1932

Abstract

Structural DNA nanotechnology is beginning to emerge as a widely accessible research tool to mechanistically study diverse biophysical processes. Enabled by scaffolded DNA origami in which a long single strand of DNA is weaved throughout an entire target nucleic acid assembly to ensure its proper folding, assemblies of nearly any geometric shape can now be programmed in a fully automatic manner to interface with biology on the 1–100-nm scale. Here, we review the major design and synthesis principles that have enabled the fabrication of a specific subclass of scaffolded DNA origami objects called wireframe assemblies. These objects offer unprecedented control over the nanoscale organization of biomolecules, including biomolecular copy numbers, presentation on convex or concave geometries, and internal versus external functionalization, in addition to stability in physiological buffer. To highlight the power and versatility of this synthetic structural biology approach to probing molecular and cellular biophysics, we feature its application to three leading areas of investigation: light harvesting and nanoscale energy transport, RNA structural biology, and immune receptor signaling, with an outlook toward unique mechanistic insight that may be gained in these areas in the coming decade.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-052118-115259
2019-05-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-052118-115259.html?itemId=/content/journals/10.1146/annurev-biophys-052118-115259&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Afonin KA, Cieply DJ, Leontis NB 2008. Specific RNA self-assembly with minimal paranemic motifs. J. Am. Chem. Soc. 130:93–102
    [Google Scholar]
  2. 2.
    Afonin KA, Viard M, Kagiampakis I, Case CL, Dobrovolskaia MA et al. 2015. Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles. ACS Nano 9:251–59
    [Google Scholar]
  3. 3.
    Akira S, Uematsu S, Takeuchi O 2006. Pathogen recognition and innate immunity. Cell 124:783–801
    [Google Scholar]
  4. 4.
    Albinsson B, Hannestad JK, Börjesson K 2012. Functionalized DNA nanostructures for light harvesting and charge separation. Coord. Chem. Rev. 256:2399–413
    [Google Scholar]
  5. 5.
    Anderson RM, Kwon M, Strobel SA 2007. Toward ribosomal RNA catalytic activity in the absence of protein. J. Mol. Evol. 64:472–83
    [Google Scholar]
  6. 6.
    Angelin A, Weigel S, Garrecht R, Meyer R, Bauer J et al. 2015. Multiscale origami structures as interface for cells. Angew. Chem. Int. Ed. Engl. 54:15813–17
    [Google Scholar]
  7. 7.
    Arenz S, Wilson DN 2016. Bacterial protein synthesis as a target for antibiotic inhibition. Cold Spring Harb. Perspect. Med. 6:a025361
    [Google Scholar]
  8. 8.
    Armitage BA 2005. Cyanine dye–DNA interactions: intercalation, groove binding, and aggregation. DNA Binders and Related Subjects MJ Waring, JB Chaires 55–76 Berlin/Heidelberg: Springer
    [Google Scholar]
  9. 9.
    Auffinger P, Bielecki L, Westhof E 2004. Symmetric K+ and Mg2+ ion-binding sites in the 5S rRNA loop E inferred from molecular dynamics simulations. J. Mol. Biol. 335:555–71
    [Google Scholar]
  10. 10.
    Avalos AM, Bilate AM, Witte MD, Tai AK, He J et al. 2014. Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells. J. Exp. Med. 211:365–79
    [Google Scholar]
  11. 11.
    Bachmann M, Rohrer U, Kundig T, Burki K, Hengartner H, Zinkernagel R 1993. The influence of antigen organization on B cell responsiveness. Science 262:1448–51
    [Google Scholar]
  12. 12.
    Bai XC, Martin TG, Scheres SH, Dietz H 2012. Cryo-EM structure of a 3D DNA-origami object. PNAS 109:20012–17
    [Google Scholar]
  13. 13.
    Ban N, Nissen P, Hansen J, Moore PB, Steitz TA 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–20
    [Google Scholar]
  14. 14.
    Banal JL, Kondo T, Veneziano R, Bathe M, Schlau-Cohen GS 2017. Photophysics of J-aggregate-mediated energy transfer on DNA. J. Phys. Chem. Lett. 8:5827–33
    [Google Scholar]
  15. 15.
    Bath J, Turberfield AJ 2007. DNA nanomachines. Nat. Nanotechnol. 2:275–84
    [Google Scholar]
  16. 16.
    Bennett NR, Zwick DB, Courtney AH, Kiessling LL 2015. Multivalent antigens for promoting B and T cell activation. ACS Chem. Biol. 10:1817–24
    [Google Scholar]
  17. 17.
    Benson E, Mohammed A, Bosco A, Teixeira AI, Orponen P, Hogberg B 2016. Computer-aided production of scaffolded DNA nanostructures from flat sheet meshes. Angew. Chem. Int. Ed. Engl. 55:8869–72
    [Google Scholar]
  18. 18.
    Benson E, Mohammed A, Gardell J, Masich S, Czeizler E et al. 2015. DNA rendering of polyhedral meshes at the nanoscale. Nature 523:441–44
    [Google Scholar]
  19. 19.
