1932

Abstract

The response of polycrystals to plastic deformation is studied at the level of variations within individual grains, and comparisons are made to theoretical calculations using crystal plasticity (CP). We provide a brief overview of CP and a review of the literature, which is dominated by surface observations. The motivating question asks how well does CP represent the mesoscale behavior of large populations of dislocations (as carriers of plastic strain). The literature shows consistently that only moderate agreement is found between experiment and calculation. We supplement this with a current example of microstructure evolution in the interior of a copper sample subjected to tensile deformation. Nondestructive measurements of orientation fields were performed using the near-field high-energy X-ray diffraction microscopy (nf-HEDM) technique at the Advanced Photon Source (APS). Starting at highly ordered grains, a single two-dimensional slice of microstructure containing ∼150 grains was followed through multiple strain states, where it tracked lattice rotations and defect accumulation of up to 14% elongation. In accord with the literature, at the scale of individual grains, comparison of observations with CP models indicates reasonable qualitative agreement but significant variations between simulation and experiment are apparent. The conclusion is that in order to be able to quantify the effects of microstructure on the distributions of slip, orientation change, and damage accumulation, the empirically derived constitutive relations used in continuum-scale simulations need to be improved. Equally important will be the development of large-scale simulations of polycrystals that directly model dislocations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031113-133846
2014-03-10
2024-06-29
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/5/1/annurev-conmatphys-031113-133846.html?itemId=/content/journals/10.1146/annurev-conmatphys-031113-133846&mimeType=html&fmt=ahah

Literature Cited

  1. Hirth JP, Lothe J. 1982. Theory of Dislocations New York: Wiley [Google Scholar]
  2. Xiang Y, Srolovitz DJ, Cheng LT, Weinan E. 2004. Acta Mater. 52:1745–60 [Google Scholar]
  3. Kocks UF, Tomé CN, Wenk H-R. 2000. texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties Cambridge: Cambridge Univ. Press [Google Scholar]
  4. Kallend JS, Davies GJ. 1972. Philos. Mag. 25:2471–90 [Google Scholar]
  5. Van Houtte P, Kanjarla AK, Van Bael A, Seefeldt M, Delannay L. 2006. Eur. J. Mech. A 25:4634–48 [Google Scholar]
  6. Kocks UF, Argon AS, Ashby MF. 1975. Prog. Mater. Sci. 19:15 [Google Scholar]
  7. Kubin L, Devincre B, Hoc T. 2008. Acta Mater. 56:206040–49 [Google Scholar]
  8. Cottrell AH. 1953. Dislocation and Plastic Flow in Crystals Oxford: Clarendon Press [Google Scholar]
  9. Hughes DA, Liu Q, Chrzan DC, Hansen N. 1997. Acta Mater. 45:1105–12 [Google Scholar]
  10. LeSar RA. 2013. Annu. Rev. Condens. Matter Phys In press [Google Scholar]
  11. Acharya A. 2011. J. Elast. 104:1–223–44 [Google Scholar]
  12. Groma I. 2010. Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics Vol. 522 Pippan R, Gumbsch P. 213–70 Vienna: Springer [Google Scholar]
  13. Zaiser M, Hochrainer T. 2006. Scr. Mater. 54:5717–21 [Google Scholar]
  14. Crabtree GW, Sarrao JL. 2012. From Quanta to the Continuum: Opportunities for Mesoscale Science BESAC Tech. Rep. LAUR 13-26447. Washington, DC: US Dep. Energy [Google Scholar]
