1932

Abstract

Giant unilamellar vesicles represent a promising and extremely useful model biomembrane system for systematic measurements of mechanical, thermodynamic, electrical, and rheological properties of lipid bilayers as a function of membrane composition, surrounding media, and temperature. The most important advantage of giant vesicles over other model membrane systems is that the membrane responses to external factors such as ions, (macro)molecules, hydrodynamic flows, or electromagnetic fields can be directly observed under the microscope. Here, we briefly review approaches for giant vesicle preparation and describe several assays used for deducing the membrane phase state and measuring a number of material properties, with further emphasis on membrane reshaping and curvature.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-052118-115342
2019-05-06
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-052118-115342.html?itemId=/content/journals/10.1146/annurev-biophys-052118-115342&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abkarian M, Loiseau E, Massiera G 2011. Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft Matter 7:4610–14
    [Google Scholar]
  2. 2.
    Aimon S, Manzi J, Schmidt D, Poveda Larrosa JA, Bassereau P, Toombes GES 2011. Functional reconstitution of a voltage-gated potassium channel in giant unilamellar vesicles. PLOS ONE 6:e25529
    [Google Scholar]
  3. 3.
    Akashi K, Miyata H, Itoh H, Kinosita K Jr 1996. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 71:3242–50
    [Google Scholar]
  4. 4.
    Akashi K, Miyata H, Itoh H, Kinosita K 1998. Formation of giant liposomes promoted by divalent cations: critical role of electrostatic repulsion. Biophys. J. 74:2973–82
    [Google Scholar]
  5. 5.
    Almendro Vedia VG, Natale P, Chen S, Monroy F, Rosilio V, López-Montero I 2017. iGUVs: preparing giant unilamellar vesicles with a smartphone and lipids easily extracted from chicken eggs. J. Chem. Educ. 94:644–49
    [Google Scholar]
  6. 6.
    Ambroggio EE, Separovic F, Bowie JH, Fidelio GD, Bagatolli LA 2005. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Biophys. J. 89:1874–81
    [Google Scholar]
  7. 7.
    Ambroggio EE, Sorre B, Bassereau P, Goud B, Manneville J-B, Antonny B 2010. ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions. EMBO J 29:292–303
    [Google Scholar]
  8. 8.
    Angelova MI, Dimitrov DS 1986. Liposome electroformation. Faraday Discuss 81:303–11
    [Google Scholar]
  9. 9.
    Aranda S, Riske KA, Lipowsky R, Dimova R 2008. Morphological transitions of vesicles induced by alternating electric fields. Biophys. J. 95:L19–21
    [Google Scholar]
  10. 10.
    Avalos-Padilla Y, Knorr RL, Javier-Reyna R, García-Rivera G, Lipowsky R et al. 2018. The conserved ESCRT-III machinery participates in the phagocytosis of Entamoeba histolytica. Front. Cell. Infect. . Microbiol 8:53
    [Google Scholar]
  11. 11.
    Ayuyan AG, Cohen FS 2006. Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation. Biophys. J. 91:2172–83
    [Google Scholar]
  12. 12.
    Bagatolli LA 2006. To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim. Biophys. Acta Biomembr. 1758:1541–56
    [Google Scholar]
  13. 13.
    Bagatolli LA, Gratton E 2000. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: a two-photon fluorescence microscopy study. Biophys. J. 79:434–47
    [Google Scholar]
  14. 14.
    Bagatolli LA, Parasassi T, Gratton E 2000. Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods: a two photon fluorescence microscopy study. Chem. Phys. Lipids 105:135–47
    [Google Scholar]
  15. 15.
    Bassereau P, Jin R, Baumgart T, Deserno M, Dimova R et al. 2018. The 2018 biomembrane curvature and remodeling roadmap. J. Phys. D Appl. Phys. 51:343001A collection of short review contributions aiming at the mechanistic understanding and quantification of membrane remodeling, outlining current and future challenges in the field.
    [Google Scholar]
  16. 16.
    Bauer B, Davidson M, Orwar O 2009. Proteomic analysis of plasma membrane vesicles. Angew. Chem. Int. Ed. 48:1656–59
    [Google Scholar]
  17. 17.
    Baumgart T, Capraro BR, Zhu C, Das SL 2011. Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu. Rev. Phys. Chem. 62:483–506
    [Google Scholar]
  18. 18.
    Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA et al. 2007. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. PNAS 104:3165–70
    [Google Scholar]
  19. 19.
    Baumgart T, Hunt G, Farkas ER, Webb WW, Feigenson GW 2007. Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochim. Biophys. Acta Biomembr. 1768:2182–94
    [Google Scholar]
  20. 20.
    Bezlyepkina N, Gracià RS, Shchelokovskyy P, Lipowsky R, Dimova R 2013. Phase diagram and tie-line determination for the ternary mixture DOPC/eSM/cholesterol. Biophys. J. 104:1456–64
    [Google Scholar]
  21. 21.
    Bhatia T, Agudo-Canalejo J, Dimova R, Lipowsky R 2018. Membrane nanotubes increase the robustness of giant vesicles. ACS Nano 12:4478–85
    [Google Scholar]
  22. 22.
    Billerit C, Jeffries GDM, Orwar O, Jesorka A 2012. Formation of giant unilamellar vesicles from spin-coated lipid films by localized IR heating. Soft Matter 8:10823–26
    [Google Scholar]
  23. 23.
    Blosser MC, Horst BG, Keller SL 2016. cDICE method produces giant lipid vesicles under physiological conditions of charged lipids and ionic solutions. Soft Matter 12:7364–71
    [Google Scholar]
  24. 24.
