1932

Abstract

Viruses, entities composed of nucleic acids, proteins, and in some cases lipids lack the ability to replicate outside their target cells. Their components self-assemble at the nanoscale with exquisite precision—a key to their biological success in infection. Recent advances in structure determination and the development of biophysical tools such as single-molecule spectroscopy and noncovalent mass spectrometry allow unprecedented access to the detailed assembly mechanisms of simple virions. Coupling these techniques with mathematical modeling and bioinformatics has uncovered a previously unsuspected role for genomic RNA in regulating formation of viral capsids, revealing multiple, dispersed RNA sequence/structure motifs [packaging signals (PSs)] that bind cognate coat proteins cooperatively. The PS ensemble controls assembly efficiency and accounts for the packaging specificity seen in vivo. The precise modes of action of the PSs vary between viral families, but this common principle applies across many viral families, including major human pathogens. These insights open up the opportunity to block or repurpose PS function in assembly for both novel antiviral therapy and gene/drug/vaccine applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-052118-115611
2019-05-06
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-052118-115611.html?itemId=/content/journals/10.1146/annurev-biophys-052118-115611&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Arnold E, Luo M, Vriend G, Rossmann MG, Palmenberg AC et al. 1987. Implications of the picornavirus capsid structure for polyprotein processing. PNAS 84:121–25
    [Google Scholar]
  2. 2.
    Ashley J, Cordy B, Lucia D, Fradkin LG, Budnik V, Thomson T 2018. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 172:1–2262–74.e11
    [Google Scholar]
  3. 3.
    Bancroft JB, Hills GJ, Markham R 1967. A study of the self-assembly process in a small spherical virus formation of organized structures from protein subunits in vitro. Virology 31:2354–79
    [Google Scholar]
  4. 4.
    Basnak G, Morton VL, Rolfsson Ó, Stonehouse NJ, Ashcroft AE, Stockley PG 2010. Viral genomic single-stranded RNA directs the pathway toward a T = 3 capsid. J. Mol. Biol. 395:5924–36
    [Google Scholar]
  5. 5.
    Beckett D, Wu HN, Uhlenbeck OC 1988. Roles of operator and non-operator RNA sequences in bacteriophage R17 capsid assembly. J. Mol. Biol. 204:4939–47
    [Google Scholar]
  6. 6.
    Belyi VA, Muthukumar M 2006. Electrostatic origin of the genome packing in viruses. PNAS 103:4617174–78
    [Google Scholar]
  7. 7.
    Berger B, King J, Schwartz R, Shor PW 2000. Local rule mechanism for selecting icosahedral shell geometry. Discret. Appl. Math. 104:197–111
    [Google Scholar]
  8. 8.
    Bingham R, Dykeman E, Twarock R 2017. RNA virus evolution via a quasispecies-based model reveals a drug target with a high barrier to resistance. Viruses 9:11347
    [Google Scholar]
  9. 9.
    Borodavka A, Tuma R, Stockley PG 2012. Evidence that viral RNAs have evolved for efficient, two-stage packaging. PNAS 109:3915769–74
    [Google Scholar]
  10. 10.
    Borodavka A, Tuma R, Stockley PG 2013. A two-stage mechanism of viral RNA compaction revealed by single molecule fluorescence. RNA Biol 10:4481–89
    [Google Scholar]
  11. 11.
    Bruinsma RF, Gelbart WM, Reguera D, Rudnick J, Zandi R 2003. Viral self-assembly as a thermodynamic process. Phys. Rev. Lett. 90:24
    [Google Scholar]
  12. 12.
    Bunka DHJ, Lane SW, Lane CL, Dykeman EC, Ford RJ et al. 2011. Degenerate RNA packaging signals in the genome of satellite tobacco necrosis virus: implications for the assembly of a T = 1 capsid. J. Mol. Biol. 413:151–65
    [Google Scholar]
  13. 13.
    Bunka DHJ, Stockley PG 2006. Aptamers come of age—at last. Nat. Rev. Microbiol. 4:8588–96
    [Google Scholar]
  14. 14.