    Boulais É, Sawaya NPD, Veneziano R, Andreoni A, Banal JL et al. 2017. Programmed coherent coupling in a synthetic DNA-based excitonic circuit. Nat. Mater. 17:159–66
    [Google Scholar]
  20. 20.
    Bricker WP, Banal JL, Stone MB, Bathe M 2018. Molecular model of J-aggregated pseudoisocyanine fibers. J. Chem. Phys. 149:024905
    [Google Scholar]
  21. 21.
    Brubaker SW, Bonham KS, Zanoni I, Kagan JC 2015. Innate immune pattern recognition: a cell biological perspective. Ann. Rev. Immunol. 33:257–90
    [Google Scholar]
  22. 22.
    Buckhout-White S, Spillmann CM, Algar WR, Khachatrian A, Melinger JS et al. 2014. Assembling programmable FRET-based photonic networks using designer DNA scaffolds. Nat. Commun. 5:5615
    [Google Scholar]
  23. 23.
    Burkhardt DH, Rouskin S, Zhang Y, Li GW, Weissman JS, Gross CA 2017. Operon mRNAs are organized into ORF-centric structures that predict translation efficiency. eLife 6:e22037
    [Google Scholar]
  24. 24.
    Cai H, Muller J, Depoil D, Mayya V, Sheetz MP et al. 2018. Full control of ligand positioning reveals spatial thresholds for T cell receptor triggering. Nat. Nanotechnol. 13:610–17
    [Google Scholar]
  25. 25.
    Cannon BL, Patten LK, Kellis DL, Davis PH, Lee J et al. 2018. Large Davydov splitting and strong fluorescence suppression: an investigation of exciton delocalization in DNA-templated Holliday junction dye aggregates. J. Phys. Chem. 122:2086–95
    [Google Scholar]
  26. 26.
    Carbone CB, Kern N, Fernandes RA, Hui E, Su X et al. 2017. In vitro reconstitution of T cell receptor-mediated segregation of the CD45 phosphatase. PNAS 114:E9338–45
    [Google Scholar]
  27. 27.
    Carter R, Fearon D 1992. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256:105–7
    [Google Scholar]
  28. 28.
    Castro CE, Kilchherr F, Kim DN, Shiao EL, Wauer T et al. 2011. A primer to scaffolded DNA origami. Nat. Methods 8:221–29
    [Google Scholar]
  29. 29.
    Chan RT, Robart AR, Rajashankar KR, Pyle AM, Toor N 2012. Crystal structure of a group II intron in the pre-catalytic state. Nat. Struct. Mol. Biol. 19:555–57
    [Google Scholar]
  30. 30.
    Chen JH, Seeman NC 1991. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350:631–33
    [Google Scholar]
  31. 31.
    Cherezov V, Clogston J, Papiz MZ, Caffrey M 2006. Room to move: Crystallizing membrane proteins in swollen lipidic mesophases. J. Mol. Biol. 357:1605–18
    [Google Scholar]
  32. 32.
    Chevalier A, Silva DA, Rocklin GJ, Hicks DR, Vergara R et al. 2017. Massively parallel de novo protein design for targeted therapeutics. Nature 550:74–79
    [Google Scholar]
  33. 33.
    Cochran JR, Cameron TO, Stone JD, Lubetsky JB, Stern LJ 2001. Receptor proximity, not intermolecular orientation, is critical for triggering T cell activation. J. Biol. Chem. 276:28068–74
    [Google Scholar]
  34. 34.
    Comandur R, Olson ED, Musier-Forsyth K 2017. Conservation of tRNA mimicry in the 5′-untranslated region of distinct HIV-1 subtypes. RNA 23:1850–59
    [Google Scholar]
  35. 35.
    Cunningham PD, Bricker WP, Díaz SA, Medintz IL, Bathe M, Melinger JS 2017. Optical determination of the electronic coupling and intercalation geometry of thiazole orange homodimer in DNA. J. Chem. Phys. 147:055101
    [Google Scholar]
  36. 36.
    Czapar AE, Tiu BDB, Veliz FA, Pokorski JK, Steinmetz NF 2018. Slow-release formulation of cowpea mosaic virus for in situ vaccine delivery to treat ovarian cancer. Adv. Sci. 5:1700991
    [Google Scholar]
  37. 37.
    Daher M, Mustoe AM, Morriss-Andrews A, Brooks CL III, Walter NG 2017. Tuning RNA folding and function through rational design of junction topology. Nucleic Acids Res 45:9706–15
    [Google Scholar]
  38. 38.
    Das R, Baker D 2007. Automated de novo prediction of native-like RNA tertiary structures. PNAS 104:14664–69
    [Google Scholar]
  39. 39.
    Dietz H, Douglas SM, Shih WM 2009. Folding DNA into twisted and curved nanoscale shapes. Science 325:725–30
    [Google Scholar]
  40. 40.
    Doh J, Irvine DJ 2006. Immunological synapse arrays: patterned protein surfaces that modulate immunological synapse structure formation in T cells. PNAS 103:5700–5
    [Google Scholar]
  41. 41.
    Douglas SM, Bachelet I, Church GM 2012. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–34
    [Google Scholar]
  42. 42.
    Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F, Shih WM 2009. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–18
    [Google Scholar]
  43. 43.
    Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM 2009. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37:5001–6
    [Google Scholar]
  44. 44.
    Dutta PK, Varghese R, Nangreave J, Lin S, Yan H, Liu Y 2011. DNA-directed artificial light-harvesting antenna. J. Am. Chem. Soc. 133:11985–93
    [Google Scholar]
  45. 45.
    Ellington AD, Szostak JW 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–22
    [Google Scholar]
  46. 46.
    Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T et al. 2007. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–86
    [Google Scholar]
  47. 47.
    Ensslen P, Wagenknecht H-A 2015. One-dimensional multichromophor arrays based on DNA: from self-assembly to light-harvesting. Acc. Chem. Res. 48:2724–33
    [Google Scholar]
  48. 48.
    Fang X, Wang J, O'Carroll IP, Mitchell M, Zuo X et al. 2013. An unusual topological structure of the HIV-1 Rev response element. Cell 155:594–605
    [Google Scholar]
  49. 49.
    Feynman RP 1959. There's plenty of room at the bottom. Eng. Sci 23:522–36
    [Google Scholar]
  50. 50.
    Flores SC, Altman RB 2010. Turning limited experimental information into 3D models of RNA. RNA 16:1769–78
    [Google Scholar]
  51. 51.
    Forster AC, Church GM 2006. Towards synthesis of a minimal cell. Mol. Syst. Biol. 2:45
    [Google Scholar]
  52. 52.
    Franklin RE, Gosling RG 1953. Molecular configuration in sodium thymonucleate. Nature 171:740–41
    [Google Scholar]
  53. 53.
    Franz KM, Kagan JC 2017. Innate immune receptors as competitive determinants of cell fate. Mol. Cell 66:750–60
    [Google Scholar]
  54. 54.
    Fu TJ, Seeman NC 1993. DNA double-crossover molecules. Biochemistry 32:3211–20
    [Google Scholar]
  55. 55.
    Funke JJ, Ketterer P, Lieleg C, Schunter S, Korber P, Dietz H 2016. Uncovering the forces between nucleosomes using DNA origami. Sci. Adv. 2:e1600974
    [Google Scholar]
  56. 56.
    Gangloff SC, Guenounou M 2004. Toll-like receptors and immune response in allergic disease. Clin. Rev. Allergy Immunol. 26:115–25
    [Google Scholar]
  57. 57.
    Garmann RF, Gopal A, Athavale SS, Knobler CM, Gelbart WM, Harvey SC 2015. Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy. RNA 21:877–86
    [Google Scholar]
  58. 58.
    Geary C, Rothemund PW, Andersen ES 2014. RNA nanostructures. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345:799–804
    [Google Scholar]
  59. 59.
    Glazer AN 1984. Phycobilisome a macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta Rev. Bioenerg. 768:29–51
    [Google Scholar]
  60. 60.
    Glazer AN 1985. Light harvesting by phycobilisomes. Annu. Rev. Biophys. Biophys. Chem. 14:47–77
    [Google Scholar]
  61. 61.
    Gopinath A, Rothemund PW 2014. Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays. ACS Nano 8:12030–40
    [Google Scholar]
  62. 62.
    Gothelf KV 2017. Chemical modifications and reactions in DNA nanostructures. MRS Bull 42:897–903
    [Google Scholar]
  63. 63.
    Green R, Noller HF 1996. In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function. RNA 2:1011–21
    [Google Scholar]
  64. 64.
    Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S 1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–57
    [Google Scholar]
  65. 65.
    Haedler AT, Kreger K, Issac A, Wittmann B, Kivala M et al. 2015. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature 523:196–99
    [Google Scholar]
  66. 66.
    Han D, Qi X, Myhrvold C, Wang B, Dai M et al. 2017. Single-stranded DNA and RNA origami. Science 358:6369
    [Google Scholar]
  67. 67.
    Han DR, Pal S, Nangreave J, Deng ZT, Liu Y, Yan H 2011. DNA origami with complex curvatures in three-dimensional space. Science 332:342–46
    [Google Scholar]
  68. 68.
    Hannestad JK, Sandin P, Albinsson B 2008. Self-assembled DNA photonic wire for long-range energy transfer. J. Am. Chem. Soc. 130:15889–95
    [Google Scholar]
  69. 69.
    Hartman NC, Groves JT 2011. Signaling clusters in the cell membrane. Curr. Opin. Cell Biol. 23:370–76
    [Google Scholar]
  70. 70.
    Heilemann M, Tinnefeld P, Sanchez Mosteiro G, Garcia Parajo M, Van Hulst NF, Sauer M 2004. Multistep energy transfer in single molecular photonic wires. J. Am. Chem. Soc. 126:6514–15
    [Google Scholar]
  71. 71.
    Hemmig EA, Creatore C, Wünsch B, Hecker L, Mair P et al. 2016. Programming light-harvesting efficiency using DNA origami. Nano Lett 16:2369–74
    [Google Scholar]
  72. 72.
    Henrickson SE, Mempel TR, Mazo IB, Liu B, Artyomov MN et al. 2008. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat. Immunol. 9:282–91
    [Google Scholar]
  73. 73.
    Hofacker IL 2003. Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–31
    [Google Scholar]
  74. 74.
