1932

Abstract

Biological molecules are often highly dynamic, and this flexibility can be critical for function. The large range of sampled timescales and the fact that many of the conformers that are continually explored are only transiently formed and sparsely populated challenge current biophysical approaches. Solution nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for characterizing biomolecular dynamics in detail, even in cases where excursions involve short-lived states. Here, we briefly review a number of NMR experiments for studies of biomolecular dynamics on the microsecond-to-second timescale and focus on applications to protein and nucleic acid systems that clearly illustrate the functional relevance of motion in both health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-052118-115647
2019-05-06
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-052118-115647.html?itemId=/content/journals/10.1146/annurev-biophys-052118-115647&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Balchin D, Hayer-Hartl M, Hartl FU 2016. In vivo aspects of protein folding and quality control. Science 353:aac4354
    [Google Scholar]
  2. 2.
    Banci L, Bertini I, Boca M, Calderone V, Cantini F et al. 2009. Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants. PNAS 106:6980–85
    [Google Scholar]
  3. 3.
    Banci L, Bertini I, D'Amelio N, Gaggelli E, Libralesso E et al. 2005. Fully metallated S134N Cu,Zn-superoxide dismutase displays abnormal mobility and intermolecular contacts in solution. J. Biol. Chem. 280:35815–21
    [Google Scholar]
  4. 4.
    Banci L, Bertini I, D'Amelio N, Libralesso E, Turano P, Valentine JS 2007. Metalation of the amyotrophic lateral sclerosis mutant glycine 37 to arginine superoxide dismutase (SOD1) apoprotein restores its structural and dynamical properties in solution to those of metalated wild-type SOD1. Biochemistry 46:9953–62
    [Google Scholar]
  5. 5.
    Bax A 1994. Multidimensional nuclear magnetic resonance methods for protein studies. Curr. Opin. Struct. Biol. 4:738–44
    [Google Scholar]
  6. 6.
    Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ERP 2009. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. PNAS 106:8471–76
    [Google Scholar]
  7. 7.
    Böcking T, Aguet F, Harrison SC, Kirchhausen T 2011. Single-molecule analysis of a molecular disassemblase reveals the mechanism of Hsc70-driven clathrin uncoating. Nat. Struct. Mol. Biol. 18:295–301
    [Google Scholar]
  8. 8.
    Boehr DD, McElheny D, Dyson HJ, Wright PE 2006. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–42
    [Google Scholar]
  9. 9.
    Boeri Erba E, Petosa C 2015. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci 24:1176–92
    [Google Scholar]
  10. 10.
    Bothe JR, Nikolova EN, Eichhorn CD, Chugh J, Hansen AL, Al-Hashimi HM 2011. Characterizing RNA dynamics at atomic resolution using solution-state NMR spectroscopy. Nat. Methods 8:919
    [Google Scholar]
  11. 11.
    Boulat B, Bodenhausen G 1993. Measurement of proton relaxation rates in proteins. J. Biomol. NMR 3:335–48
    [Google Scholar]
  12. 12.
    Bouvignies G, Vallurupalli P, Hansen DF, Correia BE, Lange O et al. 2011. Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature 477:111
    [Google Scholar]
  13. 13.
    Bracken C, Carr PA, Cavanagh J, Palmer AG 1999. Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA. J. Mol. Biol. 285:2133–46
    [Google Scholar]
  14. 14.
    Broom HR, Rumfeldt JAO, Meiering EM 2014. Many roads lead to Rome? Multiple modes of Cu,Zn superoxide dismutase destabilization, misfolding and aggregation in amyotrophic lateral sclerosis. Essays Biochem 56:149–65
    [Google Scholar]
  15. 15.
    Campbell ID, Dobson CM, Williams RJP 1975. Proton magnetic resonance studies of the tyrosine residues of hen lysozyme-assignment and detection of conformational mobility. Proc. R. Soc. B 189:503–9
    [Google Scholar]
  16. 16.
