1932

Abstract

Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021115-105045
2016-02-10
2025-01-10
The full text of this item is not currently available.

Literature Cited

  1. Knoop F. 1.  1904. Der Abbau aromatischer Fettsäuren im Tierkörper. Beitr. Z. Chem. Phys. U. Pathol. 6:150–62 [Google Scholar]
  2. Kunau WH, Dommes V, Schulz H. 2.  1995. Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog. Lipid Res. 34:267–342 [Google Scholar]
  3. Houten SM, Wanders RJ. 3.  2010. A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J. Inherit. Metab. Dis. 33:469–77 [Google Scholar]
  4. Rinaldo P, Matern D, Bennett MJ. 4.  2002. Fatty acid oxidation disorders. Annu. Rev. Physiol. 64:477–502 [Google Scholar]
  5. Roe CR, Sweetman L, Roe DS, David F, Brunengraber H. 5.  2002. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J. Clin. Investig. 110:259–69 [Google Scholar]
  6. Djouadi F, Bonnefont JP, Thuillier L, Droin V, Khadom N. 6.  et al. 2003. Correction of fatty acid oxidation in carnitine palmitoyl transferase 2–deficient cultured skin fibroblasts by bezafibrate. Pediatr. Res. 54:446–51 [Google Scholar]
  7. Glatz JF, Luiken JJ, Bonen A. 7.  2010. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol. Rev. 90:367–417 [Google Scholar]
  8. Grevengoed TJ, Klett EL, Coleman RA. 8.  2014. Acyl-CoA metabolism and partitioning. Annu. Rev. Nutr. 34:1–30 [Google Scholar]
  9. Vaz FM, Wanders RJ. 9.  2002. Carnitine biosynthesis in mammals. Biochem. J. 361:417–29 [Google Scholar]
  10. Swigonova Z, Mohsen AW, Vockley J. 10.  2009. Acyl-CoA dehydrogenases: dynamic history of protein family evolution. J. Mol. Evol. 69:176–93 [Google Scholar]
  11. Le W, Abbas AS, Sprecher H, Vockley J, Schulz H. 11.  2000. Long-chain acyl-CoA dehydrogenase is a key enzyme in the mitochondrial beta-oxidation of unsaturated fatty acids. Biochim. Biophys. Acta 1485:121–28 [Google Scholar]
  12. Wanders RJ, Denis S, Ruiter JP, IJlst L, Dacremont G. 12.  1998. 2,6-Dimethylheptanoyl-CoA is a specific substrate for long-chain acyl-CoA dehydrogenase (LCAD): evidence for a major role of LCAD in branched-chain fatty acid oxidation. Biochim. Biophys. Acta 1393:35–40 [Google Scholar]
  13. Chegary M, te Brinke H, Ruiter JP, Wijburg FA, Stoll MS. 13.  et al. 2009. Mitochondrial long chain fatty acid beta-oxidation in man and mouse. Biochim. Biophys. Acta 1791:806–15 [Google Scholar]
  14. Cox KB, Hamm DA, Millington DS, Matern D, Vockley J. 14.  et al. 2001. Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse. Hum. Mol. Genet. 10:2069–77 [Google Scholar]
  15. Kurtz DM, Rinaldo P, Rhead WJ, Tian L, Millington DS. 15.  et al. 1998. Targeted disruption of mouse long-chain acyl-CoA dehydrogenase gene reveals crucial roles for fatty acid oxidation. PNAS 95:15592–97 [Google Scholar]
  16. Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K. 16.  et al. 1998. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J. Biol. Chem. 273:5678–84 [Google Scholar]
  17. Aoyama T, Souri M, Ushikubo S, Kamijo T, Yamaguchi S. 17.  et al. 1995. Purification of human very-long-chain acyl-coenzyme A dehydrogenase and characterization of its deficiency in seven patients. J. Clin. Investig. 95:2465–73 [Google Scholar]
  18. Maher AC, Mohsen AW, Vockley J, Tarnopolsky MA. 18.  2010. Low expression of long-chain acyl-CoA dehydrogenase in human skeletal muscle. Mol. Genet. Metab. 100:163–67 [Google Scholar]
  19. Goetzman ES, Alcorn JF, Bharathi SS, Uppala R, McHugh KJ. 19.  et al. 2014. Long-chain acyl-CoA dehydrogenase deficiency as a cause of pulmonary surfactant dysfunction. J. Biol. Chem. 289:10668–79 [Google Scholar]
  20. He M, Rutledge SL, Kelly DR, Palmer CA, Murdoch G. 20.  et al. 2007. A new genetic disorder in mitochondrial fatty acid beta-oxidation: ACAD9 deficiency.. Am. J. Hum. Genet 81:87–103 [Google Scholar]
