1932

Abstract

Sum-frequency generation vibrational spectroscopy (SFG-VS) can provide detailed information and understanding of the molecular composition, interactions, and orientational and conformational structure of surfaces and interfaces through quantitative measurement and analysis. In this review, we present the current status of and discuss important recent developments in the measurement of intrinsic SFG spectral lineshapes and formulations for polarization measurements and orientational analysis of SFG-VS spectra. The focus of this review is to present a coherent description of SFG-VS and discuss the main concepts and issues that can help advance this technique as a quantitative analytical research tool for revealing the chemistry and physics of complex molecular surfaces and interfaces.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121322
2015-04-01
2025-01-10
The full text of this item is not currently available.

Literature Cited

  1. Eisenthal KB. 1.  1992. Equilibrium and dynamic processes at interfaces by second harmonic and sum frequency generation. Annu. Rev. Phys. Chem. 43:627–61 [Google Scholar]
  2. Richmond GL. 2.  2001. Structure and bonding of molecules at aqueous surfaces. Annu. Rev. Phys. Chem. 52:357–89 [Google Scholar]
  3. Chen Z, Shen YR, Somorjai GA. 3.  2002. Studies of polymer surfaces by sum frequency generation vibrational spectroscopy. Annu. Rev. Phys. Chem. 53:437–65 [Google Scholar]
  4. Geiger FM. 4.  2009. Second harmonic generation, sum frequency generation, and χ(3): dissecting environmental interfaces with a nonlinear optical Swiss Army knife. Annu. Rev. Phys. Chem 60:61–83 [Google Scholar]
  5. Haupert LM, Simpson GJ. 5.  2009. Chirality in nonlinear optics. Annu. Rev. Phys. Chem. 60:345–65 [Google Scholar]
  6. Jubb AM, Hua W, Allen HC. 6.  2012. Environmental chemistry at vapor/water interfaces: insights from vibrational sum frequency generation spectroscopy. Annu. Rev. Phys. Chem. 63:107–30 [Google Scholar]
  7. Roke S, Gonella G. 7.  2012. Nonlinear light scattering and spectroscopy of particles and droplets in liquids. Annu. Rev. Phys. Chem. 63:353–78 [Google Scholar]
  8. Nihonyanagi S, Mondal JA, Yamaguchi S, Tahara T. 8.  2013. Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annu. Rev. Phys. Chem. 64:579–603 [Google Scholar]
  9. Shen YR. 9.  2013. Phase-sensitive sum-frequency spectroscopy. Annu. Rev. Phys. Chem. 64:129–50 [Google Scholar]
  10. Shen YR. 10.  1984. The Principles of Nonlinear Optics New York: Wiley Intersci. [Google Scholar]
  11. Shen Y. 11.  2012. Basic theory of surface sum-frequency generation. J. Phys. Chem. C 116:15505–9 [Google Scholar]
  12. Shen YR. 12.  1989. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337:519–25 [Google Scholar]
  13. Shen YR. 13.  2000. Surface nonlinear optics: a historical perspective. IEEE J. Sel. Top. Quant. Electron. 6:1375–79 [Google Scholar]
  14. Chen CK, de Castro ARB, Shen YR. 14.  1981. Surface-enhanced second-harmonic generation. Phys. Rev. Lett. 46:145–48 [Google Scholar]
  15. Chen CK, Heinz TF, Ricard D, Shen YR. 15.  1981. Detection of molecular monolayers by optical second-harmonic generation. Phys. Rev. Lett. 46:1010–12 [Google Scholar]
  16. Heinz TF, Chen CK, Ricard D, Shen YR. 16.  1981. Optical second-harmonic generation from a monolayer of centrosymmetric molecules adsorbed on silver. Chem. Phys. Lett. 83:180–82 [Google Scholar]
  17. Tom HWK. 17.  1984. Studies of surfaces using optical second-harmonic generation PhD Thesis, Univ. Calif., Berkeley [Google Scholar]
  18. Zhu XD, Suhr H, Shen YR. 18.  1987. Surface vibrational spectroscopy by infrared-visible sum frequency generation. Phys. Rev. B 35:3047–50 [Google Scholar]