    Carr HY, Purcell EM 1954. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94:630
    [Google Scholar]
  17. 17.
    Cavalli A, Salvatella X, Dobson CM, Vendruscolo M 2007. Protein structure determination from NMR chemical shifts. PNAS 104:9615–20
    [Google Scholar]
  18. 18.
    Chiti F, Dobson CM 2008. Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol. 5:15–22
    [Google Scholar]
  19. 19.
    Clerico EM, Tilitsky JM, Meng W, Gierasch LM 2015. How Hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J. Mol. Biol. 427:1575–88
    [Google Scholar]
  20. 20.
    Cruz JA, Westhof E 2009. The dynamic landscapes of RNA architecture. Cell 136:604–9
    [Google Scholar]
  21. 21.
    Culik RM, Sekhar A, Nagesh J, Deol H, Rumfeldt JA et al. 2018. Effects of maturation on the conformational free-energy landscape of SOD1. PNAS 115:E2546–55
    [Google Scholar]
  22. 22.
    Dellwo MJ, Wand AJ 1989. Model-independent and model-dependent analysis of the global and internal dynamics of cyclosporin A. J. Am. Chem. Soc. 111:4571–78
    [Google Scholar]
  23. 23.
    Deng H-X, Hentati A, Tainer JA, Iqbal Z, Cayabyab A et al. 1993. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261:1047–51
    [Google Scholar]
  24. 24.
    Dethoff EA, Petzold K, Chugh J, Casiano-Negroni A, Al-Hashimi HM 2012. Visualizing transient low-populated structures of RNA. Nature 491:724
    [Google Scholar]
  25. 25.
    Dimura M, Peulen TO, Hanke CA, Prakash A, Gohlke H, Seidel CA 2016. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr. Opin. Struct. Biol. 40:163–85
    [Google Scholar]
  26. 26.
    Doyle CM, Rumfeldt JA, Broom HR, Sekhar A, Kay LE, Meiering EM 2016. Concurrent increases and decreases in local stability and conformational heterogeneity in Cu, Zn superoxide dismutase variants revealed by temperature-dependence of amide chemical shifts. Biochemistry 55:1346–61
    [Google Scholar]
  27. 27.
    Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM et al. 1994. Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33:5984–6003
    [Google Scholar]
  28. 28.
    Farrow NA, Zhang O, Forman-Kay JD, Kay LE 1994. A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J. Biomol. NMR 4:727–34
    [Google Scholar]
  29. 29.
    Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM 2011. Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR. Nature 480:268–72
    [Google Scholar]
  30. 30.
    Feynman RP, Leighton RB, Sands M 2011. The Feynman Lectures on Physics, Vol. I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat New York: Basic Books
  31. 31.
    Forsén S, Hoffman RA 1963. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J. Chem. Phys. 39:2892–901
    [Google Scholar]
  32. 32.
    Fraser JS, Clarkson MW, Degnan SC, Erion R, Kern D, Alber T 2009. Hidden alternative structures of proline isomerase essential for catalysis. Nature 462:669
    [Google Scholar]
  33. 33.
    Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM et al. 2011. Accessing protein conformational ensembles using room-temperature X-ray crystallography. PNAS 108:16247–52
    [Google Scholar]
  34. 34.
    Furukawa Y, O'Halloran TV 2005. Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo-and reduced form of SOD1, leading to unfolding and oxidative aggregation. J. Biol. Chem. 280:17266–74
    [Google Scholar]
  35. 35.
    Gianni S, Guydosh NR, Khan F, Caldas TD, Mayor U et al. 2003. Unifying features in protein-folding mechanisms. PNAS 100:13286–91
    [Google Scholar]
  36. 36.
    Goloubinoff P, De Los Rios P 2007. The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends Biochem. Sci. 32:372–80
    [Google Scholar]
  37. 37.
    Grum VL, Li D, MacDonald RI, Mondragón A 1999. Structures of two repeats of spectrin suggest models of flexibility. Cell 98:523–35
    [Google Scholar]
  38. 38.