  15. Crabtree GW, Sarrao JL. 2012. Mater. Res. Soc. Bull. 37:107988 [Google Scholar]
  16. Lei L, Marin JL, Koslowski M. 2013. Model. Simul. Mater. Sci. Eng. 21:2025009 [Google Scholar]
  17. Li SF, Lind J, Hefferan CM, Pokharel R, Lienert U, Rollett AD, Suter RM. 2012. J. Appl. Crystallogr. 45:61098108 [Google Scholar]
  18. Lebensohn RA. 2001. Acta Mater. 49:142723–37 [Google Scholar]
  19. Lebensohn RA, Brenner R, Castelnau O, Rollett AD. 2008. Acta Mater. 56:153914–26 [Google Scholar]
  20. Pokharel R, Li SF, Lind J, Hefferan CM, Lienert U et al. 2012. Mater. Sci. Forum 702:51518 [Google Scholar]
  21. Taylor GI. 1938. J. Inst. Met. 62:307–24 [Google Scholar]
  22. Rollett AD. 2013. Encyclopedia of Physical Metallurgy Laughlin DE. New York: Elsevier, 5th ed.. [Google Scholar]
  23. Field JE, Bourne NK, Palmer SJP, Walley SM, Smallwood JM. 1992. Philos. Trans. R. Soc. A 339:1654269–83 [Google Scholar]
  24. Miller PJ, Coffey CS, DeVost VF. 1986. J. Appl. Phys. 59:391316 [Google Scholar]
  25. Papazian JM, Anagnostou EL, Engel SJ, Hoitsma D, Madsen J et al. 2009. Eng. Fract. Mech. 76:620–32 [Google Scholar]
  26. da Vinci L. 1881–1891. Institut de France 3:40
  27. Bazant ZP. 1998. Fract. Mech. Concr. Struct. 3:1905–22
  28. Epstein B. 1948. J. Am. Stat. Assoc. 43:243403–12 [Google Scholar]
  29. Freudenthal AM, Gumbel EJ. 1954. J. Am. Stat. Assoc. 49:267575–97 [Google Scholar]
  30. Murakami Y, Beretta S. 1999. Extremes 2:2123–47 [Google Scholar]
  31. Przystupa MA, Bucci RJ, Magnusen PE, Hinkle AJ. 1997. Int. J. Fatigue 19:9328588 [Google Scholar]
  32. Przybyla CP, McDowell DL. 2012. Acta Mater. 60:1293–305 [Google Scholar]
  33. Groh S, Zbib HM. 2009. J. Eng. Mater. Technol. 131:041209 [Google Scholar]
  34. Deshpande VS, Needleman A, Van der Giessen E. 2003. Acta Mater. 51:11–15 [Google Scholar]
  35. Brinckmann S, Van der Giessen E. 2007. Int. J. Fract. 148:2155–67 [Google Scholar]
  36. Barbe F, Decker L, Jeulin D, Cailletaud G. 2001. Int. J. Plast. 17:4513–36 [Google Scholar]
  37. Barbe F, Forest S, Cailletaud G. 2001. Int. J. Plast. 17:4537–63 [Google Scholar]
  38. Diard O, Leclereq S, Rousselier G, Cailletaud G. 2005. Int. J. Plast. 21:4691–722 [Google Scholar]
  39. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D. 2003. Int. J. Solids Struct. 40:13–143647–79 [Google Scholar]
  40. Lewis AC, Suh C, Stukowski M, Geltmacher AB, Rajan K, Spanos G. 2008. Scr. Mater. 58:7575–78 [Google Scholar]
  41. Rollett AD, Lebensohn RA, Groeber M, Choi Y, Li J, Rohrer GS. 2010. Model. Simul. Mater. Sci. Eng. 18:7074005 [Google Scholar]
  42. Peirce D, Asaro RJ, Needleman A. 1982. Acta Metall. 30:61087–119 [Google Scholar]
  43. Asaro RJ, Needleman A. 1985. Acta Metall. 33:6923–53 [Google Scholar]
  44. Canova GR, Kocks UF, Jonas JJ. 1984. Acta Metall. 32:2211–26 [Google Scholar]
  45. Bertin N, Capolungo L, Beyerlein IJ. 2013. Int. J. Plast. 49:119–44 [Google Scholar]
  46. Tomé CN, Lebensohn RA. 2004. Continuum Scale Simulation of Engineering Materials: Fundamentals-Microstructures-Process Applications, ed. D Raabe, F Roters, F Barlat, L-Q Chen, pp. 473–499. Weinheim, Ger.: Wiley-VCH
  47. Franciosi P. 1985. Acta Metall. 33:91601–12 [Google Scholar]
  48. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D. 2010. Acta Mater. 58:41152–211 [Google Scholar]
  49. Kocks UF. 1987. Unified Constitutive Equations for Creep and Plasticity Miller AK. 188 New York: Elsevier [Google Scholar]
  50. Winther G, Margulies L, Schmidt S, Poulsen HF. 2004. Acta Mater. 52:102863–72 [Google Scholar]
