged sword for the navigation of macroscopic animals, such as birds, insects, and rodents. On the one hand, turbulence enables pheromone communication among mates and the possibility of locating food by their odors from long distances. Molecular diffusion would indeed be unable to spread odors over relevant distances in natural conditions. On the other hand, turbulent flows are hard to predict, and learning effective maneuvers to navigate them is challenging, as we discuss in this review. We first provide a summary of the olfactory organs that sense airborne or surface-bound odors, as well as the computational tasks that animals face when extracting information useful for navigation from an olfactory signal. A compendium of the dynamics of turbulent transport emphasizes those aspects that directly impact animals’ behavior. The state of the art on navigational strategies is discussed, followed by a concluding section dedicated to future challenges in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031720-032754
2022-03-10
2024-07-03
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-031720-032754.html?itemId=/content/journals/10.1146/annurev-conmatphys-031720-032754&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Schneider D. 1964. Annu. Rev. Entomol. 9:103–22
    [Google Scholar]
  2. 2. 
    Rajan R, Clement JP, Bhalla US. 2006. Science 311:666–70
    [Google Scholar]
  3. 3. 
    Khan AG, Sarangi M, Bhalla US. 2012. Nat. Commun. 3:1–10
    [Google Scholar]
  4. 4. 
    Bhattacharyya U, Bhalla US. 2015. eNeuro 2: ENEURO.0102-15.2015
    [Google Scholar]
  5. 5. 
    Gire DH, Kapoor V, Arrighi-Allisan A, Seminara A, Murthy VN. 2016. Curr. Biol. 26:1261–73
    [Google Scholar]
  6. 6. 
    Esquivelzeta Rabell J, Mutlu K, Noutel J, Martin del Olmo P, Haesler S 2017. Curr. Biol. 27:1542–48
    [Google Scholar]
  7. 7. 
    Wachowiak M. 2011. Neuron 71:962–73
    [Google Scholar]
  8. 8. 
    Zhao K, Dalton P, Yang GC, Scherer PW. 2006. Chem. Sens. 31:107–18
    [Google Scholar]
  9. 9. 
    Doorly D, Taylor D, Schroter R. 2008. Respir. Physiol. Neurobiol. 163:100–10
    [Google Scholar]
  10. 10. 
    Craven BA, Paterson EG, Settles GS. 2010. J. R. Soc. Interface 7:933–43
    [Google Scholar]
  11. 11. 
    Mozell MM. 1964. Nature 203:1181–82
    [Google Scholar]
  12. 12. 
    Schoenfeld TA, Cleland TA 2005. Trends Neurosci. 28:620–27
    [Google Scholar]
  13. 13. 
    Scott JW, Sherrill L, Jiang J, Zhao K. 2014. J. Neurosci. 34:2025–36
    [Google Scholar]
  14. 14. 
    Suzuki H. 1975. J. Insect Physiol. 21:831–47
    [Google Scholar]
  15. 15. 
    Draft RW, McGill MR, Kapoor V, Murthy VN. 2018. J. Exp. Biol. 221:jeb185124
    [Google Scholar]
  16. 16. 
    Harkema JR, Carey SA, Wagner JG. 2006. Toxicol. Pathol. 34:252–69
    [Google Scholar]
  17. 17. 
    Pelosi P. 1994. Crit. Rev. Biochem. Mol. Biol. 29:199–228
    [Google Scholar]
  18. 18. 
    Leal WS. 2013. Annu. Rev. Entomol. 58:373–91
    [Google Scholar]
  19. 19. 
    Larter N, Sun J Carlson J. 2016. eLife 5:e20242091103
    [Google Scholar]
  20. 20. 
    Buck L, Axel R 1991. Cell 65:175–87
    [Google Scholar]
  21. 21. 
    Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R 1999. Cell 96:725–36
    [Google Scholar]
  22. 22. 
    Su CY, Menuz K, Carlson J. 2009. Cell 139:45–59
    [Google Scholar]
  23. 23. 
    Kurian SM, Naressi RG, Manoel D, Barwich A-S, Malnic B, Saraiva LR. 2021. Cell Tissue Res. 383:445–56
    [Google Scholar]
  24. 24. 
    Pifferi S, Menini A, Kurahashi T 2010. The Neurobiology of Olfaction A Menini 203–24 Boca Raton, FL: CRC/Taylor & Francis
    [Google Scholar]
  25. 25. 