    Hammes GG, Chang Y-C, Oas TG 2009. Conformational selection or induced fit: a flux description of reaction mechanism. PNAS 106:13737–41
    [Google Scholar]
  39. 39.
    Hansen DF, Vallurupalli P, Kay LE 2008. Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states. J. Biomol. NMR 41:113
    [Google Scholar]
  40. 40.
    Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D 2007. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913
    [Google Scholar]
  41. 41.
    Huang L, Serganov A, Patel DJ 2010. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Mol. Cell 40:774–86
    [Google Scholar]
  42. 42.
    Hwang T-L, Van Zijl PC, Mori S 1998. Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme. J. Biomol. NMR 11:221–26
    [Google Scholar]
  43. 43.
    Ishima R, Louis JM, Torchia DA 1999. Transverse 13C relaxation of CHD2 methyl isotopmers to detect slow conformational changes of protein side chains. J. Am. Chem. Soc. 121:11589–90
    [Google Scholar]
  44. 44.
    Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Ono AM, Güntert P 2006. Optimal isotope labelling for NMR protein structure determinations. Nature 440:52
    [Google Scholar]
  45. 45.
    Karch CM, Prudencio M, Winkler DD, Hart PJ, Borchelt DR 2009. Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS. PNAS 106:7774–79
    [Google Scholar]
  46. 46.
    Karplus M, Kuriyan J 2005. Molecular dynamics and protein function. PNAS 102:6679–85
    [Google Scholar]
  47. 47.
    Kay LE 2016. New views of functionally dynamic proteins by solution NMR spectroscopy. J. Mol. Biol. 428:323–31
    [Google Scholar]
  48. 48.
    Kay LE, Torchia DA, Bax A 1989. Backbone dynamics of proteins as studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28:8972–79
    [Google Scholar]
  49. 49.
    Kellner R, Hofmann H, Barducci A, Wunderlich B, Nettels D, Schuler B 2014. Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein. PNAS 111:13355–60
    [Google Scholar]
  50. 50.
    Kimsey IJ, Szymanski ES, Zahurancik WJ, Shakya A, Xue Y et al. 2018. Dynamic basis for dG · dT misincorporation via tautomerization and ionization. Nature 554:195
    [Google Scholar]
  51. 51.
    Kityk R, Kopp J, Sinning I, Mayer MP 2012. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48:863–74
    [Google Scholar]
  52. 52.
    Korzhnev DM, Religa TL, Banachewicz W, Fersht AR, Kay LE 2010. A transient and low-populated protein-folding intermediate at atomic resolution. Science 329:1312–16
    [Google Scholar]
  53. 53.
    Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR et al. 2004. Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430:586–90
    [Google Scholar]
  54. 54.
    Kovermann M, Rogne P, Wolf-Watz M 2016. Protein dynamics and function from solution state NMR spectroscopy. Q. Rev. Biophys. 49:e6
    [Google Scholar]
  55. 55.
    Kunkel TA 2004. DNA replication fidelity. J. Biol. Chem. 279:16895–98
    [Google Scholar]
  56. 56.
    Kunkel TA, Alexander PS 1986. The base substitution fidelity of eucaryotic DNA polymerases: mispairing frequencies, site preferences, insertion preferences, and base substitution by dislocation. J. Biol. Chem. 261:160–66
    [Google Scholar]
  57. 57.
    Kurt N, Cavagnero S 2008. Nonnative helical motif in a chaperone-bound protein fragment. Biophys. J. 94:L48–50
    [Google Scholar]
  58. 58.
    Kurt N, Rajagopalan S, Cavagnero S 2006. Effect of Hsp70 chaperone on the folding and misfolding of polypeptides modeling an elongating protein chain. J. Mol. Biol. 355:809–20
    [Google Scholar]
  59. 59.
    Lamb AL, Torres AS, O'Halloran TV, Rosenzweig AC 2001. Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat. Struct. Mol. Biol. 8:751
    [Google Scholar]
  60. 60.
