1932

Abstract

Single-particle electron cryomicroscopy (cryo-EM) has led to a revolution in structural work on mammalian respiratory complex I. Complex I (mitochondrial NADH:ubiquinone oxidoreductase), a membrane-bound redox-driven proton pump, is one of the largest and most complicated enzymes in the mammalian cell. Rapid progress, following the first 5-Å resolution data on bovine complex I in 2014, has led to a model for mouse complex I at 3.3-Å resolution that contains 96% of the 8,518 residues and to the identification of different particle classes, some of which are assigned to biochemically defined states. Factors that helped improve resolution, including improvements to biochemistry, cryo-EM grid preparation, data collection strategy, and image processing, are discussed. Together with recent structural data from an ancient relative, membrane-bound hydrogenase, cryo-EM on mammalian complex I has provided new insights into the proton-pumping machinery and a foundation for understanding the enzyme's catalytic mechanism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-052118-115704
2019-05-06
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-052118-115704.html?itemId=/content/journals/10.1146/annurev-biophys-052118-115704&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdrakhmanova A, Zwicker K, Kerscher S, Zickermann V, Brandt U 2006. Tight binding of NADPH to the 39-kDa subunit of complex I is not required for catalytic activity but stabilizes the multiprotein complex. Biochim. Biophys. Acta 1757:1676–82
    [Google Scholar]
  2. 2.
    Agip A-NA, Blaza JN, Bridges HR, Viscomi C, Rawson S et al. 2018. Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nat. Struct. Mol. Biol. 25:548–56
    [Google Scholar]
  3. 3.
    Angerer H, Radermacher M, Mankowska M, Steger M, Zwicker K et al. 2014. The LYR protein subunit NB4M/NDUFA6 of mitochondrial complex I anchors an acyl carrier protein and is essential for catalytic activity. PNAS 111:5207–12
    [Google Scholar]
  4. 4.
    Angerer H, Schönborn S, Gorka J, Bahr U, Karas M et al. 2017. Acyl modification and binding of mitochondrial ACP to multiprotein complexes. Biochim. Biophys. Acta 1864:1913–20
    [Google Scholar]
  5. 5.
    Baradaran R, Berrisford JM, Minhas GS, Sazanov LA 2013. Crystal structure of the entire respiratory complex I. Nature 494:443–48
    [Google Scholar]
  6. 6.
    Birrell JA, Morina K, Bridges HR, Friedrich T, Hirst J 2013. Investigating the function of [2Fe-2S] cluster N1a, the off-pathway cluster in complex I, by manipulating its reduction potential. Biochem. J. 456:139–46
    [Google Scholar]
  7. 7.
    Blaza JN, Vinothkumar KR, Hirst J 2018. Structure of the deactive state of mammalian respiratory complex I. Structure 26:312–19
    [Google Scholar]
  8. 8.
    Breuer ME, Willems PHGM, Smeitink JAM, Koopman WJH, Nooteboom M 2013. Cellular and animal models for mitochondrial complex I deficiency: a focus on the NDUFS4 subunit. IUBMB Life 65:202–8
    [Google Scholar]
  9. 9.
    Brockmann C, Diehl A, Rehbein K, Strauss H, Schmeider P et al. 2004. The oxidized subunit B8 from human complex I adopts a thioredoxin fold. Structure 12:1645–54
    [Google Scholar]
  10. 10.
    Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE 2006. Bovine complex I is a complex of forty-five different subunits. J. Biol. Chem. 281:32724–27
    [Google Scholar]
  11. 11.
    Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR et al. 2013. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 19:753–59
    [Google Scholar]
  12. 12.
    Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J et al. 2012. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLOS Comput. Biol. 8:e1002708
    [Google Scholar]
  13. 13.
    Cooley RB, Arp DJ, Karplus PA 2010. Evolutionary origin of a secondary structure: π-helices as cryptic but widespread insertional variations of α-helices that enhance protein functionality. J. Mol. Biol. 404:232–46
    [Google Scholar]
  14. 14.
    Di Luca A, Gamiz-Hernandez AP, Kaila VRI 2017. Symmetry-related proton transfer pathways in respiratory complex I. PNAS 114:E6314–21
    [Google Scholar]
  15. 15.
    Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J et al. 1988. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228
    [Google Scholar]
  16. 16.
    Efremov RG, Sazanov LA 2011. Structure of the membrane domain of respiratory complex I. Nature 476:414–20
    [Google Scholar]
  17. 17.