  21. Ensenauer R, He M, Willard JM, Goetzman ES, Corydon TJ. 21.  et al. 2005. Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids. J. Biol. Chem. 280:32309–16 [Google Scholar]
  22. Zhang J, Zhang W, Zou D, Chen G, Wan T. 22.  et al. 2002. Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Biochem. Biophys. Res. Commun. 297:1033–42 [Google Scholar]
  23. Nouws J, te Brinke H, Nijtmans LG, Houten SM. 23.  2013. ACAD9, a complex I assembly factor with a moonlighting function in fatty acid oxidation deficiencies. Hum. Mol. Genet. 23:1311–19 [Google Scholar]
  24. Schiff M, Haberberger B, Xia C, Mohsen AW, Goetzman ES. 24.  et al. 2015. Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency. Hum. Mol. Genet. 24:3238–47 [Google Scholar]
  25. Gerards M, van den Bosch BJ, Danhauser K, Serre V, van Weeghel M. 25.  et al. 2011. Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene. Brain 134:210–19 [Google Scholar]
  26. Haack TB, Danhauser K, Haberberger B, Hoser J, Strecker V. 26.  et al. 2010. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat. Genet. 42:1131–34 [Google Scholar]
  27. Nouws J, Nijtmans L, Houten SM, van den Brand M, Huynen M. 27.  et al. 2010. Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab. 12:283–94 [Google Scholar]
  28. Gordon N. 28.  2006. Glutaric aciduria types I and II. Brain Dev. 28:136–40 [Google Scholar]
  29. van Eunen K, Simons SM, Gerding A, Bleeker A. Besten G. 29. , den et al. 2013. Biochemical competition makes fatty-acid beta-oxidation vulnerable to substrate overload. PLOS Comput. Biol. 9:e1003186 [Google Scholar]
  30. Hiltunen JK, Qin Y. 30.  2000. Beta-oxidation—strategies for the metabolism of a wide variety of acyl-CoA esters. Biochim. Biophys. Acta 1484:117–28 [Google Scholar]
  31. Schulz H, Kunau WH. 31.  1987. Beta-oxidation of unsaturated fatty acids—a revised pathway. Trends Biochem. Sci. 12:403–6 [Google Scholar]
  32. Zhang D, Yu W, Geisbrecht BV, Gould SJ, Sprecher H, Schulz H. 32.  2002. Functional characterization of Δ32-enoyl-CoA isomerases from rat liver. J. Biol. Chem. 277:9127–32 [Google Scholar]
  33. Onwukwe GU, Kursula P, Koski MK, Schmitz W, Wierenga RK. 33.  2015. Human Δ32-enoyl-CoA isomerase, type 2: a structural enzymology study on the catalytic role of its ACBP domain and helix-10. FEBS J. 282:746–68 [Google Scholar]
  34. van Weeghel M, te Brinke H, van Lenthe H, Kulik W, Minkler PE. 34.  et al. 2012. Functional redundancy of mitochondrial enoyl-CoA isomerases in the oxidation of unsaturated fatty acids. FASEB J. 26:4316–26 [Google Scholar]
  35. Cahill GF Jr. 35.  1970. Starvation in man. N. Engl. J. Med. 282:668–75 [Google Scholar]
  36. Cahill GF Jr. 36.  2006. Fuel metabolism in starvation. Annu. Rev. Nutr. 26:1–22 [Google Scholar]
  37. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. 37.  2010. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 90:207–58 [Google Scholar]
  38. Barger PM, Kelly DP. 38.  2000. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc. Med. 10:238–45 [Google Scholar]
  39. Kiens B. 39.  2006. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol. Rev. 86:205–43 [Google Scholar]
  40. Helge JW, Stallknecht B, Richter EA, Galbo H, Kiens B. 40.  2007. Muscle metabolism during graded quadriceps exercise in man. J. Physiol. 581:1247–58 [Google Scholar]
  41. Schooneman MG, Vaz FM, Houten SM, Soeters MR. 41.  2013. Acylcarnitines: reflecting or inflicting insulin resistance?. Diabetes 62:1–8 [Google Scholar]
  42. Wirthensohn G, Guder WG. 42.  1986. Renal substrate metabolism. Physiol. Rev. 66:469–97 [Google Scholar]
  43. Kang HM, Ahn SH, Choi P, Ko YA, Han SH. 43.  et al. 2015. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21:37–46 [Google Scholar]
  44. Klootwijk ED, Reichold M, Helip-Wooley A, Tolaymat A, Broeker C. 44.  et al. 2014. Mistargeting of peroxisomal EHHADH and inherited renal Fanconi's syndrome. N. Engl. J. Med. 370:129–38 [Google Scholar]
