1932

Abstract

A growing human population is a significant issue in food security owing to the limited land and resources available for agricultural food production. To solve these problems, sustainable food manufacturing processes and the development of alternative foods and ingredients are needed. Metabolic engineering and synthetic biology can help solve the food security issue and satisfy the demand for alternative food production. Bioproduction of food ingredients by microbial fermentation is a promising method to replace current manufacturing processes, such as extraction from natural materials and chemical synthesis, with more ecofriendly and sustainable operations. This review highlights successful examples of bioproduction for food additives by engineered microorganisms, with an emphasis on colorants and flavors that are extensively used in the food industry. Recent strain engineering developments and fermentation strategies for producing selected food colorants and flavors are introduced with discussions on the current status and future perspectives.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-052720-012228
2022-03-25
2025-01-10
The full text of this item is not currently available.

Literature Cited

  1. Andersen-Ranberg J, Kongstad KT, Nafisi M, Staerk D, Okkels FT et al. 2017. Synthesis of C-glucosylated octaketide anthraquinones in Nicotiana benthamiana by using a multispecies-based biosynthetic pathway. ChemBioChem 18:1893–97
    [Google Scholar]
  2. Anwised P, Jangpromma N, Temsiripong T, Patramanon R, Daduang S et al. 2016. Cloning, expression, and characterization of Siamese crocodile (Crocodylus siamensis) hemoglobin from Escherichia coli and Pichia pastoris. Protein J. 35:256–68
    [Google Scholar]
  3. Arya SS, Rookes JE, Cahill DM, Lenka SK. 2021. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. Adv. Tradit. Med. 21:1–17
    [Google Scholar]
  4. Atalah J, Blamey L, Munoz-Ibacache S, Gutierrez F, Urzua M et al. 2020. Isolation and characterization of violacein from an Antarctic Iodobacter: a non-pathogenic psychrotolerant microorganism. Extremophiles 24:43–52
    [Google Scholar]
  5. Banerjee D, Eng T, Lau AK, Sasaki Y, Wang B et al. 2020. Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. Nat. Commun. 11:5385
    [Google Scholar]
  6. Bouckenooghe T, Remacle C, Reusens B 2006. Is taurine a functional nutrient?. Curr. Opin. Clin. Nutr. Metab. Care 9:728–33
    [Google Scholar]
  7. Brachmann AO, Kirchner F, Kegler C, Kinski SC, Schmitt I, Bode HB. 2012. Triggering the production of the cryptic blue pigment indigoidine from Photorhabdus luminescens. J. Biotechnol. 157:96–99
    [Google Scholar]
  8. Breitenbach J, Pollmann H, Sandmann G. 2019. Genetic modification of the carotenoid pathway in the red yeast Xanthophyllomyces dendrorhous: engineering of a high-yield zeaxanthin strain. J. Biotechnol. 289:112–17
    [Google Scholar]
  9. Brochado AR, Matos C, Moller BL, Hansen J, Mortensen UH, Patil KR. 2010. Improved vanillin production in baker's yeast through in silico design. Microb. Cell Fact. 9:84
    [Google Scholar]
  10. Bulychev EY, Rubanyak NY. 2013. Commercial synthesis of 2-aminoethanesulfonic acid (taurine). Pharm. Chem. J. 46:740–41
    [Google Scholar]
  11. Carter OA, Peters RJ, Croteau R. 2003. Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry 64:425–33
    [Google Scholar]
  12. Cheng S, Liu X, Jiang G, Wu J, Zhang JL et al. 2019. Orthogonal engineering of biosynthetic pathway for efficient production of limonene in Saccharomyces cerevisiae. ACS Synth. Biol. 8:968–75
    [Google Scholar]