    Hoiberg HC, Sparvath SM, Andersen VL, Kjems J, Andersen ES 2018. An RNA origami octahedron with intrinsic siRNAs for potent gene knockdown. Biotechnol. J. 26:e1700634
    [Google Scholar]
  75. 75.
    Holliday R 1964. Mechanism for gene conversion in fungi. Genet. Res. 5:282–307
    [Google Scholar]
  76. 76.
    Holmes EC 2009. The evolutionary genetics of emerging viruses. Annu. Rev. Ecol. Evol. Syst. 40:353–72
    [Google Scholar]
  77. 77.
    Horton HM, Bernett MJ, Pong E, Peipp M, Karki S et al. 2008. Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res 68:8049–57
    [Google Scholar]
  78. 78.
    Horton HM, Chu SY, Ortiz EC, Pong E, Cemerski S et al. 2011. Antibody-mediated coengagement of FcγRIIb and B cell receptor complex suppresses humoral immunity in systemic lupus erythematosus. J. Immunol. 186:4223–33
    [Google Scholar]
  79. 79.
    Huang L, Lemos HP, Li L, Li M, Chandler PR et al. 2012. Engineering DNA nanoparticles as immunomodulatory reagents that activate regulatory T cells. J. Immunol. 188:4913–20
    [Google Scholar]
  80. 80.
    Isaacs FJ, Dwyer DJ, Collins JJ 2006. RNA synthetic biology. Nat. Biotechnol. 24:545–54
    [Google Scholar]
  81. 81.
    Janeway CA 1992. The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu. Rev. Immunol. 10:645–74
    [Google Scholar]
  82. 82.
    Jenner LB, Demeshkina N, Yusupova G, Yusupov M 2010. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 17:555–60
    [Google Scholar]
  83. 83.
    Johansson HE, Liljas L, Uhlenbeck OC 1997. RNA recognition by the MS2 phage coat protein. Semin. Virol. 8:176–85
    [Google Scholar]
  84. 84.
    Johnson-Buck A, Nangreave J, Kim DN, Bathe M, Yan H, Walter NG 2013. Super-resolution fingerprinting detects chemical reactions and idiosyncrasies of single DNA pegboards. Nano Lett 13:728–33
    [Google Scholar]
  85. 85.
    Jun H, Shepherd TR, Zhang K, Bricker WP, Li S et al. 2019. Automated sequence design of 3D polyhedral wireframe DNA origami with honeycomb edges. ACS Nano 13:2083–93
    [Google Scholar]
  86. 86.
    Jun H, Zhang F, Shepherd TR, Ratanalert S, Qi X et al. 2019. Autonomously designed free-form 2D DNA Origami. Sci. Adv. 5:1eaav0655
    [Google Scholar]
  87. 87.
    Jungmann R, Steinhauer C, Scheible M, Kuzyk A, Tinnefeld P, Simmel FC 2010. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 10:4756–61
    [Google Scholar]
  88. 88.
    Karlsson HJ, Eriksson M, Perzon E, Åkerman B, Lincoln P, Westman G 2003. Groove‐binding unsymmetrical cyanine dyes for staining of DNA: syntheses and characterization of the DNA‐binding. Nucleic Acids Res 31:6227–34
    [Google Scholar]
  89. 89.
    Katz ZB, English BP, Lionnet T, Yoon YJ, Monnier N et al. 2016. Mapping translation ‘hot-spots’ in live cells by tracking single molecules of mRNA and ribosomes. eLife 5:e10415
    [Google Scholar]
  90. 90.
    Kazantsev AV, Krivenko AA, Harrington DJ, Holbrook SR, Adams PD, Pace NR 2005. Crystal structure of a bacterial ribonuclease P RNA. PNAS 102:13392–97
    [Google Scholar]
  91. 91.
    Keane SC, Heng X, Lu K, Kharytonchyk S, Ramakrishnan V et al. 2015. RNA structure. Structure of the HIV-1 RNA packaging signal. Science 348:917–21
    [Google Scholar]
  92. 92.
    Kim DN, Kilchherr F, Dietz H, Bathe M 2012. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res 40:2862–68
    [Google Scholar]
  93. 93.
    Ko SH, Su M, Zhang C, Ribbe AE, Jiang W, Mao C 2010. Synergistic self-assembly of RNA and DNA molecules. Nat. Chem. 2:1050–55
    [Google Scholar]
  94. 94.
    Kouskoff V, Famiglietti S, Lacaud G, Lang P, Rider JE et al. 1998. Antigens varying in affinity for the B cell receptor induce differential B lymphocyte responses. J. Exp. Med. 188:1453–64
    [Google Scholar]
  95. 95.
    Krieg E, Shih WM 2018. Selective nascent polymer catch-and-release enables scalable isolation of multi-kilobase single-stranded DNA. Angew. Chem. Int. Ed. Engl. 57:714–18
    [Google Scholar]
  96. 96.
    Krishnan Y, Bathe M 2012. Designer nucleic acids to probe and program the cell. Trends Cell Biol 22:624–33
    [Google Scholar]
  97. 97.