  45. Lee SS, Pineau T, Drago J, Lee EJ, Owens JW. 45.  et al. 1995. Targeted disruption of the alpha isoform of the peroxisome proliferator–activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol. Cell. Biol. 15:3012–22 [Google Scholar]
  46. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. 46.  1999. Peroxisome proliferator–activated receptor alpha mediates the adaptive response to fasting. J. Clin. Investig. 103:1489–98 [Google Scholar]
  47. Leone TC, Weinheimer CJ, Kelly DP. 47.  1999. A critical role for the peroxisome proliferator–activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders. PNAS 96:7473–78 [Google Scholar]
  48. Houten SM, Denis S, Argmann CA, Jia Y, Ferdinandusse S. 48.  et al. 2012. Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. J. Lipid Res. 53:1296–303 [Google Scholar]
  49. Rodriguez JC, Gil-Gomez G, Hegardt FG, Haro D. 49.  1994. Peroxisome proliferator–activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. J. Biol. Chem. 269:18767–72 [Google Scholar]
  50. Djouadi F, Weinheimer CJ, Saffitz JE, Pitchford C, Bastin J. 50.  et al. 1998. A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator–activated receptor α–deficient mice. J. Clin. Investig. 102:1083–91 [Google Scholar]
  51. Neels JG, Grimaldi PA. 51.  2014. Physiological functions of peroxisome proliferator–activated receptor beta. Physiol. Rev. 94:795–858 [Google Scholar]
  52. Muoio DM, MacLean PS, Lang DB, Li S, Houmard JA. 52.  et al. 2002. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator–activated receptor (PPAR) alpha knock-out mice. Evidence for compensatory regulation by PPAR delta. J. Biol. Chem. 277:26089–97 [Google Scholar]
  53. Muoio DM, Way JM, Tanner CJ, Winegar DA, Kliewer SA. 53.  et al. 2002. Peroxisome proliferator–activated receptor-alpha regulates fatty acid utilization in primary human skeletal muscle cells. Diabetes 51:901–9 [Google Scholar]
  54. Huss JM, Kopp RP, Kelly DP. 54.  2002. Peroxisome proliferator–activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α. J. Biol. Chem. 277:40265–74 [Google Scholar]
  55. McGarry JD, Mannaerts GP, Foster DW. 55.  1977. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J. Clin. Investig. 60:265–70 [Google Scholar]
  56. Drynan L, Quant PA, Zammit VA. 56.  1996. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states. Biochem. J. 317:3791–95 [Google Scholar]
  57. Smith BK, Perry CG, Koves TR, Wright DC, Smith JC. 57.  et al. 2012. Identification of a novel malonyl-CoA IC50 for CPT-I: implications for predicting in vivo fatty acid oxidation rates. Biochem. J. 448:13–20 [Google Scholar]
  58. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L. 58.  et al. 2009. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–60 [Google Scholar]
  59. Bharathi SS, Zhang Y, Mohsen AW, Uppala R, Balasubramani M. 59.  et al. 2013. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J. Biol. Chem. 288:33837–47 [Google Scholar]
  60. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B. 60.  et al. 2010. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121–25 [Google Scholar]
  61. Pougovkina O, te Brinke H, Ofman R, van Cruchten AG, Kulik W. 61.  et al. 2014. Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum. Mol. Genet. 23:3513–22 [Google Scholar]
  62. Doulias PT, Tenopoulou M, Greene JL, Raju K, Ischiropoulos H. 62.  2013. Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci. Signal. 6:rs1 [Google Scholar]
  63. Tenopoulou M, Chen J, Bastin J, Bennett MJ, Ischiropoulos H, Doulias PT. 63.  2015. Strategies for correcting very long chain acyl-CoA dehydrogenase deficiency. J. Biol. Chem. 290:10486–94 [Google Scholar]
  64. Spiekerkoetter U, Khuchua Z, Yue Z, Bennett MJ, Strauss AW. 64.  2004. General mitochondrial trifunctional protein (TFP) deficiency as a result of either alpha- or beta-subunit mutations exhibits similar phenotypes because mutations in either subunit alter TFP complex expression and subunit turnover. Pediatr. Res. 55:190–96 [Google Scholar]