  13. Choi SI, Park J, Kim P 2017. Heme derived from Corynebacterium glutamicum: a potential iron additive for swine and an electron carrier additive for lactic acid bacterial culture. J. Microbiol. Biotechnol 27:500–6
    [Google Scholar]
  14. Choi SY, Yoon KH, Lee JI, Mitchell RJ 2015. Violacein: properties and production of a versatile bacterial pigment. Biomed. Res. Int. 2015:465056
    [Google Scholar]
  15. Chu MK, Lin LF, Twu CS, Lin RH, Lin YC et al. 2010. Unique features of Erwinia chrysanthemi (Dickeya dadantii) RA3B genes involved in the blue indigoidine production. Microbiol. Res. 165:483–95
    [Google Scholar]
  16. Clark SM, Vaitheeswaran V, Ambrose SJ, Purves RW, Page JE. 2013. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus). BMC Plant Biol. 13:12
    [Google Scholar]
  17. Coussement P, Bauwens D, Maertens J, De Mey M. 2017. Direct combinatorial pathway optimization. ACS Synth. Biol. 6:224–32
    [Google Scholar]
  18. Cui Y, He J, Yang KL, Zhou K 2020. Production of isopropyl and butyl esters by Clostridium mono-culture and co-culture. J. Ind. Microbiol. Biotechnol. 47:543–50
    [Google Scholar]
  19. Cummings M, Peters AD, Whitehead GFS, Menon BRK, Micklefield J et al. 2019. Assembling a plug-and-play production line for combinatorial biosynthesis of aromatic polyketides in Escherichia coli. PLOS Biol. 17:e3000347
    [Google Scholar]
  20. Dapson RW. 2007. The history, chemistry and modes of action of carmine and related dyes. Biotech. Histochem. 82:173–87
    [Google Scholar]
  21. Denby CM, Li RA, Vu VT, Costello Z, Lin W et al. 2018. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 9:965
    [Google Scholar]
  22. Duran N, Justo GZ, Ferreira CV, Melo PS, Cordi L, Martins D. 2007. Violacein: properties and biological activities. Biotechnol. Appl. Biochem. 48:127–33
    [Google Scholar]
  23. Duran N, Menck CF. 2001. Chromobacterium violaceum: a review of pharmacological and industiral perspectives. Crit. Rev. Microbiol. 27:201–22
    [Google Scholar]
  24. English MA, Gayet RV, Collins JJ. 2021. Designing biological circuits: synthetic biology within the operon model and beyond. Annu. Rev. Biochem. 90:221–44
    [Google Scholar]
  25. Eyres G, Dufour J-P. 2009. Hop essential oil: analysis, chemical composition and odor characteristics. Beer in Health and Disease Prevention VR Preedy 239–54 San Diego: Acad. Press
    [Google Scholar]
  26. Fang MY, Zhang C, Yang S, Cui JY, Jiang PX et al. 2015. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microb. Cell Fact. 14:8
    [Google Scholar]
  27. Fleige C, Meyer F, Steinbuchel A 2016. Metabolic engineering of the actinomycete Amycolatopsis sp. strain ATCC 39116 towards enhanced production of natural vanillin. Appl. Environ. Microbiol. 82:3410–19
    [Google Scholar]
  28. FAO (Food Agric. Organ. U.N.) 2017. The Future of Food and Agriculture: Trends and Challenges Rome: FAO
    [Google Scholar]
  29. Frandsen RJN, Khorsand-Jamal P, Kongstad KT, Nafisi M, Kannangara RM et al. 2018. Heterologous production of the widely used natural food colorant carminic acid in Aspergillus nidulans. Sci. Rep. 8:12853
    [Google Scholar]
  30. Fraser R, Davis SC, Brown PO 2017. Secretion of heme-containing polypeptides. US Patent US20170342132A1
    [Google Scholar]
  31. Fraser RZ, Shitut M, Agrawal P, Mendes O, Klapholz S. 2018. Safety evaluation of soy leghemoglobin protein preparation derived from Pichia pastoris, intended for use as a flavor catalyst in plant-based meat. Int. J. Toxicol. 37:241–62
    [Google Scholar]
  32. Gerber PJ, FAO. 2013. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities Rome: FAO
    [Google Scholar]