    Glezer I, Malnic B. 2019. Handb. Clin. Neurol. 164:67–78
    [Google Scholar]
  26. 26. 
    Fleischer J, Pregitzer P, Breer H, Krieger J. 2018. Cell. Mol. Life Sci. 75:485–508
    [Google Scholar]
  27. 27. 
    Reisert J, Zhao H. 2011. J. Gen. Physiol. 138:303–10
    [Google Scholar]
  28. 28. 
    Reddy G, Zak JD, Vergassola M, Murthy VN. 2018. eLife 7:e34958
    [Google Scholar]
  29. 29. 
    Zak JD, Reddy G, Vergassola M, Murthy VN. 2020. Nat. Commun. 11:1–12
    [Google Scholar]
  30. 30. 
    Inagaki S, Iwata R, Iwamoto M, Imai T. 2020. Cell Rep. 31:107814
    [Google Scholar]
  31. 31. 
    Xu L, Li W, Voleti V, Zou DJ, Hillman EM, Firestein S. 2020. Science 368:eaaz5390
    [Google Scholar]
  32. 32. 
    Pfister P, Smith BC, Evans BJ, Brann JH, Trimmer C et al. 2020. Curr. Biol. 30:2574–87
    [Google Scholar]
  33. 33. 
    Singh V, Murphy NR, Balasubramanian V, Mainland JD. 2019. PNAS 116:9598–603
    [Google Scholar]
  34. 34. 
    Cao LH, Jing BY, Yang D, Zeng X, Shen Y et al. 2016. PNAS 113:E902–11
    [Google Scholar]
  35. 35. 
    Nagel KI, Wilson RI. 2011. Nat. Neurosci. 14:208–16
    [Google Scholar]
  36. 36. 
    Gorur-Shandilya S, Demir M, Long J, Clark DA, Emonet T. 2017. eLife 6:e27670
    [Google Scholar]
  37. 37. 
    Malnic B, Hirono J, Sato T, Buck LB. 1999. Cell 96:713–23
    [Google Scholar]
  38. 38. 
    Wilson CD, Serrano GO, Koulakov AA, Rinberg D. 2017. Nat. Commun. 8:1–10
    [Google Scholar]
  39. 39. 
    Holy TE. 2018. Annu. Rev. Neurosci. 41:501–25
    [Google Scholar]
  40. 40. 
    Mafra-Neto A, Cardé RT. 1994. Nature 369:142–44
    [Google Scholar]
  41. 41. 
    Lemon W, Getz W. 1997. J. Exp. Biol. 200:1809–19
    [Google Scholar]
  42. 42. 
    Szyszka P, Gerkin RC, Galizia CG, Smith BH. 2014. PNAS 111:16925–30
    [Google Scholar]
  43. 43. 
    Riffell JA, Shlizerman E, Sanders E, Abrell L, Medina B et al. 2014. Science 344:1515–18
    [Google Scholar]
  44. 44. 
    Geffen MN, Broome BM, Laurent G, Meister M. 2009. Neuron 61:570–86
    [Google Scholar]
  45. 45. 
    Martelli C, Carlson JR, Emonet T. 2013. J. Neurosci. 33:6285–97
    [Google Scholar]
  46. 46. 
    Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A et al. 1996. Cell 87:675–86
    [Google Scholar]
  47. 47. 
    Wilson RI. 2013. Annu. Rev. Neurosci. 36:217–41
    [Google Scholar]
  48. 48. 
    Zhang X, Firestein S. 2002. Nat. Neurosci. 5:124–33
    [Google Scholar]
  49. 49. 
    Brann DH, Datta SR. 2020. Annu. Rev. Neurosci. 43:277–95
    [Google Scholar]
  50. 50. 
    Gollisch T, Meister M. 2010. Neuron 65:150–64
    [Google Scholar]
  51. 51. 
    Baden T, Berens P, Franke K, Rosón MR, Bethge M, Euler T. 2016. Nature 529:345–50
    [Google Scholar]
  52. 52. 
    Modi MN, Shuai Y, Turner GC. 2020. Annu. Rev. Neurosci. 43:465–84
    [Google Scholar]
  53. 53. 
    Chakraborty SD, Sachse S. 2021. Cell Tissue Res. 383:113–23
    [Google Scholar]
  54. 54. 
    Igarashi KM, Ieki N, An M, Yamaguchi Y, Nagayama S et al. 2012. J. Neurosci. 32:7970–85
    [Google Scholar]
  55. 55. 