  65. Goodman SI, Duran M. 65.  2014. Biochemical phenotypes of questionable clinical significance. Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases N Blau, M Duran, KM Gibson, C Dionisi-Vici 691–705 Heidelberg, Ger.: Springer-Verlag [Google Scholar]
  66. Kamijo T, Indo Y, Souri M, Aoyama T, Hara T. 66.  et al. 1997. Medium chain 3-ketoacyl-coenzyme A thiolase deficiency: a new disorder of mitochondrial fatty acid beta-oxidation. Pediatr. Res. 42:569–76 [Google Scholar]
  67. Roe CR, Millington DS, Norwood DL, Kodo N, Sprecher H. 67.  et al. 1990. 2,4-Dienoyl-coenzyme A reductase deficiency: a possible new disorder of fatty acid oxidation. J. Clin. Investig. 85:1703–7 [Google Scholar]
  68. Houten SM, Denis S, te Brinke H, Jongejan A, van Kampen AH. 68.  et al. 2014. Mitochondrial NADP(H) deficiency due to a mutation in NADK2 causes dienoyl-CoA reductase deficiency with hyperlysinemia. Hum. Mol. Genet. 23:5009–16 [Google Scholar]
  69. Iafolla AK, Thompson RJ. Roe CR. 69.  Jr, 1994. Medium-chain acyl-coenzyme A dehydrogenase deficiency: clinical course in 120 affected children. J. Pediatr. 124:409–15 [Google Scholar]
  70. Nennstiel-Ratzel U, Arenz S, Maier EM, Knerr I, Baumkotter J. 70.  et al. 2005. Reduced incidence of severe metabolic crisis or death in children with medium chain acyl-CoA dehydrogenase deficiency homozygous for c.985A>G identified by neonatal screening. Mol. Genet. Metab. 85:157–59 [Google Scholar]
  71. Wilcken B, Haas M, Joy P, Wiley V, Chaplin M. 71.  et al. 2007. Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in Australia: a cohort study. Lancet 369:37–42 [Google Scholar]
  72. Vianey-Saban C, Divry P, Brivet M, Nada M, Zabot MT. 72.  et al. 1998. Mitochondrial very-long-chain acyl-coenzyme A dehydrogenase deficiency: clinical characteristics and diagnostic considerations in 30 patients. Clin. Chim. Acta 269:43–62 [Google Scholar]
  73. Saudubray JM, Martin D, de Lonlay P, Touati G, Poggi-Travert F. 73.  et al. 1999. Recognition and management of fatty acid oxidation defects: a series of 107 patients. J. Inherit. Metab. Dis. 22:488–502 [Google Scholar]
  74. Baruteau J, Sachs P, Broue P, Brivet M, Abdoul H. 74.  et al. 2013. Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: a French pediatric study of 187 patients. J. Inherit. Metab. Dis. 36:795–803 [Google Scholar]
  75. Baruteau J, Sachs P, Broue P, Brivet M, Abdoul H. 75.  et al. 2014. Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: a French pediatric study from 187 patients. Complementary data. J. Inherit. Metab. Dis. 37:137–39 [Google Scholar]
  76. den Boer ME, Wanders RJ, Morris AA, IJlst L, Heymans HS, Wijburg FA. 76.  2002. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: clinical presentation and follow-up of 50 patients. Pediatrics 109:99–104 [Google Scholar]
  77. den Boer ME, Dionisi-Vici C, Chakrapani A, van Thuijl AO, Wanders RJ, Wijburg FA. 77.  2003. Mitochondrial trifunctional protein deficiency: a severe fatty acid oxidation disorder with cardiac and neurologic involvement. J. Pediatr. 142:684–89 [Google Scholar]
  78. Shibbani K, Fahed AC, Al-Shaar L, Arabi M, Nemer G. 78.  et al. 2014. Primary carnitine deficiency: novel mutations and insights into the cardiac phenotype. Clin. Genet. 85:127–37 [Google Scholar]
  79. Rubio-Gozalbo ME, Vos P, Forget PP, Van Der Meer SB, Wanders RJ. 79.  et al. 2003. Carnitine-acylcarnitine translocase deficiency: case report and review of the literature. Acta Paediatr. 92:501–4 [Google Scholar]
  80. Derks TG, Reijngoud DJ, Waterham HR, Gerver WJ, van den Berg MP. 80.  et al. 2006. The natural history of medium-chain acyl CoA dehydrogenase deficiency in the Netherlands: clinical presentation and outcome. J. Pediatr. 148:665–70 [Google Scholar]
  81. Bonnet D, Martin D, de Lonlay P, Villain E, Jouvet P. 81.  et al. 1999. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 100:2248–53 [Google Scholar]