  33. Ghiffary MR, Prabowo CPS, Sharma K, Yan Y, Lee SY, Kim HU 2021. High-level production of the natural blue pigment indigoidine from metabolically engineered Corynebacterium glutamicum for sustainable fabric dyes. ACS Sustain. Chem. Eng. 9:6613–22
    [Google Scholar]
  34. Gromek SM, Suria AM, Fullmer MS, Garcia JL, Gogarten JP et al. 2016. Leisingera sp. JC1, a bacterial isolate from Hawaiian bobtail squid eggs, produces indigoidine and differentially inhibits vibrios. Front. Microbiol. 7:1342
    [Google Scholar]
  35. Gu Y, Ma J, Zhu Y, Ding X, Xu P. 2020. Engineering Yarrowia lipolytica as a chassis for de novo synthesis of five aromatic-derived natural products and chemicals. ACS Synth. Biol. 9:2096–106
    [Google Scholar]
  36. Guo X, Shen H, Liu Y, Wang Q, Wang X et al. 2019. Enabling heterologous synthesis of lupulones in the yeast Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 188:787–97
    [Google Scholar]
  37. Hakvag S, Fjaervik E, Klinkenberg G, Borgos SE, Josefsen KD et al. 2009. Violacein-producing Collimonas sp. from the sea surface microlayer of coastal waters in Trondelag, Norway. Mar. Drugs 7:576–88
    [Google Scholar]
  38. Hansen EH, Moller BL, Kock GR, Bunner CM, Kristensen C et al. 2009. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Appl. Environ. Microbiol. 75:2765–74
    [Google Scholar]
  39. Harnois T, Rousselot M, Rogniaux H, Zal F. 2009. High-level production of recombinant Arenicola marina globin chains in Escherichia coli: a new generation of blood substitute. Artif. Cells Blood. Substit. Immobil. Biotechnol. 37:106–16
    [Google Scholar]
  40. Honjoh K, Matsuura K, Machida T, Nishi K, Nakao M et al. 2010. Enhancement of menadione stress tolerance in yeast by accumulation of hypotaurine and taurine: co-expression of cDNA clones, from Cyprinus carpio, for cysteine dioxygenase and cysteine sulfinate decarboxylase in Saccharomyces cerevisiae. Amino Acids 38:1173–83
    [Google Scholar]
  41. Ismail I, Hwang YH, Joo ST. 2020. Meat analog as future food: a review. J. Anim. Sci. Technol. 62:111–20
    [Google Scholar]
  42. Jiang PX, Wang HS, Zhang C, Lou K, Xing XH 2010. Reconstruction of the violacein biosynthetic pathway from Duganella sp. B2 in different heterologous hosts. Appl. Microbiol. Biotechnol. 86:1077–88
    [Google Scholar]
  43. Joo YC, Ko YJ, You SK, Shin SK, Hyeon JE et al. 2018. Creating a new pathway in Corynebacterium glutamicum for the production of taurine as a food additive. J. Agric. Food Chem. 66:13454–63
    [Google Scholar]
  44. Kallscheuer N. 2018. Engineered microorganisms for the production of food additives approved by the European Union: a systematic analysis. Front. Microbiol. 9:1746
    [Google Scholar]
  45. Kaur B, Chakraborty D. 2013. Biotechnological and molecular approaches for vanillin production: a review. Appl. Biochem. Biotechnol. 169:1353–72
    [Google Scholar]
  46. Kavscek M, Strazar M, Curk T, Natter K, Petrovic U. 2015. Yeast as a cell factory: current state and perspectives. Microb. Cell Fact. 14:94
    [Google Scholar]
  47. Khalil AS, Collins JJ. 2010. Synthetic biology: applications come of age. Nat. Rev. Genet. 11:367–79
    [Google Scholar]
  48. Kim S-W, Kim J-B, Ryu J-M, Jung J-K, Kim J-H 2009. High-level production of lycopene in metabolically engineered E. coli. Process Biochem 44:899–905
    [Google Scholar]
  49. Kim YS, Lee JH, Kim NH, Yeom SJ, Kim SW, Oh DK 2011. Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 90:489–97
    [Google Scholar]
  50. Ko YJ, Kim M, You SK, Shin SK, Chang J et al. 2021. Animal-free heme production for artificial meat in Corynebacterium glutamicum via systems metabolic and membrane engineering. Metab. Eng. 66:217–28
    [Google Scholar]