    Blosser MC, Starr JB, Turtle CW, Ashcraft J, Keller SL 2013. Minimal effect of lipid charge on membrane miscibility phase behavior in three ternary systems. Biophys. J. 104:2629–38
    [Google Scholar]
  25. 25.
    Bo L, Waugh RE 1989. Determination of bilayer-membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys. J. 55:509–17
    [Google Scholar]
  26. 26.
    Bouvrais H 2012. Bending rigidities of lipid bilayers: their determination and main inputs in biophysical studies. Adv. Planar Lipid Bilayers Liposomes 15:1–75
    [Google Scholar]
  27. 27.
    Bouvrais H, Duelund L, Ipsen JH 2014. Buffers affect the bending rigidity of model lipid membranes. Langmuir 30:13–16
    [Google Scholar]
  28. 28.
    Breton M, Amirkavei M, Mir LM 2015. Optimization of the electroformation of giant unilamellar vesicles (GUVs) with unsaturated phospholipids. J. Membr. Biol. 248:827–35
    [Google Scholar]
  29. 29.
    Brown MF 2017. Soft matter in lipid–protein interactions. Annu. Rev. Biophys. 46:379–410
    [Google Scholar]
  30. 30.
    Bucher P, Fischer A, Luisi PL, Oberholzer T, Walde P 1998. Giant vesicles as biochemical compartments: the use of microinjection techniques. Langmuir 14:2712–21
    [Google Scholar]
  31. 31.
    Callan-Jones A, Bassereau P 2013. Curvature-driven membrane lipid and protein distribution. Curr. Opin. Solid State Mater. Sci. 17:143–50
    [Google Scholar]
  32. 32.
    Callan-Jones A, Sorre B, Bassereau P 2011. Curvature-driven lipid sorting in biomembranes. Cold Spring Harb. Perspect. Biol. 3:a004648
    [Google Scholar]
  33. 33.
    Carravilla P, Nieva JL, Goñi FM, Requejo-Isidro J, Huarte N 2015. Two-photon Laurdan studies of the ternary lipid mixture DOPC:SM:cholesterol reveal a single liquid phase at sphingomyelin:cholesterol ratios lower than 1. Langmuir 31:2808–17
    [Google Scholar]
  34. 34.
    Cuvelier D, Derenyi I, Bassereau P, Nassoy P 2005. Coalescence of membrane tethers: experiments, theory, and applications. Biophys. J. 88:2714–26
    [Google Scholar]
  35. 35.
    Dao TPT, Fauquignon M, Fernandes F, Ibarboure E, Vax A et al. 2017. Membrane properties of giant polymer and lipid vesicles obtained by electroformation and PVA gel-assisted hydration methods. Colloids Surf. A Physicochem. Eng. Aspects 533:347–53
    [Google Scholar]
  36. 36.
    Dasgupta R, Dimova R 2014. Inward and outward membrane tubes pulled from giant vesicles. J. Phys. D Appl. Phys. 47:282001
    [Google Scholar]
  37. 37.
    Dasgupta R, Miettinen MS, Fricke N, Lipowsky R, Dimova R 2018. The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation. PNAS 115:5756–61
    [Google Scholar]
  38. 38.
    de Almeida RFM, Fedorov A, Prieto M 2003. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J. 85:2406–16
    [Google Scholar]
  39. 39.
    Delabre U, Feld K, Crespo E, Whyte G, Sykes C et al. 2015. Deformation of phospholipid vesicles in an optical stretcher. Soft Matter 11:6075–88
    [Google Scholar]
  40. 40.
    Deng N-N, Yelleswarapu M, Huck WTS 2016. Monodisperse uni- and multicompartment liposomes. J. Am. Chem. Soc. 138:7584–91
    [Google Scholar]
  41. 41.
    Dezi M, Di Cicco A, Bassereau P, Lévy D 2013. Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents. PNAS 110:7276–81
    [Google Scholar]
  42. 42.
    Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M et al. 2001. Lipid rafts reconstituted in model membranes. Biophys. J. 80:1417–28
    [Google Scholar]
  43. 43.
    Dimova R 2012. Giant vesicles: a biomimetic tool for membrane characterization. Adv. Planar Lipid Bilayers Liposomes 16:1–50
    [Google Scholar]
  44. 44.
    Dimova R 2014. Recent developments in the field of bending rigidity measurements on membranes. Adv. Colloid Interface Sci. 208:225–34Provides a survey on methods for assessing the membrane bending rigidity and factors influencing it.
    [Google Scholar]
  45. 45.
    Dimova R, Aranda S, Bezlyepkina N, Nikolov V, Riske KA, Lipowsky R 2006. A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy. J. Phys. Condens. Matter 18:S1151–76
    [Google Scholar]
  46. 46.
    Dimova R, Bezlyepkina N, Jordo MD, Knorr RL, Riske KA et al. 2009. Vesicles in electric fields: some novel aspects of membrane behavior. Soft Matter 5:3201–12
    [Google Scholar]
  47. 47.
    Dimova R, Lipowsky R 2017. Giant vesicles exposed to aqueous two-phase systems: membrane wetting, budding processes, and spontaneous tubulation. Adv. Mater. Interfaces 4:1600451
    [Google Scholar]
  48. 48.
    Dimova R, Marques C 2019. The Giant Vesicle Book Boca Raton, FL: Taylor & Francis Group
  49. 49.
    Dimova R, Pouligny B, Dietrich C 2000. Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: optical dynamometry study. Biophys. J. 79:340–56
    [Google Scholar]
  50. 50.
    Dimova R, Riske KA, Aranda S, Bezlyepkina N, Knorr RL, Lipowsky R 2007. Giant vesicles in electric fields. Soft Matter 3:817–27
    [Google Scholar]
  51. 51.