  82. Wiles JR, Leslie N, Knilans TK, Akinbi H. 82.  2014. Prolonged QTc interval in association with medium-chain acyl-coenzyme A dehydrogenase deficiency. Pediatrics 133:e1781–86 [Google Scholar]
  83. Laforet P, Acquaviva-Bourdain C, Rigal O, Brivet M, Penisson-Besnier I. 83.  et al. 2009. Diagnostic assessment and long-term follow-up of 13 patients with Very Long-Chain Acyl-Coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscul. Disord. 19:324–29 [Google Scholar]
  84. Laforet P, Vianey-Saban C. 84.  2010. Disorders of muscle lipid metabolism: diagnostic and therapeutic challenges. Neuromuscul. Disord. 20:693–700 [Google Scholar]
  85. Purevsuren J, Fukao T, Hasegawa Y, Kobayashi H, Li H. 85.  et al. 2009. Clinical and molecular aspects of Japanese patients with mitochondrial trifunctional protein deficiency. Mol. Genet. Metab. 98:372–77 [Google Scholar]
  86. Shchelochkov O, Wong LJ, Shaibani A, Shinawi M. 86.  2009. Atypical presentation of VLCAD deficiency associated with a novel ACADVL splicing mutation. Muscle Nerve 39:374–82 [Google Scholar]
  87. Diekman EF, van der Pol WL, Nievelstein RA, Houten SM, Wijburg FA, Visser G. 87.  2014. Muscle MRI in patients with long-chain fatty acid oxidation disorders. J. Inherit. Metab. Dis. 37:405–13 [Google Scholar]
  88. Ruitenbeek W, Poels PJ, Turnbull DM, Garavaglia B, Chalmers RA. 88.  et al. 1995. Rhabdomyolysis and acute encephalopathy in late onset medium chain acyl-CoA dehydrogenase deficiency. J. Neurol. Neurosurg. Psychiatry 58:209–14 [Google Scholar]
  89. Schatz UA, Ensenauer R. 89.  2010. The clinical manifestation of MCAD deficiency: challenges towards adulthood in the screened population. J. Inherit. Metab. Dis. 33:513–20 [Google Scholar]
  90. Fletcher AL, Pennesi ME, Harding CO, Weleber RG, Gillingham MB. 90.  2012. Observations regarding retinopathy in mitochondrial trifunctional protein deficiencies. Mol. Genet. Metab. 106:18–24 [Google Scholar]
  91. Oey NA, den Boer ME, Wijburg FA, Vekemans M, Auge J. 91.  et al. 2005. Long-chain fatty acid oxidation during early human development. Pediatr. Res. 57:755–59 [Google Scholar]
  92. Tyni T, Johnson M, Eaton S, Pourfarzam M, Andrews R, Turnbull DM. 92.  2002. Mitochondrial fatty acid beta-oxidation in the retinal pigment epithelium. Pediatr. Res. 52:595–600 [Google Scholar]
  93. Molven A, Matre GE, Duran M, Wanders RJ, Rishaug U. 93.  et al. 2004. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes 53:221–27 [Google Scholar]
  94. Li C, Chen P, Palladino A, Narayan S, Russell LK. 94.  et al. 2010. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J. Biol. Chem. 285:31806–18 [Google Scholar]
  95. Peters H, Buck N, Wanders R, Ruiter J, Waterham H. 95.  et al. 2014. ECHS1 mutations in Leigh disease: a new inborn error of metabolism affecting valine metabolism. Brain 137:2903–8 [Google Scholar]
  96. Sakai C, Yamaguchi S, Sasaki M, Miyamoto Y, Matsushima Y, Goto Y. 96.  2015. ECHS1 mutations cause combined respiratory chain deficiency resulting in Leigh syndrome. Hum. Mutat. 36:232–39 [Google Scholar]
  97. Chace DH, Kalas TA, Naylor EW. 97.  2003. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin. Chem. 49:1797–817 [Google Scholar]
  98. Violante S, IJlst L, Ruiter J, Koster J, van Lenthe H. 98.  et al. 2013. Substrate specificity of human carnitine acetyltransferase: implications for fatty acid and branched-chain amino acid metabolism. Biochim. Biophys. Acta 1832:773–79 [Google Scholar]
  99. Violante S, IJlst L, te Brinke H, Tavares de Almeida I, Wanders RJ. 99.  et al. 2013. Carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase are involved in the mitochondrial synthesis and export of acylcarnitines. FASEB J. 27:2039–44 [Google Scholar]