  51. Kunjapur AM, Tarasova Y, Prather KL. 2014. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. J. Am. Chem. Soc. 136:11644–54
    [Google Scholar]
  52. Kutyna DR, Borneman AR. 2018. Heterologous production of flavour and aroma compounds in Saccharomyces cerevisiae. Genes 9:7326
    [Google Scholar]
  53. Kwon OH, Kim S, Hahm DH, Lee SY, Kim P 2009. Potential application of the recombinant Escherichia coli-synthesized heme as a bioavailable iron source. J. Microbiol. Biotechnol. 19:604–9
    [Google Scholar]
  54. Kwon SJ, de Boer AL, Petri R, Schmidt-Dannert C. 2003. High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl. Environ. Microbiol. 69:4875–83
    [Google Scholar]
  55. Lee MJ, Kim HJ, Lee JY, Kwon AS, Jun SY et al. 2013. Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli. J. Microbiol. Biotechnol. 23:668–73
    [Google Scholar]
  56. Li J, Zhu K, Miao L, Rong L, Zhao Y et al. 2021. Simultaneous improvement of limonene production and tolerance in Yarrowia lipolytica through tolerance engineering and evolutionary engineering. ACS Synth. Biol. 10:884–96
    [Google Scholar]
  57. Li K, Frost JW 1998. Synthesis of vanillin from glucose. J. Am. Chem. Soc. 120:10545–46
    [Google Scholar]
  58. Li M, Xia Q, Zhang H, Zhang R, Yang J. 2020. Metabolic engineering of different microbial hosts for lycopene production. J. Agric. Food Chem. 68:4814104–22
    [Google Scholar]
  59. Liu L, Martinez JL, Liu Z, Petranovic D, Nielsen J 2014. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae. Metab. Eng. 21:9–16
    [Google Scholar]
  60. Lv X, Gu J, Wang F, Xie W, Liu M et al. 2016. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering. Biotechnol. Bioeng. 113:2661–69
    [Google Scholar]
  61. Ma T, Shi B, Ye Z, Li X, Liu M et al. 2019. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab. Eng. 52:134–42
    [Google Scholar]
  62. Mata-Gomez LC, Montanez JC, Mendez-Zavala A, Aguilar CN. 2014. Biotechnological production of carotenoids by yeasts: an overview. Microb. Cell Fact. 13:12
    [Google Scholar]
  63. Matthäus F, Ketelhot M, Gatter M, Barth G. 2014. Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 80:1660–69
    [Google Scholar]
  64. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR et al. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:Pt. 123703–11
    [Google Scholar]
  65. Mitchell LA, Chuang J, Agmon N, Khunsriraksakul C, Phillips NA et al. 2015. Versatile genetic assembly system (VEGAS) to assemble pathways for expression in S. cerevisiae. Nucleic Acids Res. 43:6620–30
    [Google Scholar]
  66. Murley T, Chambers EIV. 2019. The influence of colorants, flavorants and product identity on perceptions of naturalness. Foods 8:8317
    [Google Scholar]
  67. Myeong NR, Seong HJ, Kim HJ, Sul WJ 2016. Complete genome sequence of antibiotic and anticancer agent violacein producing Massilia sp. strain NR 4–1. J. Biotechnol. 223:36–37
    [Google Scholar]
  68. Nagai K, Perutz MF, Poyart C. 1985. Oxygen binding properties of human mutant hemoglobins synthesized in Escherichia coli. PNAS 82:7252–55
    [Google Scholar]
  69. Nevoigt E. 2008. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Molecul. Biol. Rev. 72:379–412
    [Google Scholar]
  70. Ni J, Tao F, Du H, Xu P. 2015. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources. Sci. Rep. 5:13670
    [Google Scholar]
  71. Ni J, Wu YT, Tao F, Peng Y, Xu P. 2018. A coenzyme-free biocatalyst for the value-added utilization of lignin-derived aromatics. J. Am. Chem. Soc. 140:16001–5
    [Google Scholar]
  72. Noh HJ, Woo JE, Lee SY, Jang YS 2018. Metabolic engineering of Clostridium acetobutylicum for the production of butyl butyrate. Appl. Microbiol. Biotechnol. 102:8319–27