    Dobereiner HG 2000. Properties of giant vesicles. Curr. Opin. Colloid Interface Sci. 5:256–63
    [Google Scholar]
  52. 52.
    Dobereiner HG, Gompper G, Haluska CK, Kroll DM, Petrov PG, Riske KA 2003. Advanced flicker spectroscopy of fluid membranes. Phys. Rev. Lett. 91:4
    [Google Scholar]
  53. 53.
    Dobereiner HG, Selchow O, Lipowsky R 1999. Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry. Eur. Biophys. J. Biophys. Lett. 28:174–78
    [Google Scholar]
  54. 54.
    Evans E, Metcalfe M 1984. Free-energy potential for aggregation of giant, neutral lipid bilayer vesicles by Van der Waals attraction. Biophys. J. 46:423–26
    [Google Scholar]
  55. 55.
    Evans E, Needham D 1987. Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J. Phys. Chem. 91:4219–28
    [Google Scholar]
  56. 56.
    Evans E, Rawicz W 1990. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. Lett. 64:2094–97
    [Google Scholar]
  57. 57.
    Evans EA 1983. Bending elastic-modulus of red-blood-cell membrane derived from buckling instability in micropipet aspiration tests. Biophys. J. 43:27–30
    [Google Scholar]
  58. 58.
    Feigenson GW, Buboltz JT 2001. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80:2775–88
    [Google Scholar]
  59. 59.
    Fenz SF, Sengupta K 2012. Giant vesicles as cell models. Integr. Biol. 4:982–95
    [Google Scholar]
  60. 60.
    Fidorra M, Garcia A, Ipsen JH, Hartel S, Bagatolli LA 2009. Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: a quantitative fluorescence microscopy imaging approach. Biochim. Biophys. Acta Biomembr. 1788:2142–49
    [Google Scholar]
  61. 61.
    Fournier JB, Ajdari A, Peliti L 2001. Effective-area elasticity and tension of micromanipulated membranes. Phys. Rev. Lett. 86:4970–73
    [Google Scholar]
  62. 62.
    Fricke N, Dimova R 2016. GM1 softens POPC membranes and induces the formation of micron-sized domains. Biophys. J. 111:1935–45
    [Google Scholar]
  63. 63.
    Funakoshi K, Suzuki H, Takeuchi S 2007. Formation of giant lipid vesiclelike compartments from a planar lipid membrane by a pulsed jet flow. J. Am. Chem. Soc. 129:12608–9
    [Google Scholar]
  64. 64.
    Garten M, Aimon S, Bassereau P, Toombes GES 2015. Reconstitution of a transmembrane protein, the voltage-gated ion channel, KvAP, into giant unilamellar vesicles for microscopy and patch clamp studies. J. Vis. Exp. 95:e52281
    [Google Scholar]
  65. 65.
    Garten M, Mosgaard LD, Bornschlögl T, Dieudonné S, Bassereau P, Toombes GES 2017. Whole-GUV patch-clamping. PNAS 114:328
    [Google Scholar]
  66. 66.
    Georgiev VN, Grafmüller A, Bléger D, Hecht S, Kunstmann S et al. 2018. Area increase and budding in giant vesicles triggered by light: behind the scene. Adv. Sci. 5:1800432
    [Google Scholar]
  67. 67.
    Girard P, Pécréaux J, Lenoir G, Falson P, Rigaud J-L, Bassereau P 2004. A new method for the reconstitution of membrane proteins into giant unilamellar vesicles. Biophys. J. 87:419–29
    [Google Scholar]
  68. 68.
    Girard P, Prost J, Bassereau P 2005. Passive or active fluctuations in membranes containing proteins. Phys. Rev. Lett. 94:088102
    [Google Scholar]
  69. 69.
    Goñi FM 2014. The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. Biochim. Biophys. Acta Biomembr. 1838:1467–76
    [Google Scholar]
  70. 70.
    Goñi FM, Alonso A, Bagatolli LA, Brown RE, Marsh D et al. 2008. Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1781:665–84
    [Google Scholar]
  71. 71.
    Graber ZT, Shi Z, Baumgart T 2017. Cations induce shape remodeling of negatively charged phospholipid membranes. Phys. Chem. Chem. Phys. 19:15285–95
    [Google Scholar]
  72. 72.
    Gracià RS, Bezlyepkina N, Knorr RL, Lipowsky R, Dimova R 2010. Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. Soft Matter 6:1472–82
    [Google Scholar]
  73. 73.
    Haluska CK, Riske KA, Marchi-Artzner V, Lehn JM, Lipowsky R, Dimova R 2006. Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. PNAS 103:15841–46
    [Google Scholar]
  74. 74.
    Haluska CK, Schroder AP, Didier P, Heissler D, Duportail G et al. 2008. Combining fluorescence lifetime and polarization microscopy to discriminate phase separated domains in giant unilamellar vesicles. Biophys. J. 95:5737–47
    [Google Scholar]
  75. 75.
    Heinrich M, Tian A, Esposito C, Baumgart T 2010. Dynamic sorting of lipids and proteins in membrane tubes with a moving phase boundary. PNAS 107:7208–13
    [Google Scholar]
  76. 76.
    Heinrich V, Waugh RE 1996. A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes. Ann. Biomed. Eng. 24:595–605
    [Google Scholar]
  77. 77.
    Helfrich W 1973. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28:693–703Seminal paper that introduces the concepts of membrane bending elasticity and spontaneous curvature.
    [Google Scholar]
  78. 78.
    Helfrich W 1974. Blocked lipid exchange in bilayers and its possible influence on shape of vesicles. Z. Naturforsch. 29:510–15
    [Google Scholar]
  79. 79.
    Henriksen J, Rowat AC, Ipsen JH 2004. Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity. Eur. Biophys. J. Biophys. Lett. 33:732–41
    [Google Scholar]
  80. 80.