  19. Buck M, Himmelhaus M. 19.  2001. Vibrational spectroscopy of interfaces by infrared-visible sum frequency generation. J. Vac. Sci. Technol. A 19:2717–36 [Google Scholar]
  20. Hicks JM, Kemnitz K, Eisenthal KB. 20.  1986. Studies of liquid surfaces by second harmonic generation. J. Phys. Chem. 90:560–62 [Google Scholar]
  21. Eisenthal KB. 21.  1993. Liquid interfaces. Acc. Chem. Res. 26:636–43 [Google Scholar]
  22. Miranda PB, Shen YR. 22.  1999. Liquid interfaces: a study by sum-frequency vibrational spectroscopy. J. Phys. Chem. B 103:3292–307 [Google Scholar]
  23. Eisenthal KB. 23.  1996. Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy. Chem. Rev. 96:1343–60 [Google Scholar]
  24. Du Q, Superfine R, Freysz E, Shen YR. 24.  1993. Vibrational spectroscopy of water at the vapor water interface. Phys. Rev. Lett. 70:2313–16 [Google Scholar]
  25. Scatena LF, Brown MG, Richmond GL. 25.  2001. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292:908–12 [Google Scholar]
  26. Richmond GL. 26.  2002. Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy. Chem. Rev. 102:2693–724 [Google Scholar]
  27. Shen YR, Ostroverkhov V. 27.  2006. Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106:1140–54 [Google Scholar]
  28. Wang H, Yan ECY, Borguet E, Eisenthal KB. 28.  1996. Second harmonic generation from the surface of centrosymmetric particles in bulk solution. Chem. Phys. Lett. 259:15–20 [Google Scholar]
  29. Eisenthal KB. 29.  2006. Second harmonic spectroscopy of aqueous nano- and microparticle interfaces. Chem. Rev. 106:1462–77 [Google Scholar]
  30. Somorjai GA, Rupprechter G. 30.  1999. Molecular studies of catalytic reactions on crystal surfaces at high pressures and high temperatures by infrared-visible sum frequency generation (SFG) surface vibrational spectroscopy. J. Phys. Chem. B 103:1623–38 [Google Scholar]
  31. Somorjai GA, McCrea KR. 31.  2000. Sum frequency generation: surface vibrational spectroscopy studies of catalytic reactions on metal single-crystal surfaces. Adv. Catal. 45:385–438 [Google Scholar]
  32. Chen Z. 32.  2010. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy. Prog. Polym. Sci. 35:1376–402 [Google Scholar]
  33. Chen XY, Clarke ML, Wang J, Chen Z. 33.  2005. Sum frequency generation vibrational spectroscopy studies on molecular conformation and orientation of biological molecules at interfaces. Int. J. Mod. Phys. B 19:691–713 [Google Scholar]
  34. Yan ECY, Fu L, Wang Z, Liu W. 34.  2014. Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem. Rev. 114:8471–98Up-to-date review on chiral SFG studies on biological macromolecules at interfaces. [Google Scholar]
  35. Roy S, Covert PA, FitzGerald WR, Hore DK. 35.  2014. Biomolecular structure at solid-liquid interfaces as revealed by nonlinear optical spectroscopy. Chem. Rev. 114:8388–415 [Google Scholar]
  36. Smith JP, Hinson-Smith V. 36.  2004. SFG coming of age. Anal. Chem. 76:287A–90A [Google Scholar]
  37. Richter LJ, Petralli-Mallow TP, Stephenson JC. 37.  1998. Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses. Opt. Lett. 23:1594–96 [Google Scholar]
  38. Zhuang X, Miranda PB, Kim D, Shen YR. 38.  1999. Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys. Rev. B 59:12632–40Detailed description of quantitative polarization and orientation analysis with SHG and SFG-VS. [Google Scholar]
  39. Wei X, Hong SC, Zhuang XW, Goto T, Shen YR. 39.  2000. Nonlinear optical studies of liquid crystal alignment on a rubbed polyvinyl alcohol surface. Phys. Rev. E 62:5160–72Clarification of Fresnel and local field factors in SFG-VS analysis. [Google Scholar]
