1932

Abstract

Superconducting qubits are leading candidates in the race to build a quantum computer capable of realizing computations beyond the reach of modern supercomputers. The superconducting qubit modality has been used to demonstrate prototype algorithms in the noisy intermediate-scale quantum (NISQ) technology era, in which non-error-corrected qubits are used to implement quantum simulations and quantum algorithms. With the recent demonstrations of multiple high-fidelity, two-qubit gates as well as operations on logical qubits in extensible superconducting qubit systems, this modality also holds promise for the longer-term goal of building larger-scale error-corrected quantum computers. In this brief review, we discuss several of the recent experimental advances in qubit hardware, gate implementations, readout capabilities, early NISQ algorithm implementations, and quantum error correction using superconducting qubits. Although continued work on many aspects of this technology is certainly necessary, the pace of both conceptual and technical progress in recent years has been impressive, and here we hope to convey the excitement stemming from this progress.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031119-050605
2020-03-10
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031119-050605.html?itemId=/content/journals/10.1146/annurev-conmatphys-031119-050605&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Nielsen MA, Chuang IL 2011. Quantum Computation and Quantum Information New York: Cambridge Univ. Press. 10th Anniv. Ed.
    [Google Scholar]
  2. 2. 
    Montanaro A 2016. NPJ Quantum Inf. 2:15023
    [Google Scholar]
  3. 3. 
    Barends R, Kelly J, Megrant A, Veitia A, Sank D et al. 2014. Nature 508:500–3
    [Google Scholar]
  4. 4. 
    Koch J, Yu TM, Gambetta J, Houck AA, Schuster DI et al. 2007. Phys. Rev. A 76:042319
    [Google Scholar]
  5. 5. 
    Sheldon S, Magesan E, Chow JM, Gambetta JM 2016. Phys. Rev. A 93:060302
    [Google Scholar]
  6. 6. 
    Hong SS, Papageorge AT, Sivarajah P, Crossman G, Dider N 2020. Phys. Rev. A 101:012302
    [Google Scholar]
  7. 7. 
    Preskill J 2018. Quantum 2:79
    [Google Scholar]
  8. 8. 
    Gambetta JM, Chow JM, Steffen M 2017. NPJ Quantum Inf. 3:2
    [Google Scholar]
  9. 9. 
    Devoret MH, Schoelkopf RJ 2013. Science 339:1169–74
    [Google Scholar]
  10. 10. 
    Jones NC, Van Meter R, Fowler AG, McMahon PL, Kim J et al. 2012. Phys. Rev. X 2:031007
    [Google Scholar]
  11. 11. 
    Ofek N, Petrenko A, Heeres R, Reinhold P, Leghtas Z et al. 2016. Nature 536:441–45
    [Google Scholar]
  12. 12. 
    Hu L, Ma Y, Cai W, Mu X, Xu Y et al. 2019. Nat. Phys. 15:503–8
    [Google Scholar]
  13. 13. 
    Rosenblum S, Gao YY, Reinhold P, Wang C, Axline CJ et al. 2018. Nat. Commun. 9:652
    [Google Scholar]
  14. 14. 
    Kelly J, Barends R, Fowler AG, Megrant A, Jeffrey E et al. 2015. Nature 519:66–69
    [Google Scholar]
  15. 15. 
    Otterbach JS, Manenti R, Alidoust N, Bestwick A, Block M 2017. arXiv:1712.05771
  16. 16. 
    Kandala A, Mezzacapo A, Temme K, Takita M, Brink M et al. 2017. Nature 549:242–46
    [Google Scholar]
  17. 17. 
    Neill C, Roushan P, Kechedzhi K, Boixo S, Isakov SV et al. 2018. Science 360:195–99
    [Google Scholar]
  18. 18. 
    Wei KX, Lauer I, Srinivasan S, Sundaresan N, McClure DT 2019. arXiv:1905.05720
  19. 19. 
    Moore SK 2017. IBM edges closer to quantum supremacy with 50-qubit processor. IEEE Spectrum Tech Talk Blog https://spectrum.ieee.org/tech-talk/computing/hardware/ibm-edges-closer-to-quantum-supremacy-with-50qubit-processor
    [Google Scholar]
  20. 20. 
    Rigetti C 2018. The Rigetti 128-qubit chip and what it means for quantum. Rigetti Tech Blog, Aug. 8. https://medium.com/rigetti/the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea
    [Google Scholar]
  21. 21. 
    Hsu J 2018. CES 2018: Intel's 49-qubit chip shoots for quantum supremacy. IEEE Spectrum Tech Talk Blog https://spectrum.ieee.org/tech-talk/computing/hardware/intels-49qubit-chip-aims-for-quantum-supremacy
    [Google Scholar]
  22. 22. 