  100. Violante S, IJlst L, van Lenthe H, de Almeida IT, Wanders RJ, Ventura FV. 100.  2010. Carnitine palmitoyltransferase 2: new insights on the substrate specificity and implications for acylcarnitine profiling. Biochim. Biophys. Acta 1802:728–32 [Google Scholar]
  101. Indiveri C, Tonazzi A, Palmieri F. 101.  1994. The reconstituted carnitine carrier from rat liver mitochondria: evidence for a transport mechanism different from that of the other mitochondrial translocators. Biochim. Biophys. Acta 1189:65–73 [Google Scholar]
  102. Wanders RJ, Ruiter JP, IJlst L, Waterham HR, Houten SM. 102.  2010. The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results. J. Inherit. Metab. Dis. 33:479–94 [Google Scholar]
  103. Ventura FV, Costa CG, Struys EA, Ruiter J, Allers P. 103.  et al. 1999. Quantitative acylcarnitine profiling in fibroblasts using [U-13C] palmitic acid: an improved tool for the diagnosis of fatty acid oxidation defects. Clin. Chim. Acta 281:1–17 [Google Scholar]
  104. Manning NJ, Olpin SE, Pollitt RJ, Webley J. 104.  1990. A comparison of [9,10-3H]palmitic and [9,10-3H]myristic acids for the detection of defects of fatty acid oxidation in intact cultured fibroblasts. J. Inherit. Metab. Dis. 13:58–68 [Google Scholar]
  105. Diekman EF, Ferdinandusse S, van der Pol L, Waterham HR, Ruiter JP. 105.  et al. 2015. Fatty acid oxidation flux predicts the clinical severity of VLCAD deficiency. Genet. Med. In press [Google Scholar]
  106. Exil VJ, Roberts RL, Sims H, McLaughlin JE, Malkin RA. 106.  et al. 2003. Very-long-chain acyl-coenzyme A dehydrogenase deficiency in mice. Circ. Res. 93:448–55 [Google Scholar]
  107. Exil VJ, Gardner CD, Rottman JN, Sims H, Bartelds B. 107.  et al. 2006. Abnormal mitochondrial bioenergetics and heart rate dysfunction in mice lacking very-long-chain acyl-CoA dehydrogenase. Am. J. Physiol. Heart Circ. Physiol. 290:H1289–97 [Google Scholar]
  108. ter Veld F, Primassin S, Hoffmann L, Mayatepek E, Spiekerkoetter U. 108.  2009. Corresponding increase in long-chain acyl-CoA and acylcarnitine after exercise in muscle from VLCAD mice. J. Lipid Res. 50:1556–62 [Google Scholar]
  109. Gustafsson AB, Gottlieb RA. 109.  2008. Heart mitochondria: gates of life and death. Cardiovasc. Res. 77:334–43 [Google Scholar]
  110. Bakermans AJ, Dodd MS, Nicolay K, Prompers JJ, Tyler DJ, Houten SM. 110.  2013. Myocardial energy shortage and unmet anaplerotic needs in the fasted long-chain acyl-CoA dehydrogenase knockout mouse. Cardiovasc. Res. 100:441–49 [Google Scholar]
  111. Bakermans AJ, Geraedts TR, van Weeghel M, Denis S, Ferraz MJ. 111.  et al. 2011. Fasting-induced myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knock-out mice is accompanied by impaired left ventricular function. Circ. Cardiovasc. Imaging 4:558–65 [Google Scholar]
  112. Cox KB, Liu J, Tian L, Barnes S, Yang Q, Wood PA. 112.  2009. Cardiac hypertrophy in mice with long-chain acyl-CoA dehydrogenase or very long-chain acyl-CoA dehydrogenase deficiency. Lab. Investig. 89:1348–54 [Google Scholar]
  113. Houten SM, Herrema H, te Brinke H, Denis S, Ruiter JP. 113.  et al. 2013. Impaired amino acid metabolism contributes to fasting-induced hypoglycemia in fatty acid oxidation defects. Hum. Mol. Genet. 22:5249–61 [Google Scholar]
  114. Schiffer SP, Prochazka M, Jezyk PF, Roderick TH, Yudkoff M, Patterson DF. 114.  1989. Organic aciduria and butyryl CoA dehydrogenase deficiency in BALB/cByJ mice. Biochem. Genet. 27:47–58 [Google Scholar]
  115. Wood PA, Amendt BA, Rhead WJ, Millington DS, Inoue F, Armstrong D. 115.  1989. Short-chain acyl-coenzyme A dehydrogenase deficiency in mice. Pediatr. Res. 25:38–43 [Google Scholar]
  116. Koizumi T, Nikaido H, Hayakawa J, Nonomura A, Yoneda T. 116.  1988. Infantile disease with microvesicular fatty infiltration of viscera spontaneously occurring in the C3H-H-2º strain of mouse with similarities to Reye's syndrome. Lab. Anim. 22:83–87 [Google Scholar]