    Henriksen JR, Ipsen JH 2004. Measurement of membrane elasticity by micro-pipette aspiration. Eur. Phys. J. E 14:149–67
    [Google Scholar]
  81. 81.
    Ho JCS, Rangamani P, Liedberg B, Parikh AN 2016. Mixing water, transducing energy, and shaping membranes: autonomously self-regulating giant vesicles. Langmuir 32:2151–63
    [Google Scholar]
  82. 82.
    Honerkamp-Smith AR, Cicuta P, Collins MD, Veatch SL, den Nijs M et al. 2008. Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys. J. 95:236–46
    [Google Scholar]
  83. 83.
    Honerkamp-Smith AR, Machta BB, Keller SL 2012. Experimental observations of dynamic critical phenomena in a lipid membrane. Phys. Rev. Lett. 108:265702
    [Google Scholar]
  84. 84.
    Honerkamp-Smith AR, Veatch SL, Keller SL 2009. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim. Biophys. Acta Biomembr. 1788:53–63
    [Google Scholar]
  85. 85.
    Horger KS, Estes DJ, Capone R, Mayer M 2009. Films of agarose enable rapid formation of giant liposomes in solutions of physiologic ionic strength. J. Am. Chem. Soc. 131:1810–19
    [Google Scholar]
  86. 86.
    Horger KS, Liu H, Rao DK, Shukla S, Sept D et al. 2015. Hydrogel-assisted functional reconstitution of human P-glycoprotein (ABCB1) in giant liposomes. Biochim. Biophys. Acta 1848:643–53
    [Google Scholar]
  87. 87.
    Husen P, Arriaga LR, Monroy F, Ipsen JH, Bagatolli LA 2012. Morphometric image analysis of giant vesicles: a new tool for quantitative thermodynamics studies of phase separation in lipid membranes. Biophys. J. 103:2304–10
    [Google Scholar]
  88. 88.
    Kahya N, Brown DA, Schwille P 2005. Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44:7479–89
    [Google Scholar]
  89. 89.
    Karamdad K, Law RV, Seddon JM, Brooks NJ, Ces O 2015. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method. Lab Chip 15:557–62
    [Google Scholar]
  90. 90.
    Karimi M, Steinkühler J, Roy D, Dasgupta R, Lipowsky R, Dimova R 2018. Asymmetric ionic conditions generate large membrane curvatures. Nano Lett 18:127816–21
    [Google Scholar]
  91. 91.
    Karlsson M, Sott K, Cans AS, Karlsson A, Karlsson R, Orwar O 2001. Micropipet-assisted formation of microscopic networks of unilamellar lipid bilayer nanotubes and containers. Langmuir 17:6754–58
    [Google Scholar]
  92. 92.
    Klotzsch E, Schutz GJ 2013. A critical survey of methods to detect plasma membrane rafts. Philos. Trans. R. Soc. B 368:20120033
    [Google Scholar]
  93. 93.
    Klymchenko AS, Kreder R 2014. Fluorescent probes for lipid rafts: from model membranes to living cells. Chem. Biol. 21:97–113
    [Google Scholar]
  94. 94.
    Knorr RL, Nakatogawa H, Ohsumi Y, Lipowsky R, Baumgart T, Dimova R 2014. Membrane morphology is actively transformed by covalent binding of the protein Atg8 to PE-lipids. PLOS ONE 9:e115357
    [Google Scholar]
  95. 95.
    Knorr RL, Steinkühler J, Dimova R 2018. Micron-sized domains in quasi single-component giant vesicles. Biochim. Biophys. Acta Biomembr. 1860:1957–64
    [Google Scholar]
  96. 96.
    Korlach J, Schwille P, Webb WW, Feigenson GW 1999. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. PNAS 96:8461–66
    [Google Scholar]
  97. 97.
    Kubsch B, Robinson T, Lipowsky R, Dimova R 2016. Solution asymmetry and salt expand fluid-fluid coexistence regions of charged membranes. Biophys. J. 110:2581–84
    [Google Scholar]
  98. 98.
    Kubsch B, Robinson T, Steinkühler J, Dimova R 2017. Phase behavior of charged vesicles under symmetric and asymmetric solution conditions monitored with fluorescence microscopy. J. Vis. Exp. 128:e56034
    [Google Scholar]
  99. 99.
    Kummrow M, Helfrich W 1991. Deformation of giant lipid vesicles by electric-fields. Phys. Rev. A 44:8356–60
    [Google Scholar]
  100. 100.
    Lagny TJ, Bassereau P 2015. Bioinspired membrane-based systems for a physical approach of cell organization and dynamics: usefulness and limitations. Interface Focus 5:20150038
    [Google Scholar]
  101. 101.
    Le Berre M, Yamada A, Reck L, Chen Y, Baigl D 2008. Electroformation of giant phospholipid vesicles on a silicon substrate: advantages of controllable surface properties. Langmuir 24:2643–49
    [Google Scholar]
  102. 102.
    Lee C-W, Chiang Y-L, Liu J-T, Chen Y-X, Lee C-H et al. 2018. Emerging roles of air gases in lipid bilayers. Small 14: https://doi.org/10.1002/smll.201802133
    [Crossref] [Google Scholar]
  103. 103.
    Levental I, Grzybek M, Simons K 2010. Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49:6305–16Reviews how protein activities can be affected by the local lipid composition of the membrane.
    [Google Scholar]
  104. 104.
    Levental I, Veatch SL 2016. The continuing mystery of lipid rafts. J. Mol. Biol. 428:4749–64Discusses giant plasma membrane vesicles, how closely they represent the plasma membrane lipidome and proteome, and their use in characterizing raft formation and behavior.