    Butterfield GL, Lajoie MJ, Gustafson HH, Sellers DL, Nattermann U et al. 2017. Evolution of a designed protein assembly encapsulating its own RNA genome. Nature 552:7685415–20
    [Google Scholar]
  15. 15.
    Cadena-Nava RD, Comas-Garcia M, Garmann RF, Rao ALN, Knobler CM, Gelbart WM 2012. Self-assembly of viral capsid protein and RNA molecules of different sizes: requirement for a specific high protein/RNA mass ratio. J. Virol. 86:63318–26
    [Google Scholar]
  16. 16.
    Cann AJ 2011. Principles of Molecular Virology Cambridge, MA: Academic Press
  17. 17.
    Carey J, Lowary PT, Uhlenbeck OC 1983. Interaction of R17 coat protein with synthetic variants of its ribonucleic acid binding site. Biochemistry 22:204723–30
    [Google Scholar]
  18. 18.
    Carey J, Uhlenbeck OC 1983. Kinetic and thermodynamic characterization of the R17 coat protein-ribonucleic acid interaction. Biochemistry 22:112610–15
    [Google Scholar]
  19. 19.
    Caspar DL 1992. Virus structure puzzle solved. Curr. Biol. 2:4169–71
    [Google Scholar]
  20. 20.
    Caspar DLD, Klug A 1962. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27:1–14
    [Google Scholar]
  21. 21.
    Chemla YR, Aathavan K, Michaelis J, Grimes S, Jardine PJ et al. 2005. Mechanism of force generation of a viral DNA packaging motor. Cell 122:5683–92
    [Google Scholar]
  22. 22.
    Chen C, Daniel MC, Quinkert ZT, De M, Stein B et al. 2006. Nanoparticle-templated assembly of viral protein cages. Nano Lett 6:4611–15
    [Google Scholar]
  23. 23.
    Colson P, La Scola B, Levasseur A, Caetano-Anollés G, Raoult D 2017. Mimivirus: leading the way in the discovery of giant viruses of amoebae. Nat. Rev. Microbiol. 15:4243–54
    [Google Scholar]
  24. 24.
    Connelly CM, Abulwerdi FA, Schneekloth JS 2017. Discovery of RNA binding small molecules using small molecule microarrays. Methods Mol. Biol. 1518:157–75
    [Google Scholar]
  25. 25.
    Convery MA, Rowsell S, Stonehouse NJ, Ellington AD, Hirao I et al. 1998. Crystal structure of an RNA aptamer–protein complex at 2.8 Å resolution. Nat. Struct. Biol. 5:133
    [Google Scholar]
  26. 26.
    Crick FHC, Watson JD 1956. The structure of small viruses. Nature 177:473–75
    [Google Scholar]
  27. 27.
    Crowther RA 1969. The use of non-crystallographic symmetry for phase determination. Acta Crystallogr. Sect. B 25:122571–80
    [Google Scholar]
  28. 28.
    Cui Z, Gorzelnik KV, Chang J-Y, Langlais C, Jakana J et al. 2017. Structures of Qβ virions, virus-like particles, and the Qβ–MurA complex reveal internal coat proteins and the mechanism of host lysis. PNAS 114:4411697–702
    [Google Scholar]
  29. 29.
    Dai X, Li Z, Lai M, Shu S, Du Y et al. 2017. In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus. Nature 541:7635112–16
    [Google Scholar]
  30. 30.
    Dent KC, Thompson R, Barker AM, Hiscox JA, Barr JN et al. 2013. The asymmetric structure of an icosahedral virus bound to its receptor suggests a mechanism for genome release. Structure 21:71225–34
    [Google Scholar]
  31. 31.
    Dewannieux M, Heidmann T 2013. Endogenous retroviruses: acquisition, amplification and taming of genome invaders. Curr. Opin. Virol. 3:6646–56
    [Google Scholar]
  32. 32.
    Domingo E 1998. Quasispecies and the implications for virus persistence and escape. Clin. Diagn. Virol. 10:2–397–101
    [Google Scholar]
  33. 33.
    Drake JW, Holland JJ 1999. Mutation rates among RNA viruses. PNAS 96:2413910–13
    [Google Scholar]
  34. 34.