    Lange OF, Lakomek N-A, Farès C, Schröder GF, Walter KF et al. 2008. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–75
    [Google Scholar]
  61. 61.
    Lee HR, Johnson KA 2006. Fidelity of the human mitochondrial DNA polymerase. J. Biol. Chem. 281:36236–40
    [Google Scholar]
  62. 62.
    Lee JH, Zhang D, Hughes C, Okuno Y, Sekhar A, Cavagnero S 2015. Heterogeneous binding of the SH3 client protein to the DnaK molecular chaperone. PNAS 112:E4206–15
    [Google Scholar]
  63. 63.
    Lepock J, Frey HE, Hallewell R 1990. Contribution of conformational stability and reversibility of unfolding to the increased thermostability of human and bovine superoxide dismutase mutated at free cysteines. J. Biol. Chem. 265:21612–18
    [Google Scholar]
  64. 64.
    Loria JP, Rance M, Palmer AG 1999. A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J. Am. Chem. Soc. 121:2331–32
    [Google Scholar]
  65. 65.
    Luchinat E, Cantini F, Rubino JT, Barbieri L, Banci L, Kozyreva T 2014. In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants. Nat. Commun. 5:5502
    [Google Scholar]
  66. 66.
    Mayer MP 2013. Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem. Sci. 38:507–14
    [Google Scholar]
  67. 67.
    Mayer MP, Bukau B 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62:670–84
    [Google Scholar]
  68. 68.
    McConnell HM 1958. Reaction rates by nuclear magnetic resonance. J. Chem. Phys. 28:430–31
    [Google Scholar]
  69. 69.
    Meiboom S, Gill D 1958. Modified spin‐echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29:688–91
    [Google Scholar]
  70. 70.
    Millet O, Muhandiram D, Skrynnikov NR, Kay LE 2002. Deuterium spin probes of side-chain dynamics in proteins. 1. Measurement of five relaxation rates per deuteron in 13C-labeled and fractionally 2H-enriched proteins in solution. J. Am. Chem. Soc. 124:6439–48
    [Google Scholar]
  71. 71.
    Mittermaier A, Kay LE 2006. New tools provide new insights in NMR studies of protein dynamics. Science 312:224–28
    [Google Scholar]
  72. 72.
    Montelione GT, Wagner G 1989. 2D chemical exchange NMR spectroscopy by proton-detected heteronuclear correlation. J. Am. Chem. Soc. 111:3096–98
    [Google Scholar]
  73. 73.
    Mulder FA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE 2001. Measurement of slow (μs-ms) time scale dynamics in protein side chains by 15N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J. Am. Chem. Soc. 123:967–75
    [Google Scholar]
  74. 74.
    Museth AK, Brorsson A-C, Lundqvist M, Tibell LA, Jonsson B-H 2009. The ALS-associated mutation G93A in human copper-zinc superoxide dismutase selectively destabilizes the remote metal binding region. Biochemistry 48:8817–29
    [Google Scholar]
  75. 75.
    Neudecker P, Robustelli P, Cavalli A, Walsh P, Lundström P et al. 2012. Structure of an intermediate state in protein folding and aggregation. Science 336:362–66
    [Google Scholar]
  76. 76.
    Nicholson LK, Kay LE, Baldisseri DM, Arango J, Young PE et al. 1992. Dynamics of methyl groups in proteins as studied by proton-detected carbon-13 NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Biochemistry 31:5253–63
    [Google Scholar]
  77. 77.
    Nikolova EN, Kim E, Wise AA, O'Brien PJ, Andricioaei I, Al-Hashimi HM 2011. Transient Hoogsteen base pairs in canonical duplex DNA. Nature 470:498–502
    [Google Scholar]
  78. 78.
    Nishikawa T, Nagadoi A, Yoshimura S, Aimoto S, Nishimura Y 1998. Solution structure of the DNA-binding domain of human telomeric protein, hTRF1. Structure 6:1057–65
    [Google Scholar]
  79. 79.