  40. Moad AJ, Simpson GJ. 40.  2004. A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies. J. Phys. Chem. B 108:3548–62Comprehensive derivation of macroscopic and microscopic molecular responses in SFG-VS and SHG. [Google Scholar]
  41. Wang HF, Gan W, Lu R, Rao Y, Wu BH. 41.  2005. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int. Rev. Phys. Chem. 24:191–256Formulations and examples of quantitative polarization measurement and analysis. [Google Scholar]
  42. Zheng DS, Wang Y, Liu AA, Wang HF. 42.  2008. Microscopic molecular optics theory of surface second harmonic generation and sum-frequency generation spectroscopy based on the discrete dipole lattice model. Int. Rev. Phys. Chem. 27:629–64 [Google Scholar]
  43. Shen Y. 43.  1994. Surface spectroscopy by nonlinear optics. Frontiers in Laser Spectroscopy: Proc. Int. Sch. Phys. “Enrico Fermi” Course CXX TW Hansch, M Inguscio 139–65 Amsterdam: North-Holland [Google Scholar]
  44. Andrews DL, Blake NP. 44.  1988. Forbidden nature of multipolar contributions to second-harmonic generation in isotropic fluids. Phys. Rev. A 38:3113–15 [Google Scholar]
  45. Heinz TF, DiVincenzo DP. 45.  1990. Comment on “Forbidden nature of multipolar contributions to second-harmonic generation in isotropic fluids.”. Phys. Rev. A 42:6249–51 [Google Scholar]
  46. Zhu XD, Shen YR. 46.  1990. Multipolar contributions to optical second-harmonic generation in isotropic fluids. Phys. Rev. A 41:4549 [Google Scholar]
  47. Shen YR. 47.  1999. Surface contribution versus bulk contribution in surface nonlinear optical spectroscopy. Appl. Phys. B 68:295–300 [Google Scholar]
  48. Wei X, Hong SC, Lvovsky AI, Held H, Shen YR. 48.  2000. Evaluation of surface versus bulk contributions in sum-frequency vibrational spectroscopy using reflection and transmission geometries. J. Phys. Chem. B 104:3349–54 [Google Scholar]
  49. Held H, Lvovsky AI, Wei X, Shen YR. 49.  2002. Bulk contribution from isotropic media in surface sum-frequency generation. Phys. Rev. B 66:205110 [Google Scholar]
  50. Morita A. 50.  2004. Toward computation of bulk quadrupolar signals in vibrational sum frequency generation spectroscopy. Chem. Phys. Lett. 398:361–66 [Google Scholar]
  51. Goh MC, Hicks JM, Kemnitz K, Pinto GR, Heinz TF. 51.  et al. 1988. Absolute orientation of water molecules at the neat water surface. J. Phys. Chem. 92:5074–75 [Google Scholar]
  52. Zhang WK, Zheng DS, Xu YY, Bian HT, Guo Y, Wang HF. 52.  2005. Reconsideration of second-harmonic generation from isotropic liquid interface: broken Kleinman symmetry of neat air/water interface from dipolar contribution. J. Chem. Phys. 123:224713 [Google Scholar]
  53. Franken PA, Ward JF. 53.  1963. Optical harmonics and nonlinear phenomena. Rev. Mod. Phys. 35:23–39 [Google Scholar]
  54. Dailey CA, Burke BJ, Simpson GJ. 54.  2004. The general failure of Kleinman symmetry in practical nonlinear optical applications. Chem. Phys. Lett. 390:8–13 [Google Scholar]
  55. Martin-Gassin G, Benichou E, Bachelier G, Russier-Antoine I, Jonin C, Brevet PF. 55.  2008. Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation. J. Phys. Chem. C 112:12958–65 [Google Scholar]
  56. Xu Y-Y, Wei F, Wang H-F. 56.  2009. Comment on “Compression induced chirality in dense molecular films at the air-water interface probed by second harmonic generation.”. J. Phys. Chem. C 113:4222–26 [Google Scholar]
  57. Rodríguez FJ, Wang FX, Canfield BK, Cattaneo S, Kauranen M. 57.  2007. Multipolar tensor analysis of second-order nonlinear optical response of surface and bulk of glass. Opt. Express 15:8695–701 [Google Scholar]
  58. Hommel EL, Allen HC. 58.  2003. The air-liquid interface of benzene, toluene, m-xylene, and mesitylene: a sum frequency, Raman, and infrared spectroscopic study. Analyst 128:750–55 [Google Scholar]