  117. Kuwajima M, Kono N, Horiuchi M, Imamura Y, Ono A. 117.  et al. 1991. Animal model of systemic carnitine deficiency: analysis in C3H-H-2 degrees strain of mouse associated with juvenile visceral steatosis. Biochem. Biophys. Res. Commun. 174:1090–94 [Google Scholar]
  118. Nezu J, Tamai I, Oku A, Ohashi R, Yabuuchi H. 118.  et al. 1999. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion–dependent carnitine transporter. Nat. Genet. 21:91–94 [Google Scholar]
  119. Ji S, You Y, Kerner J, Hoppel CL, Schoeb TR. 119.  et al. 2008. Homozygous carnitine palmitoyltransferase 1b (muscle isoform) deficiency is lethal in the mouse. Mol. Genet. Metab. 93:314–22 [Google Scholar]
  120. Nyman LR, Cox KB, Hoppel CL, Kerner J, Barnoski BL. 120.  et al. 2005. Homozygous carnitine palmitoyltransferase 1a (liver isoform) deficiency is lethal in the mouse. Mol. Genet. Metab. 86:179–87 [Google Scholar]
  121. Ibdah JA, Paul H, Zhao Y, Binford S, Salleng K. 121.  et al. 2001. Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death. J. Clin. Investig. 107:1403–9 [Google Scholar]
  122. Schulz N, Himmelbauer H, Rath M, van Weeghel M, Houten S. 122.  et al. 2011. Role of medium- and short-chain L-3-hydroxyacyl-CoA dehydrogenase in the regulation of body weight and thermogenesis. Endocrinology 152:4641–51 [Google Scholar]
  123. Janssen U, Stoffel W. 123.  2002. Disruption of mitochondrial beta-oxidation of unsaturated fatty acids in the 3,2-trans-enoyl-CoA isomerase-deficient mouse. J. Biol. Chem. 277:19579–84 [Google Scholar]
  124. Miinalainen IJ, Schmitz W, Huotari A, Autio KJ, Soininen R. 124.  et al. 2009. Mitochondrial 2,4-dienoyl-CoA reductase deficiency in mice results in severe hypoglycemia with stress intolerance and unimpaired ketogenesis. PLOS Genet. 5:e1000543 [Google Scholar]
  125. Tolwani RJ, Hamm DA, Tian L, Sharer JD, Vockley J. 125.  et al. 2005. Medium-chain acyl-CoA dehydrogenase deficiency in gene-targeted mice. PLOS Genet. 1:e23 [Google Scholar]
  126. Xiong D, He H, James J, Tokunaga C, Powers C. 126.  et al. 2014. Cardiac-specific VLCAD deficiency induces dilated cardiomyopathy and cold intolerance. Am. J. Physiol. Heart Circ. Physiol. 306:H326–38 [Google Scholar]
  127. Orngreen MC, Norgaard MG, Sacchetti M, van Engelen BG, Vissing J. 127.  2004. Fuel utilization in patients with very long-chain acyl-coa dehydrogenase deficiency. Ann. Neurol. 56:279–83 [Google Scholar]
  128. Orngreen MC, Duno M, Ejstrup R, Christensen E, Schwartz M. 128.  et al. 2005. Fuel utilization in subjects with carnitine palmitoyltransferase 2 gene mutations. Ann. Neurol. 57:60–66 [Google Scholar]
  129. Derks TG, van Dijk TH, Grefhorst A, Rake JP, Smit GP. 129.  et al. 2008. Inhibition of mitochondrial fatty acid oxidation in vivo only slightly suppresses gluconeogenesis but enhances clearance of glucose in mice. Hepatology 47:1032–42 [Google Scholar]
  130. Williamson JR, Browning ET, Scholz R, Kreisberg RA, Fritz IB. 130.  1968. Inhibition of fatty acid stimulation of gluconeogenesis by (+)-decanoylcarnitine in perfused rat liver. Diabetes 17:194–208 [Google Scholar]
  131. Scrutton MC, Utter MF. 131.  1967. Pyruvate carboxylase. IX. Some properties of the activation by certain acyl derivatives of coenzyme A. J. Biol. Chem. 242:1723–35 [Google Scholar]
  132. Primassin S, ter Veld F, Mayatepek E, Spiekerkoetter U. 132.  2008. Carnitine supplementation induces acylcarnitine production in tissues of very long-chain acyl-CoA dehydrogenase-deficient mice, without replenishing low free carnitine. Pediatr. Res. 63:632–37 [Google Scholar]
  133. Tonin AM, Amaral AU, Busanello EN, Grings M, Castilho RF, Wajner M. 133.  2013. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria. J. Bioenerg. Biomembr. 45:47–57 [Google Scholar]
  134. Ventura FV, Ruiter J, IJlst L, de Almeida IT, Wanders RJ. 134.  2005. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects. Mol. Genet. Metab. 86:344–52 [Google Scholar]