    Le JV, Luo Y, Darcy MA, Lucas CR, Goodwin MF et al. 2016. Probing nucleosome stability with a DNA origami nanocaliper. ACS Nano 10:7073–84
    [Google Scholar]
  98. 98.
    Li S, Jiang Q, Liu S, Zhang Y, Tian Y et al. 2018. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36:258–64
    [Google Scholar]
  99. 99.
    Li X, Yang X, Qi J, Seeman NC 1996. Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Am. Chem. Soc. 118:6131–40
    [Google Scholar]
  100. 100.
    Lin C, Perrault SD, Kwak M, Graf F, Shih WM 2013. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res 41:e40
    [Google Scholar]
  101. 101.
    Liu R, Paxton WA, Choe S, Ceradini D, Martin SR et al. 1996. Homozygous defect in HIV-1 co-receptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–77
    [Google Scholar]
  102. 102.
    Liu W, Halverson J, Tian Y, Tkachenko AV, Gang O 2016. Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem. 8:867–73
    [Google Scholar]
  103. 103.
    Liu X, Xu Y, Yu T, Clifford C, Liu Y et al. 2012. A DNA nanostructure platform for directed assembly of synthetic vaccines. Nano Lett 12:4254–59
    [Google Scholar]
  104. 104.
    Liu Y, Gonen S, Gonen T, Yeates TO 2018. Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system. PNAS 115:3362–67
    [Google Scholar]
  105. 105.
    Ma Y-Z, Cogdell RJ, Gillbro T 1997. Energy transfer and exciton annihilation in the B800−850 antenna complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila (strain 10050). A femtosecond transient absorption study. J. Phys. Chem. 101:1087–95
    [Google Scholar]
  106. 106.
    Maiuri M, Ostroumov EE, Saer RG, Blankenship RE, Scholes GD 2018. Coherent wavepackets in the Fenna-Matthews-Olson complex are robust to excitonic-structure perturbations caused by mutagenesis. Nat. Chem. 10:177–83
    [Google Scholar]
  107. 107.
    Manz BN, Jackson BL, Petit RS, Dustin ML, Groves J 2011. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters. PNAS 108:9089–94
    [Google Scholar]
  108. 108.
    Marcheschi RJ, Tonelli M, Kumar A, Butcher SE 2011. Structure of the HIV-1 frameshift site RNA bound to a small molecule inhibitor of viral replication. ACS Chem. Biol. 6:857–64
    [Google Scholar]
  109. 109.
    Markova LI, Malinovskii VL, Patsenker LD, Haner R 2013. J- vs. H-type assembly: pentamethine cyanine (Cy5) as a near-IR chiroptical reporter. Chem. Commun. 49:5298–300
    [Google Scholar]
  110. 110.
    Marras AE, Zhou L, Su HJ, Castro CE 2015. Programmable motion of DNA origami mechanisms. PNAS 112:713–18
    [Google Scholar]
  111. 111.
    Marshak-Rothstein A 2006. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6:823–35
    [Google Scholar]
  112. 112.
    Massey M, Ancona MG, Medintz IL, Algar WR 2015. Time-gated DNA photonic wires with Förster resonance energy transfer cascades initiated by a luminescent terbium donor. ACS Photonics 2:639–52
    [Google Scholar]
  113. 113.
    Medzhitov R 2002. Decoding the patterns of self and non-self by the innate immune system. Science 296:298–300
    [Google Scholar]
  114. 114.
    Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM 2005. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127:4223–31
    [Google Scholar]
  115. 115.
    Miao Z, Adamiak RW, Antczak M, Batey RT, Becka AJ et al. 2017. RNA-puzzles round III: 3D RNA structure prediction of five riboswitches and one ribozyme. RNA 23:655–72
    [Google Scholar]
  116. 116.
    Miao Z, Westhof E 2017. RNA structure: advances and assessment of 3D structure prediction. Annu. Rev. Biophys. 46:483–503
    [Google Scholar]
  117. 117.
    Mogensen TH 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22:240–73
    [Google Scholar]
  118. 118.
    Monshouwer R, Abrahamsson M, van Mourik F, van Grondelle R 1997. Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J. Phys. Chem. 101:7241–48
    [Google Scholar]
  119. 119.
    Mullineaux CW 2007. Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth. Res. 95:175–82
    [Google Scholar]
  120. 120.
    Nafisi PM, Aksel T, Douglas SM 2018. Construction of a novel phagemid to produce custom DNA origami scaffolds. Synth. Biol. 3:ysy015
    [Google Scholar]
  121. 121.
    Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW 2010. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464:441–44
    [Google Scholar]
  122. 122.
    Nickels PC, Wunsch B, Holzmeister P, Bae W, Kneer LM et al. 2016. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. Science 354:305–7
    [Google Scholar]
  123. 123.
    Nicoli F, Barth A, Bae W, Neukirchinger F, Crevenna AH et al. 2017. Directional photonic wire mediated by homo-Förster resonance energy transfer on a DNA origami platform. ACS Nano 11:11264–72
    [Google Scholar]
  124. 124.
    Nikolay R, Hilal T, Qin B, Mielke T, Burger J et al. 2018. Structural visualization of the formation and activation of the 50S ribosomal subunit during in vitro reconstitution. Mol. Cell 70:881–93.e3
    [Google Scholar]
  125. 125.