    Dykeman EC 2017. A model for viral assembly around an explicit RNA sequence generates an implicit fitness landscape. Biophys. J. 113:3506–16
    [Google Scholar]
  35. 35.
    Dykeman EC, Grayson NE, Toropova K, Ranson NA, Stockley PG, Twarock R 2011. Simple rules for efficient assembly predict the layout of a packaged viral RNA. J. Mol. Biol. 408:3399–407
    [Google Scholar]
  36. 36.
    Dykeman EC, Stockley PG, Twarock R 2010. Dynamic allostery controls coat protein conformer switching during MS2 phage assembly. J. Mol. Biol. 395:5916–23
    [Google Scholar]
  37. 37.
    Dykeman EC, Stockley PG, Twarock R 2013. Packaging signals in two single-stranded RNA viruses imply a conserved assembly mechanism and geometry of the packaged genome. J. Mol. Biol. 425:173235–49
    [Google Scholar]
  38. 38.
    Dykeman EC, Stockley PG, Twarock R 2013. Building a viral capsid in the presence of genomic RNA. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 87:21–24
    [Google Scholar]
  39. 39.
    Dykeman EC, Stockley PG, Twarock R 2014. Solving a Levinthal's paradox for virus assembly identifies a unique antiviral strategy. PNAS 111:145361–66
    [Google Scholar]
  40. 40.
    Eigen M, Biebricher CK, Gebinoga M, Gardiner WC 1991. The hypercycle. Coupling of RNA and Protein biosynthesis in the infection cycle of an RNA bacteriophage. Biochemistry 30:4611005–18
    [Google Scholar]
  41. 41.
    Elena SF, Sanjuán R, Sanjua R 2005. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J. Virol. 79:1811555–58
    [Google Scholar]
  42. 42.
    Endres D, Zlotnick A 2002. Model-based analysis of assembly kinetics for virus capsids or other spherical polymers. Biophys. J. 83:1217
    [Google Scholar]
  43. 43.
    Erdemci-Tandogan G, Wagner J, van der Schoot P, Podgornik R, Zandi R 2014. RNA topology remolds electrostatic stabilization of viruses. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 89:31–5
    [Google Scholar]
  44. 44.
    Erdemci-Tandogan G, Wagner J, van der Schoot P, Zandi R 2016. Role of genome in the formation of conical retroviral shells. J. Phys. Chem. B 120:266298–305
    [Google Scholar]
  45. 45.
    Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D et al. 1976. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 260:5551500–7
    [Google Scholar]
  46. 46.
    Ford RJ, Barker AM, Bakker SE, Coutts RH, Ranson NA et al. 2013. Sequence-specific, RNA–protein interactions overcome electrostatic barriers preventing assembly of satellite tobacco necrosis virus coat protein. J. Mol. Biol. 425:61050–64
    [Google Scholar]
  47. 47.
    Garmann RF, Comas-Garcia M, Knobler CM, Gelbart WM 2016. Physical principles in the self-assembly of a simple spherical virus. Acc. Chem. Res. 49:148–55
    [Google Scholar]
  48. 48.
    Garmann RF, Sportsman R, Beren C, Manoharan VN, Knobler CM, Gelbart WM 2015. A simple RNA-DNA scaffold templates the assembly of monofunctional virus-like particles. J. Am. Chem. Soc. 137:247584–87
    [Google Scholar]
  49. 49.
    Gell C, Sabir T, Westwood J, Rashid A, Smith DAM et al. 2008. Single-molecule fluorescence resonance energy transfer assays reveal heterogeneous folding ensembles in a simple RNA stem-loop. J. Mol. Biol. 384:1264–78
    [Google Scholar]
  50. 50.
    Geraets JA, Dykeman EC, Stockley PG, Ranson NA, Twarock R 2015. Asymmetric genome organization in an RNA virus revealed via graph-theoretical analysis of tomographic data. PLOS Comput. Biol. 11:3e1004146
    [Google Scholar]
  51. 51.