    Palleros DR, Shi L, Reid KL, Fink AL 1994. hsp70-protein complexes. Complex stability and conformation of bound substrate protein. J. Biol. Chem. 269:13107–14
    [Google Scholar]
  80. 80.
    Palmer AG, Kroenke CD, Loria JP 2000. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–38
    [Google Scholar]
  81. 81.
    Palmer AG, Massi F 2006. Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem. Rev. 106:1700–19
    [Google Scholar]
  82. 82.
    Palmer AG, Williams J, McDermott A 1996. Nuclear magnetic resonance studies of biopolymer dynamics. J. Phys. Chem. 100:13293–310
    [Google Scholar]
  83. 83.
    Palmer AG III, Hochstrasser RA, Millar DP, Rance M, Wright PE 1993. Characterization of amino acid side chain dynamics in a zinc-finger peptide using carbon-13 NMR spectroscopy and time-resolved fluorescence spectroscopy. J. Am. Chem. Soc. 115:6333–45
    [Google Scholar]
  84. 84.
    Pardi A 1995. [15] Multidimensional heteronuclear NMR experiments for structure determination of isotopically labeled RNA. Methods in Enzymology, Vol. 261: Nuclear Magnetic Resonance and Nucleic Acids TL James 350–80 Cambridge, MA: Academic Press
    [Google Scholar]
  85. 85.
    Pervushin K, Riek R, Wider G, Wüthrich K 1997. Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. PNAS 94:12366–71
    [Google Scholar]
  86. 86.
    Pierpaoli EV, Gisler SM, Christen P 1998. Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ. Biochemistry 37:16741–48
    [Google Scholar]
  87. 87.
    Qi R, Sarbeng EB, Liu Q, Le KQ, Xu X et al. 2013. Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nat. Struct. Mol. Biol. 20:900–7
    [Google Scholar]
  88. 88.
    Religa TL, Ruschak AM, Rosenzweig R, Kay LE 2011. Site-directed methyl group labeling as an NMR probe of structure and dynamics in supramolecular protein systems: applications to the proteasome and to the ClpP protease. J. Am. Chem. Soc. 133:9063–68
    [Google Scholar]
  89. 89.
    Ren A, Rajashankar KR, Patel DJ 2012. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. Nature 486:85
    [Google Scholar]
  90. 90.
    Ren A, Xue Y, Peselis A, Serganov A, Al-Hashimi HM, Patel DJ 2015. Structural and dynamic basis for low-affinity, high-selectivity binding of L-glutamine by the glutamine riboswitch. Cell Rep 13:1800–13
    [Google Scholar]
  91. 91.
    Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P et al. 1993. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62
    [Google Scholar]
  92. 92.
    Rosenzweig R, Kay LE 2014. Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Annu. Rev. Biochem. 83:291–315
    [Google Scholar]
  93. 93.
    Rosenzweig R, Sekhar A, Nagesh J, Kay LE 2017. Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone-substrate ensembles. eLife 6:e28030
    [Google Scholar]
  94. 94.
    Rüdiger S, Germeroth L, Schneider‐Mergener J, Bukau B 1997. Substrate specificity of the DnaK chaperone determined by screening cellulose‐bound peptide libraries. EMBO J 16:1501–7
    [Google Scholar]
  95. 95.
    Rumfeldt JA, Stathopulos PB, Chakrabarrty A, Lepock JR, Meiering EM 2006. Mechanism and thermodynamics of guanidinium chloride-induced denaturation of ALS-associated mutant Cu,Zn superoxide dismutases. J. Mol. Biol. 355:106–23
    [Google Scholar]
  96. 96.
    Schanda P, Ernst M 2016. Studying dynamics by magic-angle spinning solid-state NMR spectroscopy: principles and applications to biomolecules. Prog. Nucl. Magn. Reson. Spectrosc. 96:1–46
    [Google Scholar]
  97. 97.