  59. Kawaguchi T, Shiratori K, Henmi Y, Ishiyama T, Morita A. 59.  2012. Mechanisms of sum frequency generation from liquid benzene: symmetry breaking at interface and bulk contribution. J. Phys. Chem. C 116:13169–82 [Google Scholar]
  60. Giordmaine JA. 60.  1965. Nonlinear optical properties of liquids. Phys. Rev. 138:A1599–606 [Google Scholar]
  61. Rentzepis PM, Giordmaine JA, Wecht KW. 61.  1966. Coherent optical mixing in optically active liquids. Phys. Rev. Lett. 16:792–94 [Google Scholar]
  62. Ji N, Shen YR. 62.  2006. A novel spectroscopic probe for molecular chirality. Chirality 18:146–58 [Google Scholar]
  63. Belkin MA, Han SH, Wei X, Shen YR. 63.  2001. Sum-frequency generation in chiral liquids near electronic resonance. Phys. Rev. Lett. 87:113001 [Google Scholar]
  64. Fischer P, Wiersma DS, Righini R, Champagne B, Buckingham AD. 64.  2000. Three-wave mixing in chiral liquids. Phys. Rev. Lett. 85:4253–56 [Google Scholar]
  65. Belkin MA, Shen YR, Harris RA. 65.  2004. Sum-frequency vibrational spectroscopy of chiral liquids off and close to electronic resonance and the antisymmetric Raman tensor. J. Chem. Phys. 120:10118–26 [Google Scholar]
  66. Belkin MA, Shen YR. 66.  2005. Non-linear optical spectroscopy as a novel probe for molecular chirality. Int. Rev. Phys. Chem. 24:257–99 [Google Scholar]
  67. Belkin MA, Shen YR. 67.  2003. Doubly resonant IR-UV sum-frequency vibrational spectroscopy on molecular chirality. Phys. Rev. Lett. 91:213907 [Google Scholar]
  68. Han SH, Ji N, Belkin MA, Shen YR. 68.  2002. Sum-frequency spectroscopy of electronic resonances on a chiral surface monolayer of bi-naphthol. Phys. Rev. B 66:165415 [Google Scholar]
  69. Wang J, Chen XY, Clarke ML, Chen Z. 69.  2005. Detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ. Proc. Natl. Acad. Sci. USA 102:4978–83 [Google Scholar]
  70. Champagne B, Fischer P, Buckingham AD. 70.  2000. Ab initio investigation of the sum-frequency hyperpolarizability of small chiral molecules. Chem. Phys. Lett. 331:83–88 [Google Scholar]
  71. Fu L, Zhang Y, Wei Z-H, Wang H-F. 71.  2014. Intrinsic chirality and prochirality at air/R-(+)- and S-(−)-limonene interfaces: spectral signatures with interference chiral sum-frequency generation vibrational spectroscopy. Chirality 26:509–20Detailed demonstration of chiral SFG-VS on intrinsic chirality and prochirality. [Google Scholar]
  72. Owrutsky JC, Culver JP, Li M, Kim YR, Sarisky MJ. 72.  et al. 1992. Femtosecond coherent transient infrared spectroscopy of CO on Cu(111). J. Chem. Phys. 97:4421–27 [Google Scholar]
  73. Velarde L, Wang HF. 73.  2013. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS). Phys. Chem. Chem. Phys. 15:19970–84Unified treatment on frequency- and time-domain SFG-VS with HR-BB-SFG-VS experimental validation. [Google Scholar]
  74. Laaser JE, Xiong W, Zanni MT. 74.  2011. Time-domain SFG spectroscopy using mid-IR pulse shaping: practical and intrinsic advantages. J. Phys. Chem. B 115:2536–46Heterodyne SFG-VS in the time domain pushed to its limit. [Google Scholar]
  75. McGuire JA, Shen YR. 75.  2006. Signal and noise in Fourier-transform sum-frequency surface vibrational spectroscopy with femtosecond lasers. J. Opt. Soc. Am. B 23:363–69 [Google Scholar]
  76. Guyot-Sionnest P. 76.  1991. Coherent processes at surfaces: free-induction decay and photon echo of the Si-H stretching vibration for H/Si(111). Phys. Rev. Lett. 66:1489–92 [Google Scholar]
  77. Bordenyuk AN, Jayathilake H, Benderskii AV. 77.  2005. Coherent vibrational quantum beats as a probe of Langmuir-Blodgett monolayers. J. Phys. Chem. B 109:15941–49 [Google Scholar]