    Gopal A, Egecioglu DE, Yoffe AM, Ben-Shaul A, Rao ALN et al. 2014. Viral RNAs are unusually compact. PLOS ONE 9:9e105875
    [Google Scholar]
  52. 52.
    Gorzelnik KV, Cui Z, Reed CA, Jakana J, Young R, Zhang J 2016. Asymmetric cryo-EM structure of the canonical Allolevivirus Qβ reveals a single maturation protein and the genomic ssRNA in situ. PNAS 113:4111519–24
    [Google Scholar]
  53. 53.
    Hafenstein S, Palermo LM, Kostyuchenko VA, Xiao C, Morais MC et al. 2007. Asymmetric binding of transferrin receptor to parvovirus capsids. PNAS 104:166585–89
    [Google Scholar]
  54. 54.
    Hagan MF, Zandi R 2016. Recent advances in coarse-grained modeling of virus assembly. Curr. Opin. Virol. 18:36–43
    [Google Scholar]
  55. 55.
    Harrison SC 2017. Protein tentacles. J. Struct. Biol. 200:3244–47
    [Google Scholar]
  56. 56.
    Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G 1978. Tomato bushy stunt virus at 2.9 Å resolution. Nature 276:5686368–73
    [Google Scholar]
  57. 57.
    Hogle JM, Chow M, Filman DJ 1985. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229:47201358–65
    [Google Scholar]
  58. 58.
    Horn WT, Tars K, Grahn E, Helgstrand C, Baron AJ et al. 2006. Structural basis of RNA binding discrimination between bacteriophages Qβ and MS2. Structure 14:3487–95
    [Google Scholar]
  59. 59.
    Howard CR, Fletcher NF 2012. Emerging virus diseases: Can we ever expect the unexpected?. Emerg. Microbes Infect. 1:12e46
    [Google Scholar]
  60. 60.
    Hu Y, Zandi R, Anavitarte A, Knobler CM, Gelbart WM 2008. Packaging of a polymer by a viral capsid: the interplay between polymer length and capsid size. Biophys. J. 94:41428–36
    [Google Scholar]
  61. 61.
    Jiang P, Liu Y, Ma H-C, Paul AV, Wimmer E 2014. Picornavirus Morphogenesis. Microbiol. Mol. Biol. Rev. 78:3418–37
    [Google Scholar]
  62. 62.
    Jiang W, Chang J, Jakana J, Weigele P, King J, Chiu W 2006. Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature 439:7076612–16
    [Google Scholar]
  63. 63.
    Kalynych S, Pálková L, Plevka P 2016. The structure of human parechovirus 1 reveals an association of the RNA genome with the capsid. J. Virol. 90:31377–86
    [Google Scholar]
  64. 64.
    Kegel WK, van der Schoot P 2006. Physical regulation of the self-assembly of tobacco mosaic virus coat protein. Biophys. J. 91:41501–12
    [Google Scholar]
  65. 65.
    Kelly J, Grosberg AY, Bruinsma R 2016. Sequence dependence of viral RNA encapsidation. J. Phys. Chem. B. 120:266038–50
    [Google Scholar]
  66. 66.
    Kivenson A, Hagan MF 2010. Mechanisms of capsid assembly around a polymer. Biophys. J. 99:2619–28
    [Google Scholar]
  67. 67.
    Knapman TW, Morton VL, Stonehouse NJ, Stockley PG, Ashcroft AE 2010. Determining the topology of virus assembly intermediates using ion mobility spectrometry–mass spectrometry. Rapid Commun. Mass Spectrom. 24:203033–42
    [Google Scholar]
  68. 68.
    Koning RI, Gomez-Blanco J, Akopjana I, Vargas J, Kazaks A et al. 2016. Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ. Nat. Commun. 7:12524
    [Google Scholar]
  69. 69.
    Kutluay SB, Zang T, Blanco-Melo D, Powell C, Jannain D et al. 2014. Global changes in the RNA binding specificity of HIV-1 Gag regulate virion genesis. Cell 159:51096–109
    [Google Scholar]
  70. 70.
    Lago H, Parrott AM, Moss T, Stonehouse NJ, Stockley PG 2001. Probing the kinetics of formation of the bacteriophage MS2 translational operator complex: identification of a protein conformer unable to bind RNA. J. Mol. Biol. 305:51131–44
    [Google Scholar]
  71. 71.