    [Google Scholar]
  105. 105.
    Li NW, Sharifi-Mood N, Tu FQ, Lee D, Radhakrishnan R et al. 2017. Curvature-driven migration of colloids on tense lipid bilayers. Langmuir 33:600–10
    [Google Scholar]
  106. 106.
    Li Y, Lipowsky R, Dimova R 2011. Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature. PNAS 108:4731–36
    [Google Scholar]
  107. 107.
    Lingwood D, Simons K 2010. Lipid rafts as a membrane-organizing principle. Science 327:46–50
    [Google Scholar]
  108. 108.
    Lipowsky R 1992. Budding of membranes induced by intramembrane domains. J. Phys. II 2:1825–40
    [Google Scholar]
  109. 109.
    Lipowsky R 2013. Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discuss 161:305–31
    [Google Scholar]
  110. 110.
    Lipowsky R 2014. Coupling of bending and stretching deformations in vesicle membranes. Adv. Colloid Interface Sci. 208:14–24
    [Google Scholar]
  111. 111.
    Lipowsky R, Dimova R 2003. Domains in membranes and vesicles. J. Phys. Condens. Matter 15:S31–45
    [Google Scholar]
  112. 112.
    Lira RB, Dimova R, Riske KA 2014. Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties. Biophys. J. 107:1609–19
    [Google Scholar]
  113. 113.
    Lira RB, Robinson T, Dimova R, Riske KA 2019. Highly efficient protein-free membrane fusion: a giant vesicle study. Biophys. J. 116:179–91
    [Google Scholar]
  114. 114.
    Lira RB, Steinkühler J, Knorr RL, Dimova R, Riske KA 2016. Posing for a picture: vesicle immobilization in agarose gel. Sci. Rep. 6:25254
    [Google Scholar]
  115. 115.
    Liu Y, Agudo-Canalejo J, Grafmüller A, Dimova R, Lipowsky R 2016. Patterns of flexible nanotubes formed by liquid-ordered and liquid-disordered membranes. ACS Nano 10:463–74
    [Google Scholar]
  116. 116.
    Manneville JB, Bassereau P, Levy D, Prost J 1999. Activity of transmembrane proteins induces magnification of shape fluctuations of lipid membranes. Phys. Rev. Lett. 82:4356–59
    [Google Scholar]
  117. 117.
    Margineanu A, Hotta J-I, Van der Auweraer M, Ameloot M, Stefan A et al. 2007. Visualization of membrane rafts using a perylene monoimide derivative and fluorescence lifetime imaging. Biophys. J. 93:2877–91
    [Google Scholar]
  118. 118.
    Marsh D 2006. Elastic curvature constants of lipid monolayers and bilayers. Chem. Phys. Lipids 144:146–59
    [Google Scholar]
  119. 119.
    Mattei B, Franca ADC, Riske KA 2015. Solubilization of binary lipid mixtures by the detergent Triton X-100: the role of cholesterol. Langmuir 31:378–86
    [Google Scholar]
  120. 120.
    McMahon HT, Gallop JL 2005. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–96
    [Google Scholar]
  121. 121.
    Méléard P, Bagatolli LA, Pott T 2009. Giant unilamellar vesicle electroformation: from lipid mixtures to native membranes under physiological conditions. Methods Enzymol 465:161–76
    [Google Scholar]
  122. 122.
    Méléard P, Pott T 2013. Overview of a quest for bending elasticity measurement. Adv. Planar Lipid Bilayers Liposomes 17:55–75
    [Google Scholar]
  123. 123.
    Menger FM, Keiper JS 1998. Chemistry and physics of giant vesicles as biomembrane models. Curr. Opin. Chem. Biol. 2:726–32
    [Google Scholar]
  124. 124.
    Montes LR, Alonso A, Goñi FM, Bagatolli LA 2007. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys. J. 93:3548–54
    [Google Scholar]
  125. 125.
    Mora NL, Hansen JS, Gao Y, Ronald AA, Kieltyka R et al. 2014. Preparation of size tunable giant vesicles from cross-linked dextran(ethylene glycol) hydrogels. Chem. Commun. 50:1953–55
    [Google Scholar]
  126. 126.
    Morales-Penningston NF, Wu J, Farkas ER, Goh SL, Konyakhina TM et al. 2010. GUV preparation and imaging: Minimizing artifacts. Biochim. Biophys. Acta 1798:1324–32
    [Google Scholar]
  127. 127.
    Mutz M, Helfrich W 1990. Bending rigidities of some biological model membranes as obtained from the Fourier-analysis of contour sections. J. Phys. 51:991–1002
    [Google Scholar]
  128. 128.
    Nagle JF 2013. Introductory lecture: basic quantities in model biomembranes. Faraday Discuss 161:11–29
    [Google Scholar]
  129. 129.
    Needham D, Stoicheva N, Zhelev DV 1997. Exchange of monooleoylphosphatidylcholine as monomer and micelle with membranes containing poly(ethylene glycol)-lipid. Biophys. J. 73:2615–29
    [Google Scholar]
  130. 130.
    Niggemann G, Kummrow M, Helfrich W 1995. The bending rigidity of phosphatidylcholine bilayers: dependences on experimental method, sample cell sealing and temperature. J. Phys. II 5:413–25
    [Google Scholar]
  131. 131.
    Nikolov V, Lipowsky R, Dimova R 2007. Behavior of giant vesicles with anchored DNA molecules. Biophys. J. 92:4356–68
    [Google Scholar]
  132. 132.
    Noireaux V, Libchaber A 2004. A vesicle bioreactor as a step toward an artificial cell assembly. PNAS 101:17669–74
    [Google Scholar]
  133. 133.