    [Google Scholar]
  73. Oh EJ, Jin Y-S, Seo J-H. 2018. Microbial metabolic engineering for production of food ingredients. Emerging Areas in Bioengineering HN Chang 359–72 Hoboken, NJ: Wiley
    [Google Scholar]
  74. Pang Y, Zhao Y, Li S, Zhao Y, Li J et al. 2019. Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil. Biotechnol. Biofuels 12:241
    [Google Scholar]
  75. Pantanella F, Berlutti F, Passariello C, Sarli S, Morea C, Schippa S. 2007. Violacein and biofilm production in Janthinobacterium lividum. J. Appl. Microbiol. 102:992–99
    [Google Scholar]
  76. Park H, Park S, Yang YH, Choi KY. 2021. Microbial synthesis of violacein pigment and its potential applications. Crit. Rev. Biotechnol. 41:6879–901
    [Google Scholar]
  77. Pollmann H, Breitenbach J, Sandmann G. 2017. Engineering of the carotenoid pathway in Xanthophyllomyces dendrorhous leading to the synthesis of zeaxanthin. Appl. Microbiol. Biotechnol. 101:103–11
    [Google Scholar]
  78. Rantasalo A, Kuivanen J, Penttila M, Jantti J, Mojzita D 2018. Synthetic toolkit for complex genetic circuit engineering in Saccharomyces cerevisiae. ACS Synth. Biol. 7:1573–87
    [Google Scholar]
  79. Rodriguez-Saiz M, de la Fuente JL, Barredo JL. 2010. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl. Microbiol. Biotechnol. 88:645–58
    [Google Scholar]
  80. Roell MS, Zurbriggen MD. 2020. The impact of synthetic biology for future agriculture and nutrition. Curr. Opin. Biotechnol. 61:102–9
    [Google Scholar]
  81. Rolf J, Julsing MK, Rosenthal K, Lutz S. 2020. A gram-scale limonene production process with engineered Escherichia coli. Molecules 25:81881
    [Google Scholar]
  82. Schaffer SW, Azuma J, Mozaffari M 2009. Role of antioxidant activity of taurine in diabetes. Can. J. Physiol. Pharmacol. 87:91–99
    [Google Scholar]
  83. Schlichtherle-Cerny H, Grosch W. 1998. Evaluation of taste compounds of stewed beef juice. Z. Lebensm. Forsch. A 207:369–76
    [Google Scholar]
  84. Schwartz C, Frogue K, Misa J, Wheeldon I 2017. Host and pathway engineering for enhanced lycopene biosynthesis in Yarrowia lipolytica. Front. Microbiol. 8:2233
    [Google Scholar]
  85. Sen T, Barrow CJ, Deshmukh SK. 2019. Microbial pigments in the food industry: challenges and the way forward. Front. Nutr. 6:7
    [Google Scholar]
  86. Seo SO, Wang Y, Lu T, Jin YS, Blaschek HP 2017. Characterization of a Clostridium beijerinckii spo0A mutant and its application for butyl butyrate production. Biotechnol. Bioeng. 114:106–12
    [Google Scholar]
  87. Shankar S, Hoyt MA. 2019. Expression constructs and methods of genetically engineering methylotrophic yeast US Patent US10273492B2
    [Google Scholar]
  88. Shen TJ, Ho NT, Zou M, Sun DP, Cottam PF et al. 1997. Production of human normal adult and fetal hemoglobins in Escherichia coli. Protein Eng. 10:1085–97
    [Google Scholar]
  89. Shi B, Ma T, Ye Z, Li X, Huang Y et al. 2019. Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction. J. Agric. Food Chem. 67:11148–57
    [Google Scholar]
  90. Stephanopoulos G. 2012. Synthetic biology and metabolic engineering. ACS Synth. Biol. 1:514–25
    [Google Scholar]
  91. Story EN, Kopec RE, Schwartz SJ, Harris GK. 2010. An update on the health effects of tomato lycopene. Annu. Rev. Food Sci. Technol. 1:189–210
    [Google Scholar]
  92. Sun H, Zhao D, Xiong B, Zhang C, Bi C. 2016. Engineering Corynebacterium glutamicum for violacein hyper production. Microb. Cell Fact. 15:148
    [Google Scholar]
  93. Sun L, Atkinson CA, Lee Y-G, Jin Y-S. 2020. High-level β-carotene production from xylose by engineered Saccharomyces cerevisiae without overexpression of a truncated HMG1 (tHMG1). Biotechnol. Bioeng. 117:3522–32