    Lander GC, Tang L, Casjens SR, Gilcrease EB, Prevelige P et al. 2006. The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312:57811791–95
    [Google Scholar]
  72. 72.
    Larman BC, Dethoff EA, Weeks KM 2017. Packaged and free STMV RNA genomes adopt distinct conformational states. Biochemistry 56:162175–83
    [Google Scholar]
  73. 73.
    Lauring AS, Andino R 2010. Quasispecies theory and the behavior of RNA viruses. PLOS Pathog 6:71–8
    [Google Scholar]
  74. 74.
    Li S, Erdemci-Tandogan G, van der Schoot P, Zandi R 2018. The effect of RNA stiffness on the self-assembly of virus particles. J. Phys. Condens. Matter 30:4044002
    [Google Scholar]
  75. 75.
    Loeb T, Zinder ND 1961. A bacteriophage containing RNA. PNAS 47:3282–89
    [Google Scholar]
  76. 76.
    Logan G, Newman J, Wright CF, Lasecka-Dykes L, Haydon DT et al. 2017. Deep sequencing of foot-and-mouth disease virus reveals RNA sequences involved in genome packaging. J. Virol. 92:1e01159–17
    [Google Scholar]
  77. 77.
    Manrique P, Bolduc B, Walk ST, van der Oost J, de Vos WM, Young MJ 2016. Healthy human gut phageome. PNAS 113:3710400–5
    [Google Scholar]
  78. 78.
    Meyer TJ, Rosenkrantz JL, Carbone L, Chavez SL 2017. Endogenous retroviruses: with us and against us. Front. Chem. 5:23
    [Google Scholar]
  79. 79.
    Morton VL, Dykeman EC, Stonehouse N, Ashcroft AE, Twarock R, Stockley P 2010. The impact of viral RNA on assembly pathway selection. J. Mol. Biol. 401:298–308
    [Google Scholar]
  80. 80.
    Nguyen HD, Reddy VS, Brooks CL 2007. Deciphering the kinetic mechanism of spontaneous self-assembly of icosahedral capsids. Nano Lett 7:2338–44
    [Google Scholar]
  81. 81.
    Ning J, Erdemci-Tandogan G, Yufenyuy EL, Wagner J, Himes BA et al. 2016. In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway. Nat. Commun. 7:13689
    [Google Scholar]
  82. 82.
    Nugent CI, Johnson KL, Sarnow P, Kirkegaard K 1999. Functional coupling between replication and packaging of poliovirus replicon RNA. J. Virol. 73:1427–35
    [Google Scholar]
  83. 83.
    Olijve L, Jennings L, Walls T 2017. Human parechovirus: an increasingly recognized cause of sepsis-like illness in young infants. Clin. Microbiol. Rev. 31:1e00047–17
    [Google Scholar]
  84. 84.
    Olson AJ, Hu YHE, Keinan E 2007. Chemical mimicry of viral capsid self-assembly. PNAS 104:5220731–36
    [Google Scholar]
  85. 85.
    Pak AJ, Grime JMA, Sengupta P, Chen AK, Durumeric AEP et al. 2017. Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane. PNAS 114:47E10056–65
    [Google Scholar]
  86. 86.
    Palukaitis P 2016. Satellite RNAs and satellite viruses. Mol. Plant-Microbe Interact. 29:3181–86
    [Google Scholar]
  87. 87.
    Paranchych W 1975. Attachment, ejection and penetration stages of the RNA phage infectious process. RNA Phages, ed. ND Zinder Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press7
    [Google Scholar]
  88. 88.
    Pastuzyn ED, Day CE, Kearns RB, Kyrke-Smith M, Taibi AV et al. 2018. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell 172:1–2275–88.e18
    [Google Scholar]
  89. 89.
    Patel N, Dykeman EC, Coutts RHA, Lomonossoff GP, Rowlands DJ et al. 2015. Revealing the density of encoded functions in a viral RNA. PNAS 112:72227–32
    [Google Scholar]
  90. 90.