    Kelly J 2018. A preview of bristlecone, Google's new quantum processor. Google AI Blog http://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
    [Google Scholar]
  23. 23. 
    Harrow AW, Montanaro A 2017. Nature 549:203–9
    [Google Scholar]
  24. 24. 
    Wendin G, Shumeiko VS 2006. Handbook of Theoretical and Computational Nanotechnology, Vol. 3, Quantum and Molecular Computing, and Quantum Simulations M Rieth, W Schommers223–309 Los Angeles: Am. Sci. Publ.
    [Google Scholar]
  25. 25. 
    Clarke J, Wilhelm FK 2008. Nature 453:1031–42
    [Google Scholar]
  26. 26. 
    Girvin SM, Devoret MH, Schoelkopf RJ 2009. Phys. Scr. T137:014012
    [Google Scholar]
  27. 27. 
    Oliver WD, Welander PB 2013. MRS Bull. 38:816–25
    [Google Scholar]
  28. 28. 
    Girvin SM 2014. Quantum Machines: Measurement and Control of Engineered Quantum Systems, Proceedings of the 2011 Les Houches Summer School on Quantum Machines M Devoret, B Huard, R Schoelkopf, LF Cugliandolo113–256 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  29. 29. 
    Wendin G 2017. Rep. Prog. Phys. 80:106001
    [Google Scholar]
  30. 30. 
    Gu X, Kockum AF, Miranowicz A, Liu Yx, Nori F 2017. Phys. Rep. 718–19:1–102
    [Google Scholar]
  31. 31. 
    Krantz P, Kjaergaard M, Yan F, Orlando TP, Gustavsson S, Oliver WD 2019. Appl. Phys. Rev. 6:021318
    [Google Scholar]
  32. 32. 
    Hauke P, Katzgraber HG, Lechner W, Nishimori H, Oliver WD 2019. arXiv:1903.06559
  33. 33. 
    Nakamura Y, Paskin YA, Tsai JS 1999. Nature 398:786–88
    [Google Scholar]
  34. 34. 
    Nakamura Y, Pashkin YA, Yamamoto T, Tsai JS 2002. Phys. Rev. Lett. 88:047901
    [Google Scholar]
  35. 35. 
    Vion D, Aassime A, Cottet A, Joyez P, Pothier H et al. 2002. Science 296:886–89
    [Google Scholar]
  36. 36. 
    Chiorescu I, Nakamura Y, Harmans CJPM, Mooij JE 2003. Science 299:1869–71
    [Google Scholar]
  37. 37. 
    Bertet P, Chiorescu I, Burkard G, Semba K, Harmans CJPM et al. 2005. Phys. Rev. Lett. 95:257002
    [Google Scholar]
  38. 38. 
    Houck A, Schreier AA, Johnson BR, Chow JM, Koch J et al. 2008. Phys. Rev. Lett. 101:080502
    [Google Scholar]
  39. 39. 
    Manucharyan VE, Koch J, Glazman LI, Devoret MH 2009. Science 326:113–16
    [Google Scholar]
  40. 40. 
    Bylander J, Gustavsson S, Yan F, Yoshihara F, Harrabi K et al. 2011. Nat. Phys 7:565–70
    [Google Scholar]
  41. 41. 
    Paik H, Schuster DI, Bishop LS, Kirchmair G, Catelani G et al. 2011. Phys. Rev. Lett. 107:240501
    [Google Scholar]
  42. 42. 
    Rigetti C, Gambetta JM, Poletto S, Plourde BLT, Chow JM 2012.Phys. Rev. B 86:100506(R)
  43. 43. 
    Chang JB, Vissers MR, Crcoles AD, Sandberg M, Gao J et al. 2013. Appl. Phys. Lett. 103:012602
    [Google Scholar]
  44. 44. 
    Pop IM, Geerlings K, Catelani G, Schoelkopf RJ, Glazman LI, Devoret MH 2014. Nature 508:369–72
    [Google Scholar]
  45. 45. 
    Jin XY, Kamal A, Sears AP, Gudmundson T, Hover D et al. 2015. Phys. Rev. Lett. 114:240501
    [Google Scholar]
  46. 46. 
    Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears AP et al. 2016. Nat. Commun. 7:12964
    [Google Scholar]
  47. 47. 
    Nguyen LB, Lin YH, Somoroff A, Mencia R, Grabon N, Manucharyan VE 2018. arXiv:1810.11006
  48. 48. 