  51. Bishop JFW, Hill R. 1951. Philos. Mag. 42:327414–27 [Google Scholar]
  52. Moulinec H, Suquet P. 1998. Comput. Methods Appl. Mech. Eng. 157:169–94 [Google Scholar]
  53. Moulinec H, Suquet P. 2003. Phys. B 338:158–60 [Google Scholar]
  54. Lebensohn RA, Kanjarla AK, Eisenlohr P. 2012. Int. J. Plast. 32:59–69 [Google Scholar]
  55. Liu B, Raabe D, Roters F, Eisenlohr P, Lebensohn RA. 2010. Model. Simul. Mater. Sci. Eng. 18:8085005 [Google Scholar]
  56. Allais L, Bornert M, Bretheau T, Caldemaison D. 1994. Acta Metall. Mater. 42:113865–80 [Google Scholar]
  57. Kammers AD, Daly S. 2011. Meas. Sci. Technol. 22:12125501 [Google Scholar]
  58. Raabe D, Sachtleber M, Zhao Z, Roters F, Zaefferer S. 2001. Acta Mater. 49:173433–41 [Google Scholar]
  59. Schwartz AJ. 2009. Electron Backscatter Diffraction in Materials Science Dordrecht, Neth.: Kluwer Acad. Publ. [Google Scholar]
  60. Allain-Bonasso N, Wagner F, Berbenni S, Field DP. 2012. Mater. Sci. Eng. A 548:56–63 [Google Scholar]
  61. Poulsen HF. 2004. Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and Their Dynamics Vol. 205 Berlin: Springer-Verlag [Google Scholar]
  62. Poulsen HF, Nielsen SF, Lauridsen EM, Søren Schmidt, Suter RM et al. 2001. J. Appl. Cryst. 34:6751–56 [Google Scholar]
  63. Poulsen HF, Schmidt S. 2003. J. Appl. Cryst. 36:2319–25 [Google Scholar]
  64. Ludwig W, Reischig P, King A, Herbig M, Lauridsen EM et al. 2009. Rev. Sci. Instrum. 80:3033905 [Google Scholar]
  65. Bernier JV, Barton NR, Lienert U, Miller MP. 2011. J. Strain Anal. Eng. Des. 46:7527–47 [Google Scholar]
  66. Hefferan CM, Li SF, Lind J, Lienert U, Rollett AD, Suter RM. Mater. Sci. Forum 715447–454 [Google Scholar]
  67. Juul Jensen D, Schmidt S. 2009. Mater. Trans. 50:71655 [Google Scholar]
  68. Oddershede J, Schmidt S, Poulsen HF, Sorensen HO, Wright J, Reimers W. 2010. J. Appl. Cryst. 43:3539–49 [Google Scholar]
  69. Suter RM, Hennessy D, Xiao C, Lienert U. 2006. Rev. Sci. Instrum. 77:12123905 [Google Scholar]
  70. Suter RM, Hefferan CM, Li SF, Hennessy D, Xiao C et al. 2008. J. Eng. Mater. Technol. 130:021007 [Google Scholar]
  71. Li SF, Suter RM. 2013. J. Appl. Cryst. 46:2512–24 [Google Scholar]
  72. Field DP, Magid KR, Mastorakos IN, Florando JN, Lassila DH, Morris JW Jr. 2010. Philos. Mag. 90:111451–64 [Google Scholar]
  73. Hefferan CM, Lind J, Li SF, Lienert U, Rollett AD, Suter RM. 2012. Acta Mater. 60:104311–18 [Google Scholar]
  74. Bart-Smith H, Bastawros A-F, Mumm DR, Evans AG, Sypeck DJ, Wadley HNG. 1998. Acta Mater. 46:103583–92 [Google Scholar]
  75. Tong W. 1997. Exp. Mech. 37:4452–59 [Google Scholar]
  76. Tatschl A, Kolednik O. 2003. Mater. Sci. Eng. A 339:1265–80 [Google Scholar]
  77. Becker R, Panchanadeeswaran S. 1995. Acta Metall. Mater. 43:2701–19 [Google Scholar]
  78. Panchanadeeswaran S, Doherty RD, Becker R. 1996. Acta Mater. 44:31233–62 [Google Scholar]
  79. Lineau C, Rey C, Viaris de Lesegno P. 1997. Mater. Sci. Eng. A 234:853–56 [Google Scholar]
  80. Delaire F, Raphanel JL, Rey C. 2000. Acta Mater. 48:51075–87 [Google Scholar]
  81. Hoc T, Rey C. 2000. Scr. Mater. 42:111053–58 [Google Scholar]
  82. Tatschl A, Kolednik O. 2003. Mater. Sci. Eng. A 356:1447–63 [Google Scholar]
  83. Cheong K-S, Busso EP. 2006. J. Mech. Phys. Solids 54:4671–89 [Google Scholar]
  84. Zhao Z, Ramesh M, Raabe D, Cuitino AM, Radovitzky R. 2008. Int. J. Plast. 24:122278–97 [Google Scholar]