    Noireaux V, Maeda YT, Libchaber A 2011. Development of an artificial cell, from self-organization to computation and self-reproduction. PNAS 108:3473Provide insights into what should be achieved to set up rudimentary synthetic organisms inspired by biology.
    [Google Scholar]
  134. 134.
    Nourian Z, Roelofsen W, Danelon C 2012. Triggered gene expression in fed‐vesicle microreactors with a multifunctional membrane. Angew. Chem. Int. Ed. 51:3114–18
    [Google Scholar]
  135. 135.
    Oku N, MacDonald RC 1983. Differential effects of alkali metal chlorides on formation of giant liposomes by freezing and thawing and by dialysis. Biochemistry 22:855–63
    [Google Scholar]
  136. 136.
    Okumura Y, Zhang H, Sugiyama T, Iwata Y 2007. Electroformation of giant vesicles on a non-electroconductive substrate. J. Am. Chem. Soc. 129:1490–91
    [Google Scholar]
  137. 137.
    Owen DM, Magenau A, Williamson D, Gaus K 2012. The lipid raft hypothesis revisited—new insights on raft composition and function from super-resolution fluorescence microscopy. BioEssays 34:739–47
    [Google Scholar]
  138. 138.
    Pataraia S, Liu YG, Lipowsky R, Dimova R 2014. Effect of cytochrome c on the phase behavior of charged multicomponent lipid membranes. Biochim. Biophys. Acta Biomembr. 1838:2036–45
    [Google Scholar]
  139. 139.
    Patil YP, Jadhav S 2014. Novel methods for liposome preparation. Chem. Phys. Lipids 177:8–18
    [Google Scholar]
  140. 140.
    Pautot S, Frisken BJ, Weitz DA 2003. Engineering asymmetric vesicles. PNAS 100:10718
    [Google Scholar]
  141. 141.
    Pavlič JI, Genova J, Popkirov G, Kralj-Iglič V, Iglič A, Mitov MD 2011. Mechanoformation of neutral giant phospholipid vesicles in high ionic strength solution. Chem. Phys. Lipids 164:727–31
    [Google Scholar]
  142. 142.
    Pecreaux J, Dobereiner HG, Prost J, Joanny JF, Bassereau P 2004. Refined contour analysis of giant unilamellar vesicles. Eur. Phys. J. E 13:277–90
    [Google Scholar]
  143. 143.
    Pereno V, Carugo D, Bau L, Sezgin E, Bernardino de la Serna J et al. 2017. Electroformation of giant unilamellar vesicles on stainless steel electrodes. ACS Omega 2:994–1002
    [Google Scholar]
  144. 144.
    Pezeshkian W, Gao H, Arumugam S, Becken U, Bassereau P et al. 2017. Mechanism of Shiga toxin clustering on membranes. ACS Nano 11:314–24
    [Google Scholar]
  145. 145.
    Pontani L-L, van der Gucht J, Salbreux G, Heuvingh J, Joanny J-F, Sykes C 2009. Reconstitution of an actin cortex inside a liposome. Biophys. J. 96:192–98
    [Google Scholar]
  146. 146.
    Portet T, Dimova R 2010. A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition. Biophys. J. 99:3264–73
    [Google Scholar]
  147. 147.
    Portet T, Gordon SE, Keller SL 2012. Increasing membrane tension decreases miscibility temperatures; an experimental demonstration via micropipette aspiration. Biophys. J. 103:L35–37
    [Google Scholar]
  148. 148.
    Pott T, Bouvrais H, Méléard P 2008. Giant unilamellar vesicle formation under physiologically relevant conditions. Chem. Phys. Lipids 154:115–19
    [Google Scholar]
  149. 149.
    Rautu SA, Orsi D, Di Michele L, Rowlands G, Cicuta P, Turner MS 2017. The role of optical projection in the analysis of membrane fluctuations. Soft Matter 13:3480–83
    [Google Scholar]
  150. 150.
    Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79:328–39
    [Google Scholar]
  151. 151.
    Rawicz W, Smith BA, Mclntosh TJ, Simon SA, Evans E 2008. Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids. Biophys. J. 94:4725–36
    [Google Scholar]
  152. 152.
    Reeves JP, Dowben RM 1969. Formation and properties of thin-walled phospholipid vesicles. J. Cell. Physiol. 73:49–60
    [Google Scholar]
  153. 153.
    Riske KA, Dimova R 2005. Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys. J. 88:1143–55
    [Google Scholar]
  154. 154.
    Riske KA, Sudbrack TP, Archilha NL, Uchoa AF, Schroder AP et al. 2009. Giant vesicles under oxidative stress induced by a membrane-anchored photosensitizer. Biophys. J. 97:1362–70
    [Google Scholar]
  155. 155.
    Robinson T, Verboket PE, Eyer K, Dittrich PS 2014. Controllable electrofusion of lipid vesicles: initiation and analysis of reactions within biomimetic containers. Lab Chip 14:2852–59
    [Google Scholar]
  156. 156.
    Rodriguez N, Pincet F, Cribier S 2005. Giant vesicles formed by gentle hydration and electroformation: A comparison by fluorescence microscopy. Colloids Surf. B Biointerfaces 42:125–30
    [Google Scholar]
  157. 157.
    Römer W, Berland L, Chambon V, Gaus K, Windschiegl B et al. 2007. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450:670–75
    [Google Scholar]
  158. 158.
    Roux A 2013. The physics of membrane tubes: soft templates for studying cellular membranes. Soft Matter 9:6726–36Reviews assays based on tube extrusion (both from giant vesicles and cells) to study dynamic processes occurring in cell membranes.
    [Google Scholar]
  159. 159.