    Patel N, White SJ, Thompson RF, Bingham R, Weiß EU et al. 2017. HBV RNA pre-genome encodes specific motifs that mediate interactions with the viral core protein that promote nucleocapsid assembly. Nat. Microbiol. 2:17098
    [Google Scholar]
  91. 91.
    Patel N, Wroblewski E, Leonov G, Phillips SEV, Tuma R et al. 2017. Rewriting nature's assembly manual for a ssRNA virus. PNAS 114:46201706951
    [Google Scholar]
  92. 92.
    Pierson EE, Keifer DZ, Selzer L, Lee LS, Contino NC et al. 2014. Detection of late intermediates in virus capsid assembly by charge detection mass spectrometry. J. Am. Chem. Soc. 136:93536–41
    [Google Scholar]
  93. 93.
    Puxty RJ, Millard AD, Evans DJ, Scanlan DJ 2016. Viruses inhibit CO2 fixation in the most abundant phototrophs on Earth. Curr. Biol. 26:121585–89
    [Google Scholar]
  94. 94.
    Qu F, Morris TJ 1997. Encapsidation of turnip crinkle virus is defined by a specific packaging signal and RNA size. J. Virol. 71:21428–35
    [Google Scholar]
  95. 95.
    Rapaport DC 2010. Modeling capsid self-assembly: design and analysis. Phys. Biol. 7:4045001
    [Google Scholar]
  96. 96.
    Reddy VS, Giesing HA, Morton RT, Kumar A, Post CB et al. 1998. Energetics of quasiequivalence: computational analysis of protein-protein interactions in icosahedral viruses. Biophys. J. 74:1546–58
    [Google Scholar]
  97. 97.
    Reisdorph N, Thomas JJ, Katpally U, Chase E, Harris K et al. 2003. Human rhinovirus capsid dynamics is controlled by canyon flexibility. Virology 314:134–44
    [Google Scholar]
  98. 98.
    Rolfsson Ó, Middleton S, Manfield IW, White SJ, Fan B et al. 2016. Direct evidence for packaging signal-mediated assembly of bacteriophage MS2. J. Mol. Biol. 428:2431–48
    [Google Scholar]
  99. 99.
    Rossmann MG 1995. Ab initio phase determination and phase extension using non-crystallographic symmetry. Curr. Opin. Struct. Biol. 5:5650–55
    [Google Scholar]
  100. 100.
    Rossmann MG, Blow DM 1962. The detection of sub-units within the crystallographic asymmetric unit. Acta Crystallogr 15:124–31
    [Google Scholar]
  101. 101.
    Routh A, Domitrovic T, Johnson JE 2012. Host RNAs, including transposons, are encapsidated by a eukaryotic single-stranded RNA virus. PNAS 109:61907–12
    [Google Scholar]
  102. 102.
    Routh A, Domitrovic T, Johnson JE 2012. Packaging host RNAs in small RNA viruses: an inevitable consequence of an error-prone polymerase. ? Cell Cycle 11:203713–14
    [Google Scholar]
  103. 103.
    Rowsell S, Stonehouse NJ, Convery MA, Adams CJ, Ellington AD et al. 1998. Crystal structures of a series of RNA aptamers complexed to the same protein target. Nat. Struct. Biol. 5:11970–75
    [Google Scholar]
  104. 104.
    Schlicksup CJ, Wang JC-Y, Francis S, Venkatakrishnan B, Turner WW et al. 2018. Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids. eLife 7:1–23
    [Google Scholar]
  105. 105.
    Schwartz RS, Shor PW, Prevelige PE, Berger B 1998. Local rules simulation of the kinetics of virus capsid self-assembly. Biophys. J. 75:2626–36
    [Google Scholar]
  106. 106.
    Seitsonen J, Susi P, Heikkila O, Sinkovits RS, Laurinmaki P et al. 2010. Interaction of αV β3 and αV β6 integrins with human parechovirus 1. J. Virol. 84:178509–19
    [Google Scholar]
  107. 107.
    Selzer L, Zlotnick A 2015. Assembly and release of hepatitis B virus. Cold Spring Harb. Perspect. Med. 5:121–17
    [Google Scholar]
  108. 108.