    [Google Scholar]
  94. Sun L, Xin F, Alper HS. 2021. Bio-synthesis of food additives and colorants: a growing trend in future food. Biotechnol. Adv. 47:107694
    [Google Scholar]
  95. Sun T, Miao L, Li Q, Dai G, Lu F et al. 2014. Production of lycopene by metabolically-engineered Escherichia coli. Biotechnol. Lett. 36:1515–22
    [Google Scholar]
  96. Takahashi H, Kumagai T, Kitani K, Mori M, Matoba Y, Sugiyama M. 2007. Cloning and characterization of a Streptomyces single module type non-ribosomal peptide synthetase catalyzing a blue pigment synthesis. J. Biol. Chem. 282:9073–81
    [Google Scholar]
  97. Takeo N, Nakamura M, Nakayama S, Okamoto O, Sugimoto N et al. 2018. Cochineal dye-induced immediate allergy: review of Japanese cases and proposed new diagnostic chart. Allergol. Int. 67:496–505
    [Google Scholar]
  98. Tamang JP, Cotter PD, Endo A, Han NS, Kort R et al. 2020. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 19:184–217
    [Google Scholar]
  99. Ti TY, Tan WC, Chong AP, Lee EH. 1993. Nonfatal and fatal infections caused by Chromobacterium violaceum. Clin. Infect. Dis. 17:505–7
    [Google Scholar]
  100. Tong Y, Zhou J, Zhang L, Xu P. 2021. A golden-gate based cloning toolkit to build violacein pathway libraries in Yarrowia lipolytica. ACS Synth. Biol. 10:115–24
    [Google Scholar]
  101. United Nations 2019. World population prospects 2019: highlights Rep. UN Dep. Econ. Soc. Inf. Policy Anal. New York: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf
    [Google Scholar]
  102. Van Cleemput M, Cattoor K, De Bosscher K, Haegeman G, De Keukeleire D, Heyerick A. 2009. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J. Nat. Prod. 72:1220–30
    [Google Scholar]
  103. van den Berg C, Heeres AS, van der Wielen LA, Straathof AJ. 2013. Simultaneous clostridial fermentation, lipase-catalyzed esterification, and ester extraction to enrich diesel with butyl butyrate. Biotechnol. Bioeng. 110:137–42
    [Google Scholar]
  104. Wagenbach M, O'Rourke K, Vitez L, Wieczorek A, Hoffman S et al. 1991. Synthesis of wild type and mutant human hemoglobins in Saccharomyces cerevisiae. Biotechnology 9:57–61
    [Google Scholar]
  105. Wang H, Jiang P, Lu Y, Ruan Z, Jiang R et al. 2009. Optimization of culture conditions for violacein production by a new strain of Duganella sp. B2. Biochem. Eng. J. 44:119–24
    [Google Scholar]
  106. Wehrs M, Gladden JM, Liu Y, Platz L, Prahl J-P et al. 2019a. Correction: sustainable bioproduction of the blue pigment indigoidine: expanding the range of heterologous products in R. toruloides to include non-ribosomal peptides. Green Chem 21:6027–29
    [Google Scholar]
  107. Wehrs M, Gladden JM, Liu Y, Platz L, Prahl J-P et al. 2019b. Sustainable bioproduction of the blue pigment indigoidine: expanding the range of heterologous products in R. toruloides to include non-ribosomal peptides. Green Chem 21:3394–406
    [Google Scholar]
  108. Wehrs M, Prahl JP, Moon J, Li Y, Tanjore D et al. 2018. Production efficiency of the bacterial non-ribosomal peptide indigoidine relies on the respiratory metabolic state in S. cerevisiae. Microb. Cell Fact. 17:193
    [Google Scholar]
  109. Wei Y, Mohsin A, Hong Q, Guo M, Fang H 2018. Enhanced production of biosynthesized lycopene via heterogenous MVA pathway based on chromosomal multiple position integration strategy plus plasmid systems in Escherichia coli. Bioresour. Technol. 250:382–89
    [Google Scholar]
  110. Willrodt C, David C, Cornelissen S, Buhler B, Julsing MK, Schmid A. 2014. Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media. Biotechnol. J. 9:1000–12