    Scott KA, Randles LG, Moran SJ, Daggett V, Clarke J 2006. The folding pathway of spectrin R17 from experiment and simulation: using experimentally validated MD simulations to characterize states hinted at by experiment. J. Mol. Biol. 359:159–73
    [Google Scholar]
  98. 98.
    Sekhar A, Kay LE 2013. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. PNAS 110:12867–74
    [Google Scholar]
  99. 99.
    Sekhar A, Nagesh J, Rosenzweig R, Kay LE 2017. Conformational heterogeneity in the Hsp70 chaperone‐substrate ensemble. Protein Sci 26:2207–20
    [Google Scholar]
  100. 100.
    Sekhar A, Rosenzweig R, Bouvignies G, Kay LE 2015. Mapping the conformation of a client protein through the Hsp70 functional cycle. PNAS 112:10395–400
    [Google Scholar]
  101. 101.
    Sekhar A, Rosenzweig R, Bouvignies G, Kay LE 2016. Hsp70 biases the folding pathways of client proteins. PNAS 113:E2794–801
    [Google Scholar]
  102. 102.
    Sekhar A, Rumfeldt JA, Broom HR, Doyle CM, Bouvignies G et al. 2015. Thermal fluctuations of immature SOD1 lead to separate folding and misfolding pathways. eLife 4:e07296
    [Google Scholar]
  103. 103.
    Sekhar A, Rumfeldt JA, Broom HR, Doyle CM, Sobering RE et al. 2016. Probing the free energy landscapes of ALS disease mutants of SOD1 by NMR spectroscopy. PNAS 113:E6939–45
    [Google Scholar]
  104. 104.
    Sekhar A, Santiago M, Lam HN, Lee JH, Cavagnero S 2012. Transient interactions of a slow‐folding protein with the Hsp70 chaperone machinery. Protein Sci 21:1042–55
    [Google Scholar]
  105. 105.
    Sekhar A, Velyvis A, Zoltsman G, Rosenzweig R, Bouvignies G, Kay LE 2018. Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions. eLife 7:e32764
    [Google Scholar]
  106. 106.
    Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM et al. 2008. Consistent blind protein structure generation from NMR chemical shift data. PNAS 105:4685–90
    [Google Scholar]
  107. 107.
    Sheng Y, Chattopadhyay M, Whitelegge J, Selverstone Valentine J 2012. SOD1 aggregation and ALS: role of metallation states and disulfide status. Curr. Top. Med. Chem. 12:2560–72
    [Google Scholar]
  108. 108.
    Shipp EL, Cantini F, Bertini I, Valentine JS, Banci L 2003. Dynamic properties of the G93A mutant of copper−zinc superoxide dismutase as detected by NMR spectroscopy: implications for the pathology of familial amyotrophic lateral sclerosis. Biochemistry 42:1890–99
    [Google Scholar]
  109. 109.
    Slepenkov SV, Witt SN 2002. The unfolding story of the Escherichia coli Hsp70 DnaK: Is DnaK a holdase or an unfoldase. ? Mol. Microbiol. 45:1197–206
    [Google Scholar]
  110. 110.
    Snyder GH, Rowan R III, Karplus S, Sykes BD 1975. Complete tyrosine assignments in the high field proton nuclear magnetic resonance spectrum of the bovine pancreatic trypsin inhibitor. Biochemistry 14:3765–77
    [Google Scholar]
  111. 111.
    Stathopulos PB, Rumfeldt JA, Karbassi F, Siddall CA, Lepock JR, Meiering EM 2006. Calorimetric analysis of thermodynamic stability and aggregation for apo and holo amyotrophic lateral sclerosis-associated Gly-93 mutants of superoxide dismutase. J. Biol. Chem. 281:6184–93
    [Google Scholar]
  112. 112.
    Stevens SY, Cai S, Pellecchia M, Zuiderweg ER 2003. The solution structure of the bacterial HSP70 chaperone protein domain DnaK (393–507) in complex with the peptide NRLLLTG. Protein Sci 12:2588–96
    [Google Scholar]
  113. 113.