  78. Roke S, Kleyn AW, Bonn M. 78.  2003. Time- versus frequency-domain femtosecond surface sum frequency generation. Chem. Phys. Lett. 370:227–32 [Google Scholar]
  79. Velarde L, Zhang XY, Lu Z, Joly AG, Wang ZM, Wang HF. 79.  2011. Communication: Spectroscopic phase and lineshapes in high-resolution broadband sum frequency vibrational spectroscopy: resolving interfacial inhomogeneities of “identical” molecular groups. J. Chem. Phys. 135:241102First report on HR-BB-SFG-VS, demonstrating the unique spectral resolving capability of SFG-VS. [Google Scholar]
  80. Velarde L, Wang HF. 80.  2013. Capturing inhomogeneous broadening of the –CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS). J. Chem. Phys. 139:084204Intrinsic SFG-VS spectral lineshape analysis capturing inhomogeneous lineshapes. [Google Scholar]
  81. Shen YR. 81.  1998. Sum frequency generation (SFG) spectroscopy. Nonlinear Spectroscopy for Molecular Structure Determination RW Field, E Hirota, JP Maier 249–71 Oxford, UK: Blackwell Sci. [Google Scholar]
  82. Nihonyanagi S, Eftekhari-Bafrooei A, Borguet E. 82.  2011. Ultrafast vibrational dynamics and spectroscopy of a siloxane self-assembled monolayer. J. Chem. Phys. 134:084701 [Google Scholar]
  83. Olivero JJ, Longbothum RL. 83.  1977. Empirical fits to the Voigt line width: a brief review. J. Quant. Spectrosc. Radiat. Transfer 17:233–36 [Google Scholar]
  84. Sovago M, Vartiainen E, Bonn M. 84.  2009. Determining absolute molecular orientation at interfaces: a phase retrieval approach for sum frequency generation spectroscopy. J. Phys. Chem. C 113:6100–6 [Google Scholar]
  85. Weeraman C, Mitchell SA, Lausten R, Johnston LJ, Stolow A. 85.  2010. Vibrational sum frequency generation spectroscopy using inverted visible pulses. Opt. Express 18:11483–94 [Google Scholar]
  86. Stiopkin IV, Jayathilake HD, Weeraman C, Benderskii AV. 86.  2010. Temporal effects on spectroscopic line shapes, resolution, and sensitivity of the broad-band sum frequency generation. J. Chem. Phys. 132:234503 [Google Scholar]
  87. Carter JA, Wang ZH, Dlott DD. 87.  2009. Ultrafast nonlinear coherent vibrational sum-frequency spectroscopy methods to study thermal conductance of molecules at interfaces. Acc. Chem. Res. 42:1343–51 [Google Scholar]
  88. Shalhout FY, Malyk S, Benderskii AV. 88.  2012. Relative phase change of nearby resonances in temporally delayed sum frequency spectra. J. Phys. Chem. Lett. 3:3493–97 [Google Scholar]
  89. Mukamel S. 89.  1995. Principles of Nonlinear Optical Spectroscopy New York: Oxford Univ. Press [Google Scholar]
  90. Hamm P, Zanni M. 90.  2011. Concepts and Methods of 2D Infrared Spectroscopy Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  91. Verreault D, Hua W, Allen HC. 91.  2012. From conventional to phase-sensitive vibrational sum frequency generation spectroscopy: probing water organization at aqueous interfaces. J. Phys. Chem. Lett. 3:3012–28 [Google Scholar]
  92. Ostroverkhov V, Waychunas GA, Shen YR. 92.  2005. New information on water interfacial structure revealed by phase-sensitive surface spectroscopy. Phys. Rev. Lett. 94:046102 [Google Scholar]
  93. Ji N, Ostroverkhov V, Tian CS, Shen YR. 93.  2008. Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy. Phys. Rev. Lett. 100:096102 [Google Scholar]
  94. Tian CS, Shen YR. 94.  2009. Sum-frequency vibrational spectroscopic studies of water/vapor interfaces. Chem. Phys. Lett. 470:1–6 [Google Scholar]
  95. Nihonyanagi S, Yamaguchi S, Tahara T. 95.  2009. Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 130:204704 [Google Scholar]