    Marin AC, Schaefer AT, Ackels T. 2021. Cell Tissue Res. 383:473–83
    [Google Scholar]
  56. 56. 
    Yang HH, Clandinin TR. 2018. Annu. Rev. Vis. Sci. 4:143–63
    [Google Scholar]
  57. 57. 
    Baker KL, Dickinson M, Findley TM, Gire DH, Louis M et al. 2018. J. Neurosci. 38:9383–89
    [Google Scholar]
  58. 58. 
    Riman N, Victor JD, Boie SD, Ermentrout B. 2021. SIAM Rev. 63:100–20
    [Google Scholar]
  59. 59. 
    Catania KC. 2013. Nat. Commun. 4:1–8
    [Google Scholar]
  60. 60. 
    Findley TM, Wyrick DG, Cramer JL, Brown MA, Holcomb B et al. 2021. eLife 10:e58523
    [Google Scholar]
  61. 61. 
    Gumaste A, Coronas-Samano G, Hengenius J, Axman R, Connor E et al. 2020. eNeuro 7: ENEURO.0212-19.2019
    [Google Scholar]
  62. 62. 
    Jackson BJ, Fatima GL, Oh S, Gire DH. 2020. eNeuro 7: ENEURO.0536-19.2020
    [Google Scholar]
  63. 63. 
    Liu A, Papale AE, Hengenius J, Patel K, Ermentrout B, Urban NN. 2020. Front. Neurosci. 14:218
    [Google Scholar]
  64. 64. 
    Park IJ, Hein AM, Bobkov YV, Reidenbach MA, Ache BW, Principe JC. 2016. PLOS Comput. Biol. 12:e1004682
    [Google Scholar]
  65. 65. 
    Rabell JE, Mutlu K, Noutel J, Del Olmo PM, Haesler S. 2017. Curr. Biol. 27:1542–48
    [Google Scholar]
  66. 66. 
    Gaudry Q, Hong EJ, Kain J, de Bivort BL, Wilson RI. 2013. Nature 493:424–28
    [Google Scholar]
  67. 67. 
    Dalal T, Gupta N, Haddad R. 2020. Commun. Biol. 3:1–12
    [Google Scholar]
  68. 68. 
    Rokni D, Hemmelder V, Kapoor V, Murthy VN. 2014. Nat. Neurosci. 17:1225–32
    [Google Scholar]
  69. 69. 
    Haykin S, Chen Z. 2005. Neural Comput. 17:1875–902
    [Google Scholar]
  70. 70. 
    Wilson DA. 1998. J. Neurophysiol. 79:1425–40
    [Google Scholar]
  71. 71. 
    Shen Y, Dasgupta S, Navlakha S. 2020. PNAS 117:12402–10
    [Google Scholar]
  72. 72. 
    Hopfield J. 1991. PNAS 88:6462–66
    [Google Scholar]
  73. 73. 
    Lawless HT. 1997. Tasting and Smelling GK Beauchamp, L Baroshuk 125–74 San Diego, CA: Academic
    [Google Scholar]
  74. 74. 
    Thomas-Danguin T, Sinding C, Romagny S, El Mountassir F, Atanasova B et al. 2014. Front. Psychol. 5:504
    [Google Scholar]
  75. 75. 
    Lin DY, Shea SD, Katz LC. 2006. Neuron 50:937–49
    [Google Scholar]
  76. 76. 
    Soucy ER, Albeanu DF, Fantana AL, Murthy VN, Meister M. 2009. Nat. Neurosci. 12:210–20
    [Google Scholar]
  77. 77. 
    Vincis R, Gschwend O, Bhaukaurally K, Beroud J, Carleton A. 2012. Nat. Neurosci. 15:537–39
    [Google Scholar]
  78. 78. 
    Oka Y, Omura M, Kataoka H, Touhara K. 2004. EMBO J. 23:120–26
    [Google Scholar]
  79. 79. 
    Wilson DA, Stevenson RJ, Stevenson RJ, Stevenson RJ. 2006. Learning to Smell: Olfactory Perception from Neurobiology to Behavior. Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  80. 80. 
    Celani A, Villermaux E, Vergassola M. 2014. Phys. Rev. X 4:041015
    [Google Scholar]
  81. 81. 
    Yee E, Kosteniuk P, Chandler G, Biltoft C, Bowers J. 1993. Boundary-Layer Meteorol. 65:69–109
    [Google Scholar]
  82. 82. 