    Seo J-K, Kwon S-J, Rao ALN 2012. A physical interaction between viral replicase and capsid protein is required for genome-packaging specificity in an RNA virus. J. Virol. 86:116210–21
    [Google Scholar]
  109. 109.
    Shakeel S, Dykeman EC, White SJ, Ora A, Cockburn JJB et al. 2017. Genomic RNA folding mediates assembly of human parechovirus. Nat. Commun. 8:15
    [Google Scholar]
  110. 110.
    Shakeel S, Westerhuis BM, Domanska A, Koning RI, Matadeen R et al. 2016. Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis. Nat. Commun. 7:1–8
    [Google Scholar]
  111. 111.
    Sharp PM, Hahn BH 2011. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1:11–22
    [Google Scholar]
  112. 112.
    Snijder J, Uetrecht C, Rose RJ, Sanchez-Eugenia R, Marti GA et al. 2013. Probing the biophysical interplay between a viral genome and its capsid. Nat. Chem. 5:6502–9
    [Google Scholar]
  113. 113.
    Song Y, Gorbatsevych O, Liu Y, Mugavero J, Shen SH et al. 2017. Limits of variation, specific infectivity, and genome packaging of massively recoded poliovirus genomes. PNAS 114:41E8731–40
    [Google Scholar]
  114. 114.
    Sousa JD, Müller V, Vandamme A-M 2017. The epidemic emergence of HIV: what novel enabling factors were involved?. Future Virol 12:11685–707
    [Google Scholar]
  115. 115.
    Stockley PG, Ranson NA, Twarock R 2013. A new paradigm for the roles of the genome in ssRNA viruses. Future Virol 8:6531–43
    [Google Scholar]
  116. 116.
    Stockley PG, Rolfsson O, Thompson GS, Basnak G, Francese S et al. 2007. A simple, RNA-mediated allosteric switch controls the pathway to formation of a T = 3 viral capsid. J. Mol. Biol. 369:541–52
    [Google Scholar]
  117. 117.
    Stockley PG, Twarock R, Bakker SE, Barker AM, Borodavka A et al. 2013. Packaging signals in single-stranded RNA viruses: nature's alternative to a purely electrostatic assembly mechanism. J. Biol. Phys. 39:2277–87
    [Google Scholar]
  118. 118.
    Stockley PG, Stonehouse NJ, Murray JB, Goodman ST, Talbot SJ et al. 1995. Probing sequence-specific RNA recognition by the bacteriophage MS2 coat protein. Nucleic Acids Res 23:132512–18
    [Google Scholar]
  119. 119.
    Talbot SJ, Goodman S, Bates SRE, Fishwick CWG, Stockley PG 1990. Use of synthetic oligoribonucleotides to probe RNA-protein interactions in the MS2 translational operator complex. Nucleic Acids Res 18:123521–28
    [Google Scholar]
  120. 120.
    Terasaka N, Azuma Y, Hilvert D 2018. Laboratory evolution of virus-like nucleocapsids from nonviral protein cages. PNAS 115:215432–37
    [Google Scholar]
  121. 121.
    Thuman-Commike PA, Greene B, Malinski JA, Burbea M, McGough A et al. 1999. Mechanism of scaffolding-directed virus assembly suggested by comparison of scaffolding-containing and scaffolding-lacking P22 procapsids. Biophys. J. 76:63267–77
    [Google Scholar]
  122. 122.
    Ting CL, Wu J, Wang Z-G 2011. Thermodynamic basis for the genome to capsid charge relationship in viral encapsidation. PNAS 108:4116986–91
    [Google Scholar]
  123. 123.
    Tomley FM, Shirley MW 2009. Livestock infectious diseases and zoonoses. Philos. Trans. R. Soc. B 364:15302637–42
    [Google Scholar]
  124. 124.
    Toropova K, Basnak G, Twarock R, Stockley PG, Ranson NA 2008. The three-dimensional structure of genomic RNA in bacteriophage MS2: implications for assembly. J. Mol. Biol. 375:3824–36
    [Google Scholar]
  125. 125.