  96. Mondal JA, Nihonyanagi S, Yamaguchi S, Tahara T. 96.  2010. Structure and orientation of water at charged lipid monolayer/water interfaces probed by heterodyne-detected vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 132:10656–57 [Google Scholar]
  97. Mondal JA, Nihonyanagi S, Yamaguchi S, Tahara T. 97.  2012. Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation. J. Am. Chem. Soc. 134:7842–50 [Google Scholar]
  98. Hua W, Chen XK, Allen HC. 98.  2011. Phase-sensitive sum frequency revealing accommodation of bicarbonate ions, and charge separation of sodium and carbonate ions within the air/water interface. J. Phys. Chem. A 115:6233–38 [Google Scholar]
  99. Feng RR, Guo Y, Lu R, Velarde L, Wang HF. 99.  2011. Consistency in the sum frequency generation intensity and phase vibrational spectra of the air/neat water interface. J. Phys. Chem. A 115:6015–27 [Google Scholar]
  100. Pool RE, Versluis J, Backus EHG, Bonn M. 100.  2011. Comparative study of direct and phase-specific vibrational sum-frequency generation spectroscopy: advantages and limitations. J. Phys. Chem. B 115:15362–69 [Google Scholar]
  101. Yang PK, Huang JY. 101.  1997. Phase-retrieval problems in infrared-visible sum-frequency generation spectroscopy by the maximum-entropy method. J. Opt. Soc. Am. B 14:2443–48 [Google Scholar]
  102. de Beer AGF, Samson JS, Hua W, Huang ZS, Chen XK. 102.  et al. 2011. Direct comparison of phase-sensitive vibrational sum frequency generation with maximum entropy method: case study of water. J. Chem. Phys. 135:224701 [Google Scholar]
  103. Nihonyanagi S, Singh PC, Yamaguchi S, Tahara T. 103.  2012. Ultrafast vibrational dynamics of a charged aqueous interface by femtosecond time-resolved heterodyne-detected vibrational sum frequency generation. Bull. Chem. Soc. Jpn. 85:758–60 [Google Scholar]
  104. Singh PC, Nihonyanagi S, Yamaguchi S, Tahara T. 104.  2012. Ultrafast vibrational dynamics of water at a charged interface revealed by two-dimensional heterodyne-detected vibrational sum frequency generation. J. Chem. Phys. 137:094706 [Google Scholar]
  105. Miranda PB. 105.  1998. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces PhD Thesis, Univ. Calif., Berkeley [Google Scholar]
  106. Wei X. 106.  2000. Sum-frequency spectroscopic studies: I. Surface melting of ice. II. Surface alignment of polymers. PhD Thesis, Univ. Calif., Berkeley [Google Scholar]
  107. Hirose C, Akamatsu N, Domen K. 107.  1992. Formulas for the analysis of surface sum-frequency generation spectrum by CH stretching modes of methyl and methylene groups. J. Chem. Phys. 96:997–1004 [Google Scholar]
  108. Bain CD. 108.  1995. Sum-frequency vibrational spectroscopy of the solid-liquid interface. J. Chem. Soc. Faraday Trans. 91:1281–96 [Google Scholar]
  109. Zhang D, Gutow J, Eisenthal KB. 109.  1994. Vibrational spectra, orientations, and phase transitions in long-chain amphiphiles at the air-water interface: probing the head and tail groups by sum-frequency generation. J. Phys. Chem. 98:13729–34 [Google Scholar]
  110. Hirose C, Yamamoto H, Akamatsu N, Domen K. 110.  1993. Orientation analysis by simulation of vibrational sum-frequency generation spectrum: CH stretching bands of the methyl group. J. Phys. Chem. 97:10064–69 [Google Scholar]
  111. Hirose C, Akamatsu N, Domen K. 111.  1992. Formulas for the analysis of the surface SFG spectrum and transformation coefficients of cartesian SFG tensor components. Appl. Spectrosc. 46:1051–72 [Google Scholar]
  112. Akamatsu N, Domen K, Hirose C. 112.  1993. SFG study of two-dimensional orientation of surface methyl groups on cadmium arachidate Langmuir-Blodgett-films. J. Phys. Chem. 97:10070–75 [Google Scholar]