    Roux A, Cappello G, Cartaud J, Prost J, Goud B, Bassereau P 2002. A minimal system allowing tubulation with molecular motors pulling on giant liposomes. PNAS 99:5394–99
    [Google Scholar]
  160. 160.
    Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B 2005. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 24:1537–45
    [Google Scholar]
  161. 161.
    Roux A, Koster G, Lenz M, Sorre B, Manneville JB et al. 2010. Membrane curvature controls dynamin polymerization. PNAS 107:4141–46
    [Google Scholar]
  162. 162.
    Salipante PF, Knorr RL, Dimova R, Vlahovska PM 2012. Electrodeformation method for measuring the capacitance of bilayer membranes. Soft Matter 8:3810–16
    [Google Scholar]
  163. 163.
    Salipante PF, Vlahovska PM 2014. Vesicle deformation in DC electric pulses. Soft Matter 10:3386–93
    [Google Scholar]
  164. 164.
    Schmid EM, Richmond DL, Fletcher DA 2015. Reconstitution of proteins on electroformed giant unilamellar vesicles. Methods Cell Biol. 128319–38
  165. 165.
    Schneider MB, Jenkins JT, Webb WW 1984. Thermal fluctuations of large quasi-spherical bimolecular phospholipid-vesicles. J. Phys. 45:1457–72
    [Google Scholar]
  166. 166.
    Schwille P 2011. Bottom-up synthetic biology: engineering in a tinkerer's world. Science 333:1252Provide insights into what should be achieved to set up rudimentary synthetic organisms inspired by biology.
    [Google Scholar]
  167. 167.
    Schwille P, Diez S 2009. Synthetic biology of minimal systems. Crit. Rev. Biochem. Mol. Biol. 44:223–42
    [Google Scholar]
  168. 168.
    Schwille P, Spatz J, Landfester K, Bodenschatz E, Herminghaus S et al. 2018. MaxSynBio: avenues towards creating cells from the bottom up. Angew. Chem. Int. Ed. 57:13382–92
    [Google Scholar]
  169. 169.
    Scott RE 1976. Plasma membrane vesiculation: a new technique for isolation of plasma membranes. Science 194:743
    [Google Scholar]
  170. 170.
    Servuss RM, Harbich W, Helfrich W 1976. Measurement of curvature-elastic modulus of egg lecithin bilayers. Biochim. Biophys. Acta 436:900–3
    [Google Scholar]
  171. 171.
    Sezgin E, Kaiser HJ, Baumgart T, Schwille P, Simons K, Levental I 2012. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 7:1042–51
    [Google Scholar]
  172. 172.
    Sezgin E, Sadowski T, Simons K 2014. Measuring lipid packing of model and cellular membranes with environment sensitive probes. Langmuir 30:8160–66
    [Google Scholar]
  173. 173.
    Shchelokovskyy P, Tristram-Nagle S, Dimova R 2011. Effect of the HIV-1 fusion peptide on the mechanical properties and leaflet coupling of lipid bilayers. New J. Phys. 13:025004
    [Google Scholar]
  174. 174.
    Shimokawa N, Hishida M, Seto H, Yoshikawa K 2010. Phase separation of a mixture of charged and neutral lipids on a giant vesicle induced by small cations. Chem. Phys. Lett. 496:59–63
    [Google Scholar]
  175. 175.
    Shnyrova AV, Bashkirov PV, Akimov SA, Pucadyil TJ, Zimmerberg J et al. 2013. Geometric catalysis of membrane fission driven by flexible dynamin rings. Science 339:1433–36
    [Google Scholar]
  176. 176.
    Shum HC, Lee D, Yoon I, Kodger T, Weitz DA 2008. Double emulsion templated monodisperse phospholipid vesicles. Langmuir 24:7651–53
    [Google Scholar]
  177. 177.
    Simunovic M, Voth GA, Callan-Jones A, Bassereau P 2015. When physics takes over: BAR proteins and membrane curvature. Trends Cell Biol 25:780–92
    [Google Scholar]
  178. 178.
    Snead WT, Hayden CC, Gadok AK, Zhao C, Lafer EM et al. 2017. Membrane fission by protein crowding. PNAS 114:E3258
    [Google Scholar]
  179. 179.
    Solmaz ME, Sankhagowit S, Biswas R, Mejia CA, Povinelli ML, Malmstadt N 2013. Optical stretching as a tool to investigate the mechanical properties of lipid bilayers. RSC Adv 3:16632–38
    [Google Scholar]
  180. 180.
    Sorre B, Callan-Jones A, Manneville JB, Nassoy P, Joanny JF et al. 2009. Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. PNAS 106:5622–26Provides important formalism for experiments on curvature sensing and generation.
    [Google Scholar]
  181. 181.
    Sorre B, Callan-Jones A, Manzi J, Goud B, Prost J et al. 2012. Nature of curvature coupling of amphiphysin with membranes depends on its bound density. PNAS 109:173–78
    [Google Scholar]
  182. 182.
    Stachowiak JC, Hayden CC, Sasaki DY 2010. Steric confinement of proteins on lipid membranes can drive curvature and tubulation. PNAS 107:7781
    [Google Scholar]
  183. 183.
    Stachowiak JC, Richmond DL, Li TH, Brochard-Wyart F, Fletcher DA 2009. Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation. Lab Chip 9:2003–9
    [Google Scholar]
  184. 184.
    Stachowiak JC, Richmond DL, Li TH, Liu AP, Parekh SH, Fletcher DA 2008. Unilamellar vesicle formation and encapsulation by microfluidic jetting. PNAS 105:4697–702
    [Google Scholar]
  185. 185.
    Stachowiak JC, Schmid EM, Ryan CJ, Ann HS, Sasaki DY et al. 2012. Membrane bending by protein–protein crowding. Nat. Cell Biol. 14:944–49
    [Google Scholar]
  186. 186.