    Elurbe DM, Huynen MA 2016. The origin of the supernumerary subunits and assembly factors of complex I: a treasure trove of pathway evolution. Biochim. Biophys. Acta 1857:971–79
    [Google Scholar]
  18. 18.
    Esterházy D, King MS, Yakovlev G, Hirst J 2008. Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry 47:3964–71
    [Google Scholar]
  19. 19.
    Fassone E, Rahman S 2012. Complex I deficiency: clinical features, biochemistry and molecular genetics. J. Med. Genet. 49:578–90
    [Google Scholar]
  20. 20.
    Fearnley IM, Walker JE 1992. Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim. Biophys. Acta 1140:105–34
    [Google Scholar]
  21. 21.
    Fedor JG, Jones AJY, Di Luca A, Kaila VRI, Hirst J 2017. Correlating kinetic and structural data on ubiquinone binding and reduction by respiratory complex I. PNAS 114:12737–42
    [Google Scholar]
  22. 22.
    Fernandez-Leiro R, Scheres SHW 2017. A pipeline approach to single-particle processing in RELION. Acta Crystallogr D73:496–502
    [Google Scholar]
  23. 23.
    Fernández-Vizarra E, Ferrín G, Pérez-Martos A, Fernández-Silva P, Zeviani M, Enríquez JA 2010. Isolation of mitochondria for biogenetical studies: an update. Mitochondrion 10:253–62
    [Google Scholar]
  24. 24.
    Fiedorczuk K, Letts JA, Degliesposti G, Kaszuba K, Skehel M, Sazanov LA 2016. Atomic structure of the entire mammalian mitochondrial complex I. Nature 538:406–10
    [Google Scholar]
  25. 25.
    Gabaldón T, Rainey D, Huynen MA 2005. Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (complex I). J. Mol. Biol. 348:857–70
    [Google Scholar]
  26. 26.
    Galkin A, Dröse S, Brandt U 2006. The proton pumping stoichiometry of purified mitochondrial complex I reconstituted into proteoliposomes. Biochim. Biophys. Acta 1757:1575–81
    [Google Scholar]
  27. 27.
    Galkin A, Moncada S 2017. Modulation of the conformational state of mitochondrial complex I as a target for therapeutic intervention. Interface Focus 7:20160104
    [Google Scholar]
  28. 28.
    Glaeser RM 2018. Proteins, interfaces and cryo-EM grids. Curr. Opin. Colloid Interface Sci. 34:1–8
    [Google Scholar]
  29. 29.
    Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y et al. 2016. Mitochondrial diseases. Nature Rev. Dis. Primers 2:16080
    [Google Scholar]
  30. 30.
    Grigorieff N 1998. Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 Å in ice. J. Mol. Biol. 277:1033–46
    [Google Scholar]
  31. 31.
    Gu J, Wu M, Guo R, Yan K, Lei J et al. 2016. The architecture of the mammalian respirasome. Nature 537:639–43
    [Google Scholar]
  32. 32.
    Guo R, Zong S, Wu M, Gu J, Yang M 2017. Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell 170:1247–57
    [Google Scholar]
  33. 33.
    Henderson R, Chen S, Chen JZ, Grigorieff N, Passmore LA et al. 2011. Tilt-pair analysis of images from a range of different specimens in single-particle electron cryomicroscopy. J. Mol. Biol. 413:1028–46
    [Google Scholar]
  34. 34.
    Hirst J 2013. Mitochondrial complex I. Annu. Rev. Biochem. 82:551–75
    [Google Scholar]
  35. 35.
    Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE 2003. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta 1604:135–50
    [Google Scholar]
  36. 36.
    Hirst J, King MS, Pryde KR 2008. The production of reactive oxygen species by complex I. Biochem. Soc. Trans. 36:976–80
    [Google Scholar]
  37. 37.
    Hirst J, Roessler MM 2016. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I. Biochim. Biophys. Acta 1857:872–83
    [Google Scholar]
  38. 38.
    Huoponen K, Vilkki J, Aula P, Nikoskelainen EK, Savontaus ML 1991. A new mtDNA mutation associated with Leber hereditary optic neuroretinopathy. Am. J. Hum. Genet. 48:1147–53
    [Google Scholar]
  39. 39.
    Johansson K, Ramaswamy S, Ljungcrantz C, Knecht W, Piskur J et al. 2001. Structural basis for substrate specificities of cellular deoxyribonucleoside kinases. Nat. Struct. Biol. 8:616–20
    [Google Scholar]
  40. 40.