    Orelle C, Carlson ED, Szal T, Florin T, Jewett MC, Mankin AS 2015. Protein synthesis by ribosomes with tethered subunits. Nature 524:119–24
    [Google Scholar]
  126. 126.
    Ouyang X, Li J, Liu H, Zhao B, Yan J et al. 2013. Rolling circle amplification-based DNA Origami nanostructures for intracellular delivery of immunostimulatory drugs. Small 9:3082–87
    [Google Scholar]
  127. 127.
    Paige JS, Wu KY, Jaffrey SR 2011. RNA mimics of green fluorescent protein. Science 333:642–46
    [Google Scholar]
  128. 128.
    Pan K, Boulais E, Yang L, Bathe M 2014. Structure-based model for light-harvesting properties of nucleic acid nanostructures. Nucleic Acids Res 42:2159–70
    [Google Scholar]
  129. 129.
    Pan K, Bricker WP, Ratanalert S, Bathe M 2017. Structure and conformational dynamics of scaffolded DNA origami nanoparticles. Nucleic Acids Res 45:6284–98
    [Google Scholar]
  130. 130.
    Pan K, Kim DN, Zhang F, Adendorff MR, Yan H, Bathe M 2014. Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nat. Commun. 5:5578
    [Google Scholar]
  131. 131.
    Pardoll DM 2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12:252–64
    [Google Scholar]
  132. 132.
    Parks JW, Kappel K, Das R, Stone MD 2017. Single-molecule FRET-Rosetta reveals RNA structural rearrangements during human telomerase catalysis. RNA 23:175–88
    [Google Scholar]
  133. 133.
    Pinheiro AV, Han D, Shih WM, Yan H 2011. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6:763–72
    [Google Scholar]
  134. 134.
    Praetorius F, Kick B, Behler KL, Honemann MN, Weuster-Botz D, Dietz H 2017. Biotechnological mass production of DNA origami. Nature 552:84–87
    [Google Scholar]
  135. 135.
    Pullerits T, Chachisvilis M, Sundström V 1996. Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J. Phys. Chem. 100:10787–92
    [Google Scholar]
  136. 136.
    Punekar AS, Liljeruhm J, Shepherd TR, Forster AC, Selmer M 2013. Structural and functional insights into the molecular mechanism of rRNA m6A methyltransferase RlmJ. Nucleic Acids Res 41:9537–48
    [Google Scholar]
  137. 137.
    Punekar AS, Shepherd TR, Liljeruhm J, Forster AC, Selmer M 2012. Crystal structure of RlmM, the 2′O-ribose methyltransferase for C2498 of Escherichia coli 23S rRNA. Nucleic Acids Res 40:10507–20
    [Google Scholar]
  138. 138.
    Pyle AM 2016. Group II intron self-splicing. Annu. Rev. Biophys. 45:183–205
    [Google Scholar]
  139. 139.
    Ramani V, Qiu R, Shendure J 2015. High-throughput determination of RNA structure by proximity ligation. Nat. Biotechnol. 33:980–84
    [Google Scholar]
  140. 140.
    Reiter NJ, Osterman A, Torres-Larios A, Swinger KK, Pan T, Mondragon A 2010. Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature 468:784–89
    [Google Scholar]
  141. 141.
    Romero E, Novoderezhkin VI, van Grondelle R 2017. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543:355–65
    [Google Scholar]
  142. 142.
    Rosenberg JM, Seeman NC, Kim JJP, Suddath FL, Nicholas HB, Rich A 1973. Double helix at atomic resolution. Nature 243:150–54
    [Google Scholar]
  143. 143.
    Rothemund PWK 2006. Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302
    [Google Scholar]
  144. 144.
    Sa-Ardyen P, Vologodskii AV, Seeman NC 2003. The flexibility of DNA double crossover molecules. Biophys. J. 84:3829–37
    [Google Scholar]
  145. 145.
    Sacca B, Ishitsuka Y, Meyer R, Sprengel A, Schoneweiss EC et al. 2015. Reversible reconfiguration of DNA origami nanochambers monitored by single-molecule FRET. Angew. Chem. Int. Ed. Engl. 54:3592–97
    [Google Scholar]
  146. 146.
    Sacca B, Meyer R, Niemeyer CM 2009. Temperature-dependent FRET spectroscopy for the high-throughput analysis of self-assembled DNA nanostructures in real time. Nat. Protoc. 4:271–85
    [Google Scholar]
  147. 147.
    Salazar F, Ghaemmaghami AM 2013. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells. Front. Immunol. 4:356
    [Google Scholar]
  148. 148.
    Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M et al. 2000. Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102:615–23
    [Google Scholar]
  149. 149.
    Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R 2011. Lessons from nature about solar light harvesting. Nat. Chem. 3:763–74
    [Google Scholar]
  150. 150.
    Schreiber RD, Old LJ, Smyth MJ 2011. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331:1565–70
    [Google Scholar]
  151. 151.
    Seeman NC 1982. Nucleic acid junctions and lattices. J. Theor. Biol. 99:237–47
    [Google Scholar]
  152. 152.