    Stein H, Spindler S, Bonakdar N, Wang C, Sandoghdar V 2017. Production of isolated giant unilamellar vesicles under high salt concentrations. Front. Physiol. 8:63
    [Google Scholar]
  187. 187.
    Steinkühler J, Agudo-Canalejo J, Lipowsky R, Dimova R 2016. Modulating vesicle adhesion by electric fields. Biophys. J. 111:1454–64
    [Google Scholar]
  188. 188.
    Steinkühler J, De Tillieux P, Knorr RL, Lipowsky R, Dimova R 2018. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry. Sci. Rep. 8:11838
    [Google Scholar]
  189. 189.
    Steinkühler J, Różycki B, Alvey C, Lipowsky R, Weikl TR et al. 2019. Membrane fluctuations and acidosis regulate cooperative binding of ‘marker of self’ CD47 with macrophage checkpoint receptor SIRPα. J. Cell Sci. 132:jcs216770
    [Google Scholar]
  190. 190.
    Taylor P, Xu C, Fletcher PDI, Paunov VN 2003. A novel technique for preparation of monodisperse giant liposomes. Chem. Commun. 14:1732–33
    [Google Scholar]
  191. 191.
    Tian AW, Capraro BR, Esposito C, Baumgart T 2009. Bending stiffness depends on curvature of ternary lipid mixture tubular membranes. Biophys. J. 97:1636–46
    [Google Scholar]
  192. 192.
    Tsai FC, Stuhrmann B, Koenderink GH 2011. Encapsulation of active cytoskeletal protein networks in cell-sized liposomes. Langmuir 27:10061–71
    [Google Scholar]
  193. 193.
    Tsumoto K, Matsuo H, Tomita M, Yoshimura T 2009. Efficient formation of giant liposomes through the gentle hydration of phosphatidylcholine films doped with sugar. Colloids Surf. B Biointerfaces 68:98–105
    [Google Scholar]
  194. 194.
    van Swaay D, deMello A 2013. Microfluidic methods for forming liposomes. Lab Chip 13:752–67
    [Google Scholar]
  195. 195.
    Veatch SL, Cicuta P, Sengupta P, Honerkamp-Smith A, Holowka D, Baird B 2008. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3:287–93
    [Google Scholar]
  196. 196.
    Veatch SL, Keller SL 2003. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85:3074–83
    [Google Scholar]
  197. 197.
    Veatch SL, Keller SL 2005. Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys. Rev. Lett. 94:148101
    [Google Scholar]
  198. 198.
    Veatch SL, Keller SL 2005. Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. Acta Mol. Cell Res. 1746:172–85Provides a review on phase diagrams of binary and ternary lipid mixtures.
    [Google Scholar]
  199. 199.
    Vequi-Suplicy CC, Riske KA, Knorr RL, Dimova R 2010. Vesicles with charged domains. Biochim. Biophys. Acta Biomembr. 1798:1338–47
    [Google Scholar]
  200. 200.
    Vitkova V, Mitkova D, Antonova K, Popkirov G, Dimova R 2018. Sucrose solutions alter the electric capacitance and dielectric permittivity of lipid bilayers. Colloids Surf. A Physicochem. Eng. Aspects 557:51–57
    [Google Scholar]
  201. 201.
    Vlahovska PM, Gracia RS, Aranda-Espinoza S, Dimova R 2009. Electrohydrodynamic model of vesicle deformation in alternating electric fields. Biophys. J. 96:4789–803
    [Google Scholar]
  202. 202.
    Walde P, Cosentino K, Engel H, Stano P 2010. Giant vesicles: preparations and applications. ChemBioChem 11:848–65
    [Google Scholar]
  203. 203.
    Waugh R, Hochmuth R 1987. Mechanical equilibrium of thick, hollow, liquid membrane cylinders. Biophys. J. 52:391–400
    [Google Scholar]
  204. 204.
    Weinberger A, Tsai FC, Koenderink GH, Schmidt TF, Itri R et al. 2013. Gel-assisted formation of giant unilamellar vesicles. Biophys. J. 105:154–64
    [Google Scholar]
  205. 205.
    Weiss M, Frohnmayer JP, Benk LT, Haller B, Janiesch J-W et al. 2018. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat. Mater. 17:89–96
    [Google Scholar]
  206. 206.
    Wick R, Walde P, Luisi PL 1995. Light-microscopic investigations of the autocatalytic self-reproduction of giant vesicles. J. Am. Chem. Soc. 117:1435–36
    [Google Scholar]
  207. 207.
    Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH 2009. Membrane scission by the ESCRT-III complex. Nature 458:172–77
    [Google Scholar]
  208. 208.
    Yamamoto T, Aranda-Espinoza S, Dimova R, Lipowsky R 2010. Stability of spherical vesicles in electric fields. Langmuir 26:12390–407
    [Google Scholar]
  209. 209.
    Yu M, Lira RB, Riske KA, Dimova R, Lin H 2015. Ellipsoidal relaxation of deformed vesicles. Phys. Rev. Lett. 115:128303
    [Google Scholar]
  210. 210.
    Zhao J, Wu J, Heberle FA, Mills TT, Klawitter P et al. 2007. Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol. Biochim. Biophys. Acta 1768:2764–76
    [Google Scholar]
  211. 211.
    Zhao J, Wu J, Veatch SL 2013. Adhesion stabilizes robust lipid heterogeneity in supercritical membranes at physiological temperature. Biophys. J. 104:825–34
    [Google Scholar]
  212. 212.
    Zimmerberg J, Kozlov MM 2005. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7:9
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-052118-115342
Loading
/content/journals/10.1146/annurev-biophys-052118-115342
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error