    Jones AJY, Blaza JN, Bridges HR, May B, Moore AL, Hirst J 2016. A self-assembled respiratory chain catalyzes NADH oxidation through ubiquinone-10 cycling between complex I and the alternative oxidase. Angew Chem. Int. Ed. 55:728–31
    [Google Scholar]
  41. 41.
    Jones AJY, Blaza JN, Varghese F, Hirst J 2017. Respiratory complex I in Bostaurus and Paracoccusdenitrificans pumps four protons across the membrane for every NADH oxidized. J. Biol. Chem. 292:4987–95
    [Google Scholar]
  42. 42.
    Kahlhöfer F, Kmita K, Wittig I, Zwicker K, Zickermann V 2017. Accessory subunit NUYM (NDUFS4) is required for stability of the electron input module and activity of mitochondrial complex I. Biochim. Biophys. Acta 1858:175–81
    [Google Scholar]
  43. 43.
    Kaila VRI 2018. Long-range proton-coupled electron transfer in biological energy conversion: towards mechanistic understanding of respiratory complex I. J. R. Soc. Interface 15:20170916
    [Google Scholar]
  44. 44.
    Kimanius D, Forsberg BO, Scheres SHW, Lindahl E 2016. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5:e18722
    [Google Scholar]
  45. 45.
    Koene S, Rodenburg RJ, van der Knaap MS, Willemsen MAAP, Sperl W et al. 2012. Natural disease course and genotype-phenotype correlations in complex I deficiency caused by nuclear gene defects: what we learned from 130 cases. J. Inherit. Metab. Dis 35:737–47
    [Google Scholar]
  46. 46.
    Kotlyar AB, Sled VD, Burbaev DS, Moroz IA, Vinogradov AD 1990. Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles. FEBS Lett 264:17–20
    [Google Scholar]
  47. 47.
    Leshinsky-Silver E, Lebre AS, Minai L, Saada A, Steffann J et al. 2009. NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement. Mol. Genet. Metab. 97:185–89
    [Google Scholar]
  48. 48.
    Letts JA, Fiedorczuk K, Sazanov LA 2016. The architecture of respiratory supercomplexes. Nature 537:644–48
    [Google Scholar]
  49. 49.
    McMullan G, Chen S, Henderson R, Faruqi AR 2009. Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109:1126–43
    [Google Scholar]
  50. 50.
    McMullan G, Faruqi AR, Clare D, Henderson R 2014. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147:156–63
    [Google Scholar]
  51. 51.
    Meyerson JR, Rao P, Kumar J, Chittori S, Banerjee S et al. 2014. Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports. Sci. Rep. 4:7084
    [Google Scholar]
  52. 52.
    Murphy MP 2009. How mitochondria produce reactive oxygen species. Biochem. J. 417:1–13
    [Google Scholar]
  53. 53.
    Noble AJ, Dandey VP, Wei H, Brasch J, Chase J et al. 2018. Routine single particle cryoEM sample and grid characterization by tomography. eLife 7:e34257
    [Google Scholar]
  54. 54.
    Passmore LA, Russo CJ 2016. Specimen preparation for high-resolution cryo-EM. Methods Enzymol 579:51–86
    [Google Scholar]
  55. 55.
    Pisa KY, Huber H, Thomm M, Muller V 2007. A sodium ion-dependent A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcusfuriosus. . FEBS J 274:3928–38
    [Google Scholar]
  56. 56.
    Pryde KR, Hirst J 2011. Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer. J. Biol. Chem. 286:18056–65
    [Google Scholar]
  57. 57.
    Ripple MO, Kim N, Springett R 2013. Mammalian complex I pumps 4 protons per 2 electrons at high and physiological proton motive force in living cells. J. Biol. Chem. 288:5374–80
    [Google Scholar]
  58. 58.
    Roessler MM, King MS, Robinson AJ, Armstrong FA, Harmer J, Hirst J 2010. Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron-electron resonance. PNAS 107:1930–35
    [Google Scholar]
  59. 59.
    Rosenthal PB, Henderson R 2003. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333:721–45
    [Google Scholar]
  60. 60.
    Runswick MJ, Fearnley IM, Skehel JM, Walker JE 1991. Presence of an acyl carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria. FEBS Lett 286:121–24
    [Google Scholar]
  61. 61.
    Russo CJ, Passmore LA 2014. Ultrastable gold substrates for electron cryomicroscopy. Science 346:1377–80
    [Google Scholar]
  62. 62.