    Strange RW, Antonyuk S, Hough MA, Doucette PA, Rodriguez JA et al. 2003. The structure of holo and metal-deficient wild-type human Cu, Zn superoxide dismutase and its relevance to familial amyotrophic lateral sclerosis. J. Mol. Biol. 328:877–91
    [Google Scholar]
  114. 114.
    Sustarsic M, Kapanidis AN 2015. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. Curr. Opin. Struct. Biol. 34:52–59
    [Google Scholar]
  115. 115.
    Szabo A, Langer T, Schröder H, Flanagan J, Bukau B, Hartl FU 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system—DnaK, DnaJ, and GrpE. PNAS 91:10345–49
    [Google Scholar]
  116. 116.
    Teilum K, Smith MH, Schulz E, Christensen LC, Solomentsev G et al. 2009. Transient structural distortion of metal-free Cu/Zn superoxide dismutase triggers aberrant oligomerization. PNAS 106:18273–78
    [Google Scholar]
  117. 117.
    Topal MD, Fresco JR 1976. Base pairing and fidelity in codon–anticodon interaction. Nature 263:289
    [Google Scholar]
  118. 118.
    Torchia DA 2015. NMR studies of dynamic biomolecular conformational ensembles. Prog. Nucl. Magn. Reson. Spectrosc. 84:14–32
    [Google Scholar]
  119. 119.
    Trbovic N, Cho J-H, Abel R, Friesner RA, Rance M, Palmer AG III 2008. Protein side-chain dynamics and residual conformational entropy. J. Am. Chem. Soc. 131:615–22
    [Google Scholar]
  120. 120.
    Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE 2003. Cross-correlated relaxation enhanced 1H−13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J. Am. Chem. Soc. 125:10420–28
    [Google Scholar]
  121. 121.
    Tugarinov V, Kanelis V, Kay LE 2006. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 1:749–54
    [Google Scholar]
  122. 122.
    Tugarinov V, Kay LE 2004. An isotope labeling strategy for methyl TROSY spectroscopy. J. Biomol. NMR 28:165–72
    [Google Scholar]
  123. 123.
    Tzeng S-R, Kalodimos CG 2013. Allosteric inhibition through suppression of transient conformational states. Nat. Chem. Biol. 9:462
    [Google Scholar]
  124. 124.
    Valentine JS, Doucette PA, Zittin Potter S 2005. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu. Rev. Biochem. 74:563–93
    [Google Scholar]
  125. 125.
    Vallurupalli P, Bouvignies G, Kay LE 2012. Studying “invisible” excited protein states in slow exchange with a major state conformation. J. Am. Chem. Soc. 134:8148–61
    [Google Scholar]
  126. 126.
    Vallurupalli P, Kay LE 2005. A suite of 2H NMR spin relaxation experiments for the measurement of RNA dynamics. J. Am. Chem. Soc. 127:6893–901
    [Google Scholar]
  127. 127.
    Vallurupalli P, Sekhar A, Yuwen T, Kay LE 2017. Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer. J. Biomol. NMR 67:243–71
    [Google Scholar]
  128. 128.
    Vassall KA, Stubbs HR, Primmer HA, Tong MS, Sullivan SM et al. 2011. Decreased stability and increased formation of soluble aggregates by immature superoxide dismutase do not account for disease severity in ALS. PNAS 108:2210–15
    [Google Scholar]
  129. 129.
    Vicens Q, Mondragón E, Batey RT 2011. Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection. Nucleic Acids Res 39:8586–98
    [Google Scholar]
  130. 130.
    Wand AJ 2013. The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation. Curr. Opin. Struct. Biol. 23:75–81
    [Google Scholar]
  131. 131.
    Watson JD, Crick FH 1953. Molecular structure of nucleic acids. Nature 171:737–38
    [Google Scholar]
  132. 132.
    Weber G 1975. Energetics of ligand binding to proteins. Advances In Protein Chemistry 29 CB Anfinsen Jr., JT Edsall, FM Richards 1–83 New York: Academic Press
    [Google Scholar]
  133. 133.