  85. Buchheit TE, Wellman GW, Battaile CC. 2005. Int. J. Plast. 21:2221–49 [Google Scholar]
  86. Rehrl C, Völker B, Kleber S, Antretter T, Pippan R. 2012. Acta Mater. 60:52379–86 [Google Scholar]
  87. Wu T-Y, Bassani JL, Laird C. 1991. Proc. R. Soc. A 435(1893):1–19
  88. Bassani JL, Wu T-Y. 1991. Proc. R. Soc. A 435(1893):21–41
  89. Turner TJ, Shade PA, Schuren JC, Groeber MA. 2013. Model. Simul. Mater. Sci. Eng. 21:1015002 [Google Scholar]
  90. Zaefferer S, Kuo JC, Zhao Z, Winning M, Raabe D. 2003. Acta Mater. 51:164719–35 [Google Scholar]
  91. Ma A, Roters F, Raabe D. 2006. Acta Mater. 54:82181–94 [Google Scholar]
  92. Ma A, Roters F, Raabe D. 2006. Acta Mater. 54:82169–79 [Google Scholar]
  93. Quey R, Dawson PR, Driver JH. 2012. J. Mech. Phys. Solids 60:3509–24 [Google Scholar]
  94. Wang L, Barabash RI, Yang Y, Bieler TR, Crimp MA et al. 2011. Metall. Mater. Trans. A 42:3626–35 [Google Scholar]
  95. Ice GE, Larson BC. 2000. Adv. Eng. Mater. 2:10643–46 [Google Scholar]
  96. Sarma GB, Dawson PR. 1996. Acta Mater. 44:51937–53 [Google Scholar]
  97. Lienert U, Han T-S, Almer J, Dawson PR, Leffers T et al. 2004. Acta Mater. 52:154461–67 [Google Scholar]
  98. Miller MP, Park JS, Dawson PR, Han TS. 2008. Acta Mater. 56:153927–39 [Google Scholar]
  99. Lind J. 2013. In-situ high-energy diffration mirosopy study of zironium under uniaxial tensile deformation. PhD thesis, Carnegie Mellon Univ., Pittsburgh, PA
  100. Pokharel R. 2013. Spatially resolved in-situ study of plastic deformation in polycrystalline copper using high-energy X-rays and full-field simulations. PhD thesis, Carnegie Mellon Univ., Pittsburgh, PA
  101. Lienert U, Li SF, Hefferan CM, Lind J, Suter RM et al. 2011. J. Miner. Met. Mater. Soc. 63:770–77 [Google Scholar]
  102. Christodoulou N, Jonas JJ. 1984. Acta Metall. 32:1655–68 [Google Scholar]
  103. Hefferan CM, Li SF, Lind J, Lienert U, Rollett AD et al. 2010. Comput. Mater. Contin. 14:3209–20 [Google Scholar]
  104. Hefferan CM, Li SF, Lienert U, Suter RM. 2009. Bull. Am. Phys. Soc. 54:1 [Google Scholar]
  105. Cho JH, Rollett AD, Oh KH. 2004. Metall. Mater. Trans. A 35:31075–86 [Google Scholar]
  106. Winther G. 2008. Acta Mater. 56:91919–32 [Google Scholar]
  107. Padilla HA, Smith CD, Lambros J, Beaudoin AJ, Robertson IM. 2007. Metall. Mater. Trans. A 38:122916–27 [Google Scholar]
  108. Margulies L, Winther G, Poulsen HF. 2001. Science 291:55122392–94 [Google Scholar]
  109. Turner TJ, Semiatin SL. 2011. Model. Simul. Mater. Sci. Eng. 19:065010 [Google Scholar]
  110. Jiang J, Britton TB, Wilkinson AJ. 2012. Ultramicroscopy 125:1–9 [Google Scholar]
  111. Kanjarla AK, Delannay L, Van Houtte P. 2011. Metall. Mater. Trans. A 42:3660–68 [Google Scholar]
  112. Warren BE. 1969. X-Ray Diffraction Mineola, NY: Dover Publ. [Google Scholar]
  113. Merriman CC, Field DP, Trivedi P. 2008. Mater. Sci. Eng. A 494:1–228–35 [Google Scholar]
  114. Oddershede J, Schmidt S, Poulsen HF, Margulies L, Wright J et al. 2011. Mater. Charact. 62:651–60 [Google Scholar]
  115. Tome C, Canova GR, Kocks UF, Christodoulou N, Jonas JJ. 1984. Acta Metall. 32:1637–53 [Google Scholar]
  116. Kalidindi SR, Bhattacharyya A, Doherty RD. 2004. Proc. R. Soc. A 460:20471935–56 [Google Scholar]
  117. Zeghadi A, N’guyen F, Forest S, Gourgues A-F, Bouaziz O. 2007. Philos. Mag. 87:8–91401–24 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031113-133846
Loading
/content/journals/10.1146/annurev-conmatphys-031113-133846
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error