    Tubiana L, Božič AL, Micheletti C, Podgornik R 2015. Synonymous mutations reduce genome compactness in icosahedral ssRNA viruses. Biophys. J. 108:1194–202
    [Google Scholar]
  126. 126.
    Twarock R, Leonov G, Stockley PG 2018. Hamiltonian path analysis of viral genomes. Nat. Commun. 9:12021
    [Google Scholar]
  127. 127.
    Uetrecht C, Versluis C, Watts NR, Roos WH, Wuite GJL et al. 2008. High-resolution mass spectrometry of viral assemblies: Molecular composition and stability of dimorphic hepatitis B virus capsids. PNAS 105:279216–20
    [Google Scholar]
  128. 128.
    Valegård K, Liljas L, Fridborg K, Unge T 1990. The three-dimensional structure of the bacterial virus MS2. Nature 345:36–41
    [Google Scholar]
  129. 129.
    Valegård K, Murray JB, Stockley PG, Stonehouse NJ, Liljas L 1994. Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature 371:6498623–26
    [Google Scholar]
  130. 130.
    Valegård K, Murray JB, Stonehouse NJ, van den Worm S, Stockley PG, Liljas L 1997. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions. J. Mol. Biol. 270:5724–38
    [Google Scholar]
  131. 131.
    van der Schoot P, Bruinsma R 2005. Electrostatics and the assembly of an RNA virus. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71:61–12
    [Google Scholar]
  132. 132.
    van der Schoot P, Zandi R 2007. Kinetic theory of virus capsid assembly. Phys. Biol. 4:4296–304
    [Google Scholar]
  133. 133.
    Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R 2006. Cooperative interactions within a viral population. Biochemistry 439:7074344–48
    [Google Scholar]
  134. 134.
    Wang JC-Y, Nickens DG, Lentz TB, Loeb DD, Zlotnick A 2014. Encapsidated hepatitis B virus reverse transcriptase is poised on an ordered RNA lattice. PNAS 111:3111329–34
    [Google Scholar]
  135. 135.
    Witherell GW, Gott JM, Uhlenbeck OC 1991. Specific interaction between RNA phage coat proteins and RNA. Prog. Nucleic Acid Res. Mol. Biol. 40:185–220
    [Google Scholar]
  136. 136.
    Xiao C, Kuznetsov YG, Sun S, Hafenstein SL, Kostyuchenko VA et al. 2009. Structural studies of the giant mimivirus. PLOS Biol 7:4e1000092
    [Google Scholar]
  137. 137.
    Yoffe AM, Prinsen P, Gopal A, Knobler CM, Gelbart WM, Ben-Shaul A 2008. Predicting the sizes of large RNA molecules. PNAS 105:4216153–58
    [Google Scholar]
  138. 138.
    Zandi R, Reguera D, Bruinsma RF, Gelbart WM, Rudnick J 2004. Origin of icosahedral symmetry in viruses. PNAS 101:4415556–60
    [Google Scholar]
  139. 139.
    Zell R 2018. Picornaviridae—the ever-growing virus family. Arch. Virol. 163:2299–317
    [Google Scholar]
  140. 140.
    Zhong Q, Carratalà A, Nazarov S, Guerrero-Ferreira RC, Piccinini L et al. 2016. Genetic, structural, and phenotypic properties of MS2 coliphage with resistance to ClO2 disinfection. Environ. Sci. Technol. 50:2413520–28
    [Google Scholar]
  141. 141.
    Zhu L, Wang X, Ren J, Porta C, Wenham H et al. 2015. Structure of Ljungan virus provides insight into genome packaging of this picornavirus. Nat. Commun. 6:18316
    [Google Scholar]
  142. 142.
    Zlotnick A 1994. To build a virus capsid: an equilibrium model of the self assembly of polyhedral protein complexes. J. Mol. Biol. 241:159–67
    [Google Scholar]
  143. 143.
    Zlotnick A 2005. Theoretical aspects of virus capsid assembly. J. Mol. Recognit. 18:6479–90
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-052118-115611
Loading
/content/journals/10.1146/annurev-biophys-052118-115611
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error