  113. Simpson GJ. 113.  2004. Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics. ChemPhysChem 5:1301–10 [Google Scholar]
  114. Bloembergen N, Pershan PS. 114.  1962. Light waves at the boundary of nonlinear media. Phys. Rev. 128:606–22 [Google Scholar]
  115. Wang H-F. 115.  2012. In situ measurement of chirality of molecules and molecular assemblies with surface nonlinear spectroscopy. Comprehensive Chiroptical Spectroscopy 1 Instrumentation, Methodologies, and Theoretical Simulations N Berova, PL Polavarapu, K Nakanishi, RW Woody 373–406 New York: Wiley [Google Scholar]
  116. Wei F, Xu Y-Y, Guo Y, Liu S-L, Wang H-F. 116.  2009. Quantitative surface chirality detection with sum frequency generation vibrational spectroscopy: twin polarization angle approach. Chin. J. Chem. Phys. 22:592–600 [Google Scholar]
  117. Ye PX, Shen YR. 117.  1983. Local-field effect on linear and non-linear optical-properties of adsorbed molecules. Phys. Rev. B 28:4288–94 [Google Scholar]
  118. Goldstein H. 118.  2000. Classical Mechanics New York: Addison-Wesley [Google Scholar]
  119. Michl J, Thulstrup EW. 119.  1986. Spectroscopy with Polarized Light: Solute Alignment by Photoselection in Liquid Crystals, Polymers, and Membranes Weinheim: VCH [Google Scholar]
  120. Roy S, Hung K-K, Stege U, Hore DK. 120.  2013. Rotations, projections, direction cosines, and vibrational spectra. Appl. Spectrosc. Rev. 49:233–48 [Google Scholar]
  121. Rao Y, Tao YS, Wang HF. 121.  2003. Quantitative analysis of orientational order in the molecular monolayer by surface second harmonic generation. J. Chem. Phys. 119:5226–36 [Google Scholar]
  122. Du Q, Freysz E, Shen YR. 122.  1994. Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science 264:826–28 [Google Scholar]
  123. Superfine R, Huang JY, Shen YR. 123.  1990. Experimental determination of the sign of molecular dipole moment derivatives: an infrared-visible sum frequency generation absolute phase measurement study. Chem. Phys. Lett. 172:303–6 [Google Scholar]
  124. Armstrong JA, Bloembergen N, Ducuing J, Pershan PS. 124.  1962. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127:1918–39 [Google Scholar]
  125. Wu H, Zhang WK, Gan W, Cui ZF, Wang HF. 125.  2006. An empirical approach to the bond additivity model in quantitative interpretation of sum frequency generation vibrational spectra. J. Chem. Phys. 125:133203 [Google Scholar]
  126. Hore DK, Beaman DK, Parks DH, Richmond GL. 126.  2005. Whole-molecule approach for determining orientation at isotropic surfaces by nonlinear vibrational spectroscopy. J. Phys. Chem. B 109:16846–51 [Google Scholar]
  127. Yeh YL, Zhang C, Held H, Mebel AM, Wei X. 127.  et al. 2001. Structure of the acetone liquid/vapor interface. J. Chem. Phys. 114:1837–43 [Google Scholar]
  128. Hall SA, Jena KC, Covert PA, Roy S, Trudeau TG, Hore DK. 128.  2014. Molecular-level surface structure from nonlinear vibrational spectroscopy combined with simulations. J. Phys. Chem. B 118:5617–36 [Google Scholar]
  129. Ishiyama T, Imamura T, Morita A. 129.  2014. Theoretical studies of structures and vibrational sum frequency generation spectra at aqueous interfaces. Chem. Rev. 114:8447–70 [Google Scholar]
  130. Morita A, Ishiyama T. 130.  2008. Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy. Phys. Chem. Chem. Phys. 10:5801–16 [Google Scholar]
  131. Lu R, Gan W, Wu BH, Chen H, Wang HF. 131.  2004. Vibrational polarization spectroscopy of CH stretching modes of the methylene group at the vapor/liquid interfaces with sum frequency generation. J. Phys. Chem. B 108:7297–306 [Google Scholar]
  132. Lu R, Gan W, Wu BH, Zhang Z, Guo Y, Wang HF. 132.  2005. C–H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (n = 1–8) interfaces. J. Phys. Chem. B 109:14118–29 [Google Scholar]