    Acheson DJ. 1991. J. Acoust. Soc. Am. 89:3020
    [Google Scholar]
  83. 83. 
    Aref H. 1984. J. Fluid Mech. 143:1–21
    [Google Scholar]
  84. 84. 
    Villermaux E. 2019. Annu. Rev. Fluid Mech. 51:245–73
    [Google Scholar]
  85. 85. 
    Taylor GI. 1922. Proc. Lond. Math. Soc. 2:196–212
    [Google Scholar]
  86. 86. 
    Vallero DA. 2014. Fundamentals of Air Pollution San Diego, CA: Academic
    [Google Scholar]
  87. 87. 
    Erskine A, Ackels T, Dasgupta D, Fukunaga I, Schaefer AT. 2021. Nature 593:558–63
    [Google Scholar]
  88. 88. 
    Sutton O. 1953. Micrometeorology New York: McGraw-Hill Book Co.
    [Google Scholar]
  89. 89. 
    Elkinton J, Cardé R, Mason C. 1984. J. Chem. Ecol. 10:1081–108
    [Google Scholar]
  90. 90. 
    Murlis J, Willis MA, Cardé RT. 2000. Physiol. Entomol. 25:211–22
    [Google Scholar]
  91. 91. 
    Kree M, Duplat J, Villermaux E. 2013. Phys. Fluids 25:091103 https://doi.org/10.1063/1.4820015
    [Crossref] [Google Scholar]
  92. 92. 
    Frisch U. 1995. Turbulence: The Legacy of A. N. Kolmogorov Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  93. 93. 
    Metzler R, Klafter J. 2000. Phys. Rep. 339:1–77
    [Google Scholar]
  94. 94. 
    Villermaux E, Innocenti C. 1999. J. Fluid Mech. 393:123–47
    [Google Scholar]
  95. 95. 
    McMeniman C, Corfas R, Matthews B, Ritchie S, Vosshall L 2014. Cell 156:1060–71
    [Google Scholar]
  96. 96. 
    van Breugel F, Riffell J, Fairhall A, Dickinson M. 2015. Curr. Biol. 25:2123–29
    [Google Scholar]
  97. 97. 
    Cardé RT. 2015. Curr. Biol. 25:R793–95
    [Google Scholar]
  98. 98. 
    Schreck C, Gouck H, Posey K. 1972. Mosquito News 32:496–501
    [Google Scholar]
  99. 99. 
    Murlis J, Elkinton JS, Carde RT. 1992. Annu. Rev. Entomol. 37:505–32
    [Google Scholar]
  100. 100. 
    Shraiman BI, Siggia ED. 2000. Nature 405:639–46
    [Google Scholar]
  101. 101. 
    Falkovich G, Gawedzki K, Vergassola M. 2001. Rev. Mod. Phys. 73:912–75
    [Google Scholar]
  102. 102. 
    Toschi F, Bodenschatz E. 2009. Annu. Rev. Fluid Mech. 41:375–404
    [Google Scholar]
  103. 103. 
    Maxey MR. 1987. J. Fluid Mech. 174:441–65
    [Google Scholar]
  104. 104. 
    Balkovsky E, Falkovich G, Fouxon A. 2001. Phys. Rev. Lett. 86:2790–93
    [Google Scholar]
  105. 105. 
    Yee E, Chan R, Kosteniuk P, Chandler G, Biltoft C, Bowers J. 1995. Boundary-Layer Meteorol. 73:53–90
    [Google Scholar]
  106. 106. 
    Webb B, Consilvio T. 2001. Biorobotics Cambridge, MA: MIT Press
    [Google Scholar]
  107. 107. 
    Berg HC. 2008. E. coli in Motion New York: Springer
    [Google Scholar]
  108. 108. 
    Dusenbery DB. 1997. PNAS 94:10949–54
    [Google Scholar]
  109. 109. 
    Loomis W. 1975. Dictyostelium Discoideum: A Developmental System New York: Academic
    [Google Scholar]
  110. 110. 
    Levine H, Rappel W-J. 2013. Phys. Today 66:24
    [Google Scholar]
  111. 111. 
    Pierce-Shimomura JT, Morse TM, Lockery SR. 1999. J. Neurosci. 19:9557–69
    [Google Scholar]
  112. 112. 
    Louis M, Huber T, Benton R, Sakmar TP, Vosshall LB. 2008. Nat. Neurosci. 11:187–99
    [Google Scholar]
  113. 113. 