    Seeman NC 2010. Nanomaterials based on DNA. Annu. Rev. Biochem. 79:65–87
    [Google Scholar]
  153. 153.
    Seeman NC, Rosenberg JM, Suddath FL, Kim JJ, Rich A 1976. RNA double-helical fragments at atomic resolution. I. The crystal and molecular structure of sodium adenylyl-3′,5′-uridine hexahydrate. J. Mol. Biol. 104:109–44
    [Google Scholar]
  154. 154.
    Seeman NC, Sleiman HF 2017. DNA nanotechnology. Nat. Rev. Mater. 3:17068
    [Google Scholar]
  155. 155.
    Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP et al. 2009. Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326:1412–15
    [Google Scholar]
  156. 156.
    Seifert JL, Connor RE, Kushon SA, Wang M, Armitage BA 1999. Spontaneous assembly of helical cyanine dye aggregates on DNA nanotemplates. J. Am. Chem. Soc. 121:2987–95
    [Google Scholar]
  157. 157.
    Serganov A, Patel DJ 2007. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Genet. 8:776–90
    [Google Scholar]
  158. 158.
    Severcan I, Geary C, Chworos A, Voss N, Jacovetty E, Jaeger L 2010. A polyhedron made of tRNAs. Nat. Chem. 2:772–79
    [Google Scholar]
  159. 159.
    Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW et al. 2006. Aptamers evolved from live cells as effective molecular probes for cancer study. PNAS 103:11838–43
    [Google Scholar]
  160. 160.
    Shapiro BA, Le Grice SF 2016. Advances in RNA structure determination. Methods 103:1–3
    [Google Scholar]
  161. 161.
    Shaw A, Benson E, Hogberg B 2015. Purification of functionalized DNA origami nanostructures. ACS Nano 9:4968–75
    [Google Scholar]
  162. 162.
    Shaw A, Lundin V, Petrova E, Fordos F, Benson E et al. 2014. Spatial control of membrane receptor function using ligand nanocalipers. Nat. Methods 11:841–46
    [Google Scholar]
  163. 163.
    Shepherd TR, Du L, Liljeruhm J, Samudyata, Wang J et al. 2017. De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Res 45:10895–905
    [Google Scholar]
  164. 163a.
    Shepherd TR, Du RR, Huang H, Wamhoff E-C, Bathe M 2019. Bioproduction of pure, kilobase-scale single-stranded DNA. Sci. Rep. 9:6121
    [Google Scholar]
  165. 164.
    Shu D, Shu Y, Haque F, Abdelmawla S, Guo P 2011. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat. Nanotechnol. 6:658–67
    [Google Scholar]
  166. 165.
    Siegfried NA, Busan S, Rice GM, Nelson JA, Weeks KM 2014. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11:959–65
    [Google Scholar]
  167. 166.
    Sil D, Lee JB, Luo D, Holowka D, Baird B 2007. Trivalent ligands with rigid DNA spacers reveal structural requirements for IgE receptor signaling in RBL mast cells. ACS Chem. Biol. 2:674–84
    [Google Scholar]
  168. 167.
    Simmel FC, Schulman R 2017. Self-organizing materials built with DNA. MRS Bull 42:913–19
    [Google Scholar]
  169. 168.
    Simmons CR, Zhang F, Birktoft JJ, Qi X, Han D et al. 2016. Construction and structure determination of a three-dimensional DNA crystal. J. Am. Chem. Soc. 138:10047–54
    [Google Scholar]
  170. 169.
    Snodin BE, Randisi F, Mosayebi M, Sulc P, Schreck JS et al. 2015. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J. Chem. Phys. 142:234901
    [Google Scholar]
  171. 170.
    Sobczak JPJ, Martin TG, Gerling T, Dietz H 2012. Rapid folding of DNA into nanoscale shapes at constant temperature. Science 338:1458–61
    [Google Scholar]
  172. 171.
    Sovenyhazy KM, Bordelon JA, Petty JT 2003. Spectroscopic studies of the multiple binding modes of a trimethine‐bridged cyanine dye with DNA. Nucleic Acids Res 31:2561–69
    [Google Scholar]
  173. 172.
    Sprengel A, Lill P, Stegemann P, Bravo-Rodriguez K, Schoneweiss EC et al. 2017. Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions. Nat. Commun. 8:14472
    [Google Scholar]
  174. 173.
    Stein IH, Schuller V, Bohm P, Tinnefeld P, Liedl T 2011. Single-molecule FRET ruler based on rigid DNA origami blocks. ChemPhysChem 12:689–95
    [Google Scholar]
  175. 174.
    Steitz TA 2008. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol. 9:242–53
    [Google Scholar]
  176. 175.
    Strauss MT, Schueder F, Haas D, Nickels PC, Jungmann R 2018. Quantifying absolute addressability in DNA origami with molecular resolution. Nat. Commun. 9:1600
    [Google Scholar]
  177. 176.
    Sulc P, Romano F, Ouldridge TE, Rovigatti L, Doye JP, Louis AA 2012. Sequence-dependent thermodynamics of a coarse-grained DNA model. J. Chem. Phys. 137:135101
    [Google Scholar]
  178. 177.