    Whittier SK, Hengge AC, Loria JP 2013. Conformational motions regulate phosphoryl transfer in related protein tyrosine phosphatases. Science 341:899–903
    [Google Scholar]
  134. 134.
    Wiesner S, Sprangers R 2015. Methyl groups as NMR probes for biomolecular interactions. Curr. Opin. Struct. Biol. 35:60–67
    [Google Scholar]
  135. 135.
    Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G 2008. CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 36:W496–502
    [Google Scholar]
  136. 136.
    Wüthrich K, Wagner G 1978. Internal motion in globular proteins. Trends Biochem. Sci. 3:227–30
    [Google Scholar]
  137. 137.
    Xu Y, McSally J, Andricioaei I, Al-Hashimi HM 2018. Modulation of Hoogsteen dynamics on DNA recognition. Nat. Commun. 9:1473
    [Google Scholar]
  138. 138.
    Xue Y, Kellogg D, Kimsey IJ, Sathyamoorthy B, Stein ZW et al. 2015. Characterizing RNA excited states using NMR relaxation dispersion. Methods in Enzymology, Vol. 558: Structures of Large RNA Molecules and Their Complexes SA Woodson, FHT Allain 39–73 Waltham, MA: Academic Press
    [Google Scholar]
  139. 139.
    Yang D, Kay LE 1996. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol. 263:369–82
    [Google Scholar]
  140. 140.
    Yang D, Mok Y-K, Forman-Kay JD, Farrow NA, Kay LE 1997. Contributions to protein entropy and heat capacity from bond vector motions measured by NMR spin relaxation. J. Mol. Biol. 272:790–804
    [Google Scholar]
  141. 141.
    Zahurancik WJ, Klein SJ, Suo Z 2014. Significant contribution of the 3′→ 5′ exonuclease activity to the high fidelity of nucleotide incorporation catalyzed by human DNA polymerase ϵ. Nucleic Acids Res 42:13853–60
    [Google Scholar]
  142. 142.
    Zetterström P, Graffmo KS, Andersen PM, Brännström T, Marklund SL 2013. Composition of soluble misfolded superoxide dismutase-1 in murine models of amyotrophic lateral sclerosis. Neuromolecular Med 15:147–58
    [Google Scholar]
  143. 143.
    Zetterström P, Stewart HG, Bergemalm D, Jonsson PA, Graffmo KS et al. 2007. Soluble misfolded subfractions of mutant superoxide dismutase-1s are enriched in spinal cords throughout life in murine ALS models. PNAS 104:14157–62
    [Google Scholar]
  144. 144.
    Zhang Q, Stelzer AC, Fisher CK, Al-Hashimi HM 2007. Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature 450:1263
    [Google Scholar]
  145. 145.
    Zhang Q, Sun X, Watt ED, Al-Hashimi HM 2006. Resolving the motional modes that code for RNA adaptation. Science 311:653–56
    [Google Scholar]
  146. 146.
    Zhao B, Guffy SL, Williams B, Zhang Q 2017. An excited state underlies gene regulation of a transcriptional riboswitch. Nat. Chem. Biol. 13:968
    [Google Scholar]
  147. 147.
    Zhao B, Zhang Q 2015. Measuring residual dipolar couplings in excited conformational states of nucleic acids by CEST NMR spectroscopy. J. Am. Chem. Soc. 137:13480–83
    [Google Scholar]
  148. 148.
    Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM et al. 1996. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–14
    [Google Scholar]
  149. 149.
    Zhuravleva A, Clerico EM, Gierasch LM 2012. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151:1296–307
    [Google Scholar]
  150. 150.
    Zhuravleva A, Gierasch LM 2015. Substrate-binding domain conformational dynamics mediate Hsp70 allostery. PNAS 112:E2865–73
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-052118-115647
Loading
/content/journals/10.1146/annurev-biophys-052118-115647
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error