    Iino Y, Yoshida K. 2009. J. Neurosci. 29:5370–80
    [Google Scholar]
  114. 114. 
    Gomez-Marin A, Duistermars B, Frye MA, Louis M. 2010. Front. Cell. Neurosci. 4:6
    [Google Scholar]
  115. 115. 
    Gepner R, Skanata MM, Bernat NM, Kaplow M, Gershow M. 2015. eLife 4:e06229
    [Google Scholar]
  116. 116. 
    Hernandez-Nunez L, Belina J, Klein M, Si G, Claus L et al. 2015. eLife 4:e06225
    [Google Scholar]
  117. 117. 
    Schulze A, Gomez-Marin A, Rajendran VG, Lott G, Musy M et al. 2015. eLife 4:e06694
    [Google Scholar]
  118. 118. 
    Wu Y, Chen K, Ye Y, Zhang T, Zhou W. 2020. PNAS 117:16065–71
    [Google Scholar]
  119. 119. 
    Stockham RA, Slavin DL, Kift W. 2004. Forens. Sci. Commun. 6:1–12
    [Google Scholar]
  120. 120. 
    Thesen A, Steen JB, Doving K. 1993. J. Exp. Biol. 180:247–51
    [Google Scholar]
  121. 121. 
    Hepper PG, Wells DL. 2005. Chem. Sens. 30:291–98
    [Google Scholar]
  122. 122. 
    Jinn J, Connor EG, Jacobs LF. 2020. Chem. Sens. 45:625–34
    [Google Scholar]
  123. 123. 
    Reddy G, Shraiman BI, Vergassola M. 2022. 1191e2107431118
  124. 124. 
    Vickers NJ. 2000. Biol. Bull. 198:203–12
    [Google Scholar]
  125. 125. 
    Vickers NJ. 2006. Chem. Sens. 31:155–66
    [Google Scholar]
  126. 126. 
    Cardé RT, Willis MA. 2008. J. Chem. Ecol. 34:854–66
    [Google Scholar]
  127. 127. 
    David C, Kennedy J, Ludlow A. 1983. Nature 303:804–6
    [Google Scholar]
  128. 128. 
    Allison JD, Cardé RT 2016. Pheromone Communication in Moths: Evolution, Behavior, and Application Oakland, CA: Univ. Calif. Press
    [Google Scholar]
  129. 129. 
    Cardé RT 2016. Pheromone Communication in Moths JD Allison, RT Cardé 173–89 Oakland, CA: Univ. Calif. Press
    [Google Scholar]
  130. 130. 
    Kennedy JS, Marsh D. 1974. Science 184:999–1001
    [Google Scholar]
  131. 131. 
    Vickers N, Baker TC. 1996. J. Comp. Physiol. A 178:831–47
    [Google Scholar]
  132. 132. 
    Budick SA, Dickinson MH. 2006. J. Exp. Biol. 209:3001–17
    [Google Scholar]
  133. 133. 
    van Breugel F, Dickinson MH. 2014. Curr. Biol. 24:274–86
    [Google Scholar]
  134. 134. 
    Willis M, Avondet J. 2005. J. Exp. Biol. 208:721–35
    [Google Scholar]
  135. 135. 
    Lockey JK, Willis MA. 2015. J. Exp. Biol. 218:2156–65
    [Google Scholar]
  136. 136. 
    Álvarez-Salvado E, Licata AM, Connor EG, McHugh MK, King BM et al. 2018. eLife 7:e37815
    [Google Scholar]
  137. 137. 
    Demir M, Kadakia N, Anderson HD, Clark DA, Emonet T. 2020. eLife 9:e57524
    [Google Scholar]
  138. 138. 
    Duistermars BJ, Frye MA. 2010. Commun. Integr. Biol. 3:60–63
    [Google Scholar]
  139. 139. 
    Saxena N, Natesan D, Sane SP. 2018. J. Exp. Biol. 221:jeb172023
    [Google Scholar]
  140. 140. 
    Vergassola M, Villermaux E, Shraiman BI. 2007. Nature 445:406–9
    [Google Scholar]
  141. 141. 
    Moraud E, Martinez D. 2010. Front. Neurorobot. 4:1
    [Google Scholar]
  142. 142. 
    Masson JB. 2013. PNAS 110:11261–66
    [Google Scholar]
  143. 143. 
    Masson JB, Bailly-Bechet M, Vergassola M. 2009. J. Phys. A: Math. Theor. 42:434009
    [Google Scholar]
  144. 144. 