    [Google Scholar]
  111. Wu G. 2020. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 52:329–60
    [Google Scholar]
  112. Wu J, Cheng S, Cao J, Qiao J, Zhao GR 2019. Systematic optimization of limonene production in engineered Escherichia coli. J. Agric. Food Chem. 67:7087–97
    [Google Scholar]
  113. Wu JM, Wang SY, Fu WC 2012. Lower temperature cultures enlarge the effects of Vitreoscilla hemoglobin expression on recombinant Pichia pastoris. Int. J. Mol. Sci. 13:13212–26
    [Google Scholar]
  114. Xu F, Gage D, Zhan J. 2015. Efficient production of indigoidine in Escherichia coli. J. Ind. Microbiol. Biotechnol. 42:1149–55
    [Google Scholar]
  115. Yaegashi J, Kirby J, Ito M, Sun J, Dutta T et al. 2017. Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnol. Biofuels 10:241
    [Google Scholar]
  116. Yang D, Jang WD, Lee SY 2021a. Production of carminic acid by metabolically engineered Escherichia coli. J. Am. Chem. Soc. 143:5364–77
    [Google Scholar]
  117. Yang D, Park SY, Lee SY 2021b. Production of rainbow colorants by metabolically engineered Escherichia coli. Adv. Sci. 8:13e2100743
    [Google Scholar]
  118. Yoon SH, Kim JE, Lee SH, Park HM, Choi MS et al. 2007. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl. Microbiol. Biotechnol. 74:131–39
    [Google Scholar]
  119. Yoon SH, Lee YM, Kim JE, Lee SH, Lee JH et al. 2006. Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol. Bioeng. 94:1025–32
    [Google Scholar]
  120. Yu D, Xu F, Valiente J, Wang S, Zhan J 2013. An indigoidine biosynthetic gene cluster from Streptomyces chromofuscus ATCC 49982 contains an unusual IndB homologue. J. Ind. Microbiol. Biotechnol. 40:159–68
    [Google Scholar]
  121. Zhang X, Enomoto K. 2011. Characterization of a gene cluster and its putative promoter region for violacein biosynthesis in Pseudoalteromonas sp. 520P1. Appl. Microbiol. Biotechnol. 90:1963–71
    [Google Scholar]
  122. Zhang XK, Nie MY, Chen J, Wei LJ, Hua Q 2019. Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica. J. Biotechnol. 289:46–54
    [Google Scholar]
  123. Zhang Y, Chen H, Zhang Y, Yin H, Zhou C, Wang Y. 2021. Direct RBS engineering of the biosynthetic gene cluster for efficient productivity of violaceins in E. coli. Microb. Cell Fact. 20:38
    [Google Scholar]
  124. Zhang ZT, Taylor S, Wang Y 2017. In situ esterification and extractive fermentation for butyl butyrate production with Clostridium tyrobutyricum. Biotechnol. Bioeng. 114:1428–37
    [Google Scholar]
  125. Zhao X, Zhou J, Du G, Chen J 2021. Recent advances in the microbial synthesis of hemoglobin. Trends Biotechnol 39:286–97
    [Google Scholar]
  126. Zhao XR, Choi KR, Lee SY. 2018. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat. Catal. 1:720–28
    [Google Scholar]
  127. Zhou W, Zhuang Y, Bai Y, Bi H, Liu T, Ma Y. 2016. Biosynthesis of phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone in Escherichia coli from glucose. Microb. Cell Fact. 15:149
    [Google Scholar]
  128. Zhou Y, Fang MY, Li G, Zhang C, Xing XH. 2018. Enhanced production of crude violacein from glucose in Escherichia coli by overexpression of rate-limiting key enzyme(s) involved in violacein biosynthesis. Appl. Biochem. Biotechnol. 186:909–16
    [Google Scholar]
  129. Zucchelli M, Villarruel FD, David-Gara P, Costante MR, Tascon M et al. 2020. Photophysics and photochemistry of carminic acid and related natural pigments. Phys. Chem. Chem. Phys. 22:9534–42
    [Google Scholar]
/content/journals/10.1146/annurev-food-052720-012228
Loading
/content/journals/10.1146/annurev-food-052720-012228
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error