  135. Ventura FV, Tavares de Almeida I, Wanders RJ. 135.  2007. Inhibition of adenine nucleotide transport in rat liver mitochondria by long-chain acyl-coenzyme A beta-oxidation intermediates. Biochem. Biophys. Res. Commun. 352:873–78 [Google Scholar]
  136. Bakermans AJ, van Weeghel M, Denis S, Nicolay K, Prompers JJ, Houten SM. 136.  2013. Carnitine supplementation attenuates myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice. J. Inherit. Metab. Dis. 36:973–81 [Google Scholar]
  137. Tucci S, Flogel U, Hermann S, Sturm M, Schafers M, Spiekerkoetter U. 137.  2014. Development and pathomechanisms of cardiomyopathy in very long-chain acyl-CoA dehydrogenase deficient (VLCAD−/−) mice. Biochim. Biophys. Acta 1842:677–85 [Google Scholar]
  138. Gelinas R, Thompson-Legault J, Bouchard B, Daneault C, Mansour A. 138.  et al. 2011. Prolonged QT interval and lipid alterations beyond beta-oxidation in very long-chain acyl-CoA dehydrogenase null mouse hearts. Am. J. Physiol. Heart Circ. Physiol. 301:H813–23 [Google Scholar]
  139. Diekman EF, van Weeghel M, Wanders RJ, Visser G, Houten SM. 139.  2014. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation–deficient mouse models. FASEB J. 28:2891–900 [Google Scholar]
  140. Spiekerkoetter U, Bastin J, Gillingham M, Morris A, Wijburg F, Wilcken B. 140.  2010. Current issues regarding treatment of mitochondrial fatty acid oxidation disorders. J. Inherit. Metab. Dis. 33:555–61 [Google Scholar]
  141. Corr PB, Creer MH, Yamada KA, Saffitz JE, Sobel BE. 141.  1989. Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J. Clin. Investig. 83:927–36 [Google Scholar]
  142. Primassin S, Tucci S, Herebian D, Seibt A, Hoffmann L. 142.  et al. 2010. Pre-exercise medium-chain triglyceride application prevents acylcarnitine accumulation in skeletal muscle from very-long-chain acyl-CoA-dehydrogenase-deficient mice. J. Inherit. Metab. Dis. 33:237–46 [Google Scholar]
  143. Gillingham MB, Scott B, Elliott D, Harding CO. 143.  2006. Metabolic control during exercise with and without medium-chain triglycerides (MCT) in children with long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency. Mol. Genet. Metab. 89:58–63 [Google Scholar]
  144. Behrend AM, Harding CO, Shoemaker JD, Matern D, Sahn DJ. 144.  et al. 2012. Substrate oxidation and cardiac performance during exercise in disorders of long chain fatty acid oxidation. Mol. Genet. Metab. 105:110–15 [Google Scholar]
  145. Roe CR, Yang BZ, Brunengraber H, Roe DS, Wallace M, Garritson BK. 145.  2008. Carnitine palmitoyltransferase II deficiency: successful anaplerotic diet therapy. Neurology 71:260–64 [Google Scholar]
  146. Djouadi F, Aubey F, Schlemmer D, Ruiter JP, Wanders RJ. 146.  et al. 2005. Bezafibrate increases very-long-chain acyl-CoA dehydrogenase protein and mRNA expression in deficient fibroblasts and is a potential therapy for fatty acid oxidation disorders. Hum. Mol. Genet. 14:2695–703 [Google Scholar]
  147. Bonnefont JP, Bastin J, Behin A, Djouadi F. 147.  2009. Bezafibrate for an inborn mitochondrial beta-oxidation defect. N. Engl. J. Med. 360:838–40 [Google Scholar]
  148. Bonnefont JP, Bastin J, Laforet P, Aubey F, Mogenet A. 148.  et al. 2010. Long-term follow-up of bezafibrate treatment in patients with the myopathic form of carnitine palmitoyltransferase 2 deficiency. Clin. Pharmacol. Ther. 88:101–8 [Google Scholar]
  149. Orngreen MC, Madsen KL, Preisler N, Andersen G, Vissing J, Laforet P. 149.  2014. Bezafibrate in skeletal muscle fatty acid oxidation disorders: a randomized clinical trial. Neurology 82:607–13 [Google Scholar]
  150. Wang G, McCain ML, Yang L, He A, Pasqualini FS. 150.  et al. 2014. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20:616–23 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021115-105045
Loading
/content/journals/10.1146/annurev-physiol-021115-105045
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error