    Karpas E, Shklarsh A, Schneidman E. 2017. PNAS 114:5589–94
    [Google Scholar]
  145. 145. 
    Mejia-Monasterio C, Oshanin G, Schehr G. 2011. J. Stat. Mech. 2011:P06022
    [Google Scholar]
  146. 146. 
    Bell A, Sejnowski T. 1995. Neural Comput. 7:1129–59
    [Google Scholar]
  147. 147. 
    Tkacik G, Walczak A. 2011. J. Phys.: Condens. Matter 23:153102
    [Google Scholar]
  148. 148. 
    Renninger LW, Verghese P, Coughlan J. 2007. J. Vis. 7:6
    [Google Scholar]
  149. 149. 
    Najemnik J, Geisler W. 2008. J. Vis. 8:1–14
    [Google Scholar]
  150. 150. 
    Barbieri C, Cocco S, Monasson R. 2011. Europhys. Lett. 94:20005
    [Google Scholar]
  151. 151. 
    Reddy G, Celani A, Vergassola M. 2016. J. Stat. Phys. 163:1454–76
    [Google Scholar]
  152. 152. 
    Pang R, van Breugel F, Dickinson M, Riffell J, Fairhall A. 2018. PLOS Comput. Biol. 14:e1005969
    [Google Scholar]
  153. 153. 
    Hernandez-Reyes C, Fukushima S, Shigaki S, Kurabayashi D, Sakurai T et al. 2021. Front. Comput. Neurosci. 15:629380
    [Google Scholar]
  154. 154. 
    Calhoun A, Chalasani S, Sharpee T. 2014. eLife 3:e04220
    [Google Scholar]
  155. 155. 
    Kaelbling L, Littman M, Cassandra A 1998. Artif. Intel. 101:99134
    [Google Scholar]
  156. 156. 
    Sutton R, Barto A. 2018. Reinforcement Learning: An Introduction Cambridge, MA: MIT Press. , 2nd ed..
    [Google Scholar]
  157. 157. 
    Bellman R. 2003. Dynamic Programming Minneola, NY: Dover
    [Google Scholar]
  158. 158. 
    Shani G, Pineau J, Kaplow R. 2013. Auton. Agents Multi-Agent Syst. 27:1–51
    [Google Scholar]
  159. 159. 
    Boie SD, Connor EG, McHugh M, Nagel KI, Ermentrout GB et al. 2018. PLOS Comput. Biol. 14:e1006275
    [Google Scholar]
  160. 160. 
    Victor JD, Boie SD, Connor EG, Crimaldi JP, Ermentrout GB, Nagel KI. 2019. J. Neurosci. 39:3713–27
    [Google Scholar]
  161. 161. 
    Rapp H, Nawrot MP. 2020. PNAS 117:28412–21
    [Google Scholar]
  162. 162. 
    Crimaldi J, Koseff J. 2001. Exp. Fluids 31:90–102
    [Google Scholar]
  163. 163. 
    Connor EG, McHugh MK, Crimaldi JP. 2018. Exp. Fluids 59:1–11
    [Google Scholar]
  164. 164. 
    Mylne KR, Mason P. 1991. Q. J. R. Meteorol. Soc. 117:177–206
    [Google Scholar]
  165. 165. 
    Fadamiro H, Cossé A, Baker TC. 1999. J. Comp. Physiol. A 185:131–41
    [Google Scholar]
  166. 166. 
    Webb B, Wystrach A. 2016. Curr. Opin. Insect Sci. 15:27–39
    [Google Scholar]
  167. 167. 
    Lever C, Burton S, O'Keefe J. 2006. Rev. Neurosci. 17:111–33
    [Google Scholar]
  168. 168. 
    Szyszka P, Stierle JS. 2014. Prog. Brain Res. 208:63–85
    [Google Scholar]
  169. 169. 
    Mathis A, Rokni D, Kapoor V, Bethge M, Murthy V. 2016. Neuron 91:1110–23
    [Google Scholar]
  170. 170. 
    Levine S, Finn C, Darrell T, Abbeel P 2016. J. Mach. Learn. Res. 17:1334–73
    [Google Scholar]
  171. 171. 
    Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J et al. 2015. Nature 518:529–33
    [Google Scholar]
  172. 172. 
    Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A et al. 2017. Nature 550:354–59
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031720-032754
Loading
/content/journals/10.1146/annurev-conmatphys-031720-032754
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error