    Sapra R, Bagramyan K, Adams MWW 2003. A simple energy-conserving system: proton reduction coupled to proton translocation. PNAS 100:7545–50
    [Google Scholar]
  63. 63.
    Sazanov LA 2015. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat. Rev. Mol. Cell. Biol. 16:375–88
    [Google Scholar]
  64. 64.
    Sazanov LA, Hinchliffe P 2006. Structure of the hydrophilic domain of respiratory complex I from Thermusthermophilus. . Science 311:1430–36
    [Google Scholar]
  65. 65.
    Sazinsky MH, Lippard SJ 2005. Product bound structures of the soluble methane monooxygenase hydroxylase from Methylococcuscapsulatus (Bath): protein motion in the α-subunit. J. Am. Chem. Soc. 127:5814–25
    [Google Scholar]
  66. 66.
    Scheres SHW 2012. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180:519–30
    [Google Scholar]
  67. 67.
    Scheres SHW 2014. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3:e03665
    [Google Scholar]
  68. 68.
    Schut GJ, Zadvornyy O, Wu C-H, Peters JW, Boyd ES, Adams MWW 2016. The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor. Biochim. Biophys. Acta 1857:958–70
    [Google Scholar]
  69. 69.
    Sharpley MS, Shannon RJ, Draghi F, Hirst J 2006. Interactions between phospholipids and NADH:ubiquinone oxidoreductase (complex I) from bovine mitochondria. Biochemistry 45:241–48
    [Google Scholar]
  70. 70.
    Szklarczyk R, Wanschers BFJ, Nabuurs SB, Nouws J, Nijtmans LG, Huynen MA 2011. NDUFB7 and NDUFA8 are located at the intermembrane surface of complex I. FEBS Lett 585:737–43
    [Google Scholar]
  71. 71.
    Vinothkumar KR, Zhu J, Hirst J 2014. Architecture of mammalian complex I. Nature 515:80–84
    [Google Scholar]
  72. 72.
    Walker JE 1992. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q. Rev. Biophys. 25:253–324
    [Google Scholar]
  73. 73.
    Wikström M 1984. Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett 169:300–4
    [Google Scholar]
  74. 74.
    Wirth C, Brandt U, Hunte C, Zickermann V 2016. Structure and function of mitochondrial complex I. Biochim. Biophys. Acta 1857:902–14
    [Google Scholar]
  75. 75.
    Wong HS, Dighe PA, Mezera V, Monternier PA, Brand MD 2017. Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J. Biol. Chem. 292:16804–9
    [Google Scholar]
  76. 76.
    Wu M, Gu J, Guo R, Huang Y, Yang M 2016. Structure of mammalian respiratory supercomplex I1III2IV1. Cell 167:1598–609
    [Google Scholar]
  77. 77.
    Yonekura K, Braunfeld MB, Maki-Yonekura S, Agard DA 2006. Electron energy filtering significantly improves amplitude contrast of frozen-hydrated protein at 300 kV. J. Struct. Biol. 156:524–36
    [Google Scholar]
  78. 78.
    Yu H, Wu C-H, Schut GJ, Haja DK, Zhao G et al. 2018. Structure of an ancient respiratory system. Cell 173:1636–49
    [Google Scholar]
  79. 79.
    Zhang K 2016. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193:1–12
    [Google Scholar]
  80. 80.
    Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA 2017. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14:331–32
    [Google Scholar]
  81. 81.
    Zhu J, King MS, Yu M, Klipcan L, Leslie AGW, Hirst J 2015. Structure of subcomplex Iβ of mammalian respiratory complex I leads to new supernumerary subunit assignments. PNAS 112:12087–92
    [Google Scholar]
  82. 82.
    Zhu J, Vinothkumar KR, Hirst J 2016. Structure of mammalian respiratory complex I. Nature 536:354–58
    [Google Scholar]
  83. 83.
    Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H et al. 2015. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347:44–49
    [Google Scholar]
  84. 84.
    Zu Y, Di Bernardo S, Yagi T, Hirst J 2002. Redox properties of the [2Fe-2S] center in the 24 kDa (NQO2) subunit of NADH:ubiquinone oxidoreductase (complex I). Biochemistry 41:10056–69
    [Google Scholar]
  85. 85.
    Zu Y, Shannon RJ, Hirst J 2003. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Iλ) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Am. Chem. Soc. 125:6020–21
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-052118-115704
Loading
/content/journals/10.1146/annurev-biophys-052118-115704
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error