  133. Gan W, Wu D, Zhang Z, Feng RR, Wang HF. 133.  2006. Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface. J. Chem. Phys. 124:114705 [Google Scholar]
  134. Gan W, Zhang Z, Feng RR, Wang HF. 134.  2006. Identification of overlapping features in the sum frequency generation vibrational spectra of air/ethanol interface. Chem. Phys. Lett. 423:261–65 [Google Scholar]
  135. Yu YQ, Lin K, Zhou XG, Wang H, Liu SL, Ma XX. 135.  2007. New C–H stretching vibrational spectral features in the Raman spectra of gaseous and liquid ethanol. J. Phys. Chem. C 111:8971–78 [Google Scholar]
  136. Rivera CA, Fourkas JT. 136.  2011. Reexamining the interpretation of vibrational sum-frequency generation spectra. Int. Rev. Phys. Chem. 30:409–43 [Google Scholar]
  137. Long DA. 137.  2002. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules New York: Wiley [Google Scholar]
  138. Chung CY, Boik J, Potma EO. 138.  2013. Biomolecular imaging with coherent nonlinear vibrational microscopy. Annu. Rev. Phys. Chem. 64:77–99 [Google Scholar]
  139. Gan W, Wu BH, Zhang Z, Guo Y, Wang HF. 139.  2007. Vibrational spectra and molecular orientation with experimental configuration analysis in surface sum frequency generation (SFG). J. Phys. Chem. C 111:8716–25 [Google Scholar]
  140. Gan W, Zhang Z, Feng RR, Wang HF. 140.  2007. Spectral interference and molecular conformation at liquid interface with sum frequency generation vibrational spectroscopy (SFG-VS). J. Phys. Chem. C 111:8726–38 [Google Scholar]
  141. Zhang Z, Guo Y, Lu Z, Velarde L, Wang HF. 141.  2012. Resolving two closely overlapping –CN vibrations and structure in the Langmuir monolayer of the long-chain nonadecanenitrile by polarization sum frequency generation vibrational spectroscopy. J. Phys. Chem. C 116:2976–87 [Google Scholar]
  142. Wang J, Clarke ML, Chen Z. 142.  2004. Polarization mapping: a method to improve sum frequency generation spectral analysis. Anal. Chem. 76:2159–67 [Google Scholar]
  143. Lu R, Gan W, Wang HF. 143.  2003. Novel method for accurate determination of the orientational angle of interfacial chemical groups. Chin. Sci. Bull. 48:2183–87 [Google Scholar]
  144. Velarde L, Wang HF. 144.  2013. Unique determination of the –CN group tilt angle in Langmuir monolayers using sum-frequency polarization null angle and phase. Chem. Phys. Lett. 585:42–48 [Google Scholar]
  145. Stokes GY, Gibbs-Davis JM, Boman FC, Stepp BR, Condie AG. 145.  et al. 2007. Making “sense” of DNA. J. Am. Chem. Soc. 129:7492–93 [Google Scholar]
  146. Belkin MA, Kulakov TA, Ernst KH, Yan L, Shen YR. 146.  2000. Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality. Phys. Rev. Lett. 85:4474–77 [Google Scholar]
  147. Simpson GJ, Rowlen KL. 147.  1999. An SHG magic angle: dependence of second harmonic generation orientation measurements on the width of the orientation distribution. J. Am. Chem. Soc. 121:2635–36 [Google Scholar]
  148. Chen H, Gan W, Wu BH, Wu D, Zhang Z, Wang HF. 148.  2005. Determination of the two methyl group orientations at vapor/acetone interface with polarization null angle method in SFG vibrational spectroscopy. Chem. Phys. Lett. 408:284–89 [Google Scholar]
  149. Chen XK, Minofar B, Jungwirth P, Allen HC. 149.  2010. Interfacial molecular organization at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic acid using sum frequency spectroscopy and molecular dynamics simulation. J. Phys. Chem. B 114:15546–53 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121322
Loading
/content/journals/10.1146/annurev-physchem-040214-121322
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error