    Surana S, Shenoy AR, Krishnan Y 2015. Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nat. Nanotechnol. 10:741–47
    [Google Scholar]
  179. 178.
    Talkington MW, Siuzdak G, Williamson JR 2005. An assembly landscape for the 30S ribosomal subunit. Nature 438:628–32
    [Google Scholar]
  180. 179.
    Thyrhaug E, Tempelaar R, Alcocer MJP, Žídek K, Bína D et al. 2018. Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex. Nat. Chem. 10:780–86
    [Google Scholar]
  181. 180.
    Timm C, Niemeyer CM 2015. Assembly and purification of enzyme-functionalized DNA origami structures. Angew. Chem. Int. Ed. Engl. 54:6745–50
    [Google Scholar]
  182. 181.
    Tom JK, Dotsey EY, Wong HY, Stutts L, Moore T et al. 2015. Modulation of innate immune responses via covalently linked TLR agonists. ACS Cent. Sci. 1:439–48
    [Google Scholar]
  183. 182.
    Tomescu AI, Robb NC, Hengrung N, Fodor E, Kapanidis AN 2014. Single-molecule FRET reveals a corkscrew RNA structure for the polymerase-bound influenza virus promoter. PNAS 111:E3335–42
    [Google Scholar]
  184. 183.
    Torres-Larios A, Swinger KK, Krasilnikov AS, Pan T, Mondragon A 2005. Crystal structure of the RNA component of bacterial ribonuclease P. Nature 437:584–87
    [Google Scholar]
  185. 184.
    Tronrud DE, Wen J, Gay L, Blankenship RE 2009. The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth. Res. 100:79–87
    [Google Scholar]
  186. 185.
    Tuerk C, Gold L 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–10
    [Google Scholar]
  187. 186.
    Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H et al. 2016. Designer nanoscale DNA assemblies programmed from the top down. Science 352:1534
    [Google Scholar]
  188. 187.
    Veneziano R, Shepherd TR, Ratanalert S, Bellou L, Tao C, Bathe M 2018. In vitro synthesis of gene-length single-stranded DNA. Sci. Rep. 8:6548
    [Google Scholar]
  189. 188.
    Vybornyi M, Nussbaumer AL, Langenegger SM, Häner R 2014. Assembling multiporphyrin stacks inside the DNA double helix. Bioconjug. Chem. 25:1785–93
    [Google Scholar]
  190. 189.
    Watson JD, Crick FHC 1953. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–38
    [Google Scholar]
  191. 190.
    Westhof E, Masquida B, Jaeger L 1996. RNA tectonics: towards RNA design. Fold Des 1:R78–88
    [Google Scholar]
  192. 191.
    Wilkins MHF, Stokes AR, Wilson HR 1953. Molecular structure of deoxypentose nucleic acids. Nature 171:738–40
    [Google Scholar]
  193. 192.
    Wilson DN 2014. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12:35–48
    [Google Scholar]
  194. 193.
    Wimberly BT, Brodersen DE, Clemons WM Jr., Morgan-Warren RJ, Carter AP et al. 2000. Structure of the 30S ribosomal subunit. Nature 407:327–39
    [Google Scholar]
  195. 194.
    Winfree E, Liu F, Wenzler LA, Seeman NC 1998. Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–44
    [Google Scholar]
  196. 195.
    Woehrstein JB, Strauss MT, Ong LL, Wei B, Zhang DY et al. 2017. Sub-100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA. Sci. Adv. 3:e1602128
    [Google Scholar]
  197. 196.
    Wu S, Schuster M, Bagshaw CR, Rant U, Burley GA 2011. Site‐specific assembly of DNA‐based photonic wires by using programmable polyamides. Angew. Chem. Int. Ed. Engl. 50:2712–15
    [Google Scholar]
  198. 197.
    Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH 2003. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301:1882–84
    [Google Scholar]
  199. 198.
    Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN et al. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–96
    [Google Scholar]
  200. 199.
    Yusupova GZ, Yusupov MM, Cate JH, Noller HF 2001. The path of messenger RNA through the ribosome. Cell 106:233–41
    [Google Scholar]
  201. 200.
    Zhang DY, Seelig G 2011. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3:103–13
    [Google Scholar]
  202. 201.
    Zhang F, Jiang S, Wu S, Li Y, Mao C et al. 2015. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10:779–84
    [Google Scholar]
  203. 202.
    Zhang K, Keane SC, Su Z, Irobalieva RN, Chen M et al. 2018. Structure of the 30 kDa HIV-1 RNA dimerization signal by a hybrid cryo-EM, NMR, and molecular dynamics approach. Structure 26:490–98.e3
    [Google Scholar]
  204. 203.
    Zhao C, Rajashankar KR, Marcia M, Pyle AM 2015. Crystal structure of group II intron domain 1 reveals a template for RNA assembly. Nat. Chem. Biol. 11:967–72
    [Google Scholar]
  205. 204.
    Zheng J, Birktoft JJ, Chen Y, Wang T, Sha R et al. 2009. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461:74–77
    [Google Scholar]
  206. 205.
    Zuker M 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–15
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-052118-115259
Loading
/content/journals/10.1146/annurev-biophys-052118-115259
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error