    Larsen TW, Petersson KD, Kuemmeth F, Jespersen TS, Krogstrup P et al. 2015. Phys. Rev. Lett. 115:127001
    [Google Scholar]
  49. 49. 
    Casparis L, Larsen TW, Olsen MS, Kuemmeth F, Krogstrup P et al. 2016. Phys Rev. Lett. 116:150505
    [Google Scholar]
  50. 50. 
    Luthi F, Stavenga T, Enzing OW, Bruno A, Dickel C et al. 2018. Phys. Rev. Lett. 120:100502
    [Google Scholar]
  51. 51. 
    Wang JIJ, Rodan-Legrain D, Bretheau L, Campbell DL, Kannan B et al. 2019. Nat. Nanotechnol. 14:120–25
    [Google Scholar]
  52. 52. 
    Wang H, Hofheinz M, Ansmann M, Bialczak RC, Lucero E et al. 2008. Phys. Rev. Lett. 101:240401
    [Google Scholar]
  53. 53. 
    Wang C, Gao YY, Reinhold R, Heeres RW, Ofek N et al. 2016. Science 352:1087–91
    [Google Scholar]
  54. 54. 
    Rosenblum S, Reinhold P, Mirrahimi M, Jiang L, Frunzio L, Schoelkopf RJ 2018. Science 361:266–70
    [Google Scholar]
  55. 55. 
    Chen Y, Neill C, Roushan P, Leung N, Fang M et al. 2014. Phys. Rev. Lett. 113:220502
    [Google Scholar]
  56. 56. 
    Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell DL et al. 2018. Phys. Rev. Appl. 10:054062
    [Google Scholar]
  57. 57. 
    Mooij JE, Orlando TP, Levitov L, Tian L, van der Wal CH, Lloyd S 1999. Science 285:1036–39
    [Google Scholar]
  58. 58. 
    Orlando TP, Mooij JE, Tian L, van der Wal CH, Levitov LS et al. 1999. Phys. Rev. B 60:15398
    [Google Scholar]
  59. 59. 
    You JQ, Hu X, Ashhab S, Nori F 2007. Phys. Rev. B 75:140515(R)
    [Google Scholar]
  60. 60. 
    Steffen M, Brito F, DiVincenzo D, Farinelli M, Keefe G et al. 2010. J. Phys.: Condens. Matter 22:053201
    [Google Scholar]
  61. 61. 
    Harris R, Lanting T, Berkley AJ, Johansson J, Johnson MW et al. 2009. Phys. Rev. B 80:052506
    [Google Scholar]
  62. 62. 
    Weber SJ, Samach GO, Hover D, Gustavsson S, Kim DK et al. 2017. Phys. Rev. Appl. 8:014004
    [Google Scholar]
  63. 63. 
    Kerman AJ, Oliver WD 2008. Phys. Rev. Lett. 101:070501
    [Google Scholar]
  64. 64. 
    Johnson MW, Amin MHS, Gildert S, Lanting T, Hamze F et al. 2011. Nature 473:194–98
    [Google Scholar]
  65. 65. 
    Motzoi F, Gambetta JM, Rebentrost P, Wilhelm FK 2009. Phys. Rev. Lett. 103:110501
    [Google Scholar]
  66. 66. 
    Gustavsson S, Zwier O, Bylander J, Yan F, Yoshihara F et al. 2013. Phys. Rev. Lett. 110:040502
    [Google Scholar]
  67. 67. 
    Sheldon S, Bishop LS, Magesan E, Filipp S, Chow JM, Gambetta JM 2016. Phys. Rev. A 93:012301
    [Google Scholar]
  68. 68. 
    Rol M, Bultink C, O'Brien T, de Jong S, Theis L et al. 2017. Phys. Rev. Appl. 7:041001
    [Google Scholar]
  69. 69. 
    Reagor M, Osborn CB, Tezak N, Staley A, Prawiroatmodjo G et al. 2018. Sci. Adv. 4:eaao3603
    [Google Scholar]
  70. 70. 
    Magesan E, Gambetta JM, Emerson J 2011. Phys. Rev. Lett. 106:180504
    [Google Scholar]
  71. 71. 
    McKay DC, Wood CJ, Sheldon S, Chow JM, Gambetta JM 2017. Phys. Rev. A 96:22330
    [Google Scholar]
  72. 72. 
    DiCarlo L, Chow JM, Gambetta JM, Bishop LS, Johnson BR et al. 2009. Nature 460:240–44
    [Google Scholar]
  73. 73. 
    Kjaergaard M, Schwartz ME, Greene A, Samach GO, Bengtsson Aet al. 2020. arXiv:2001.08838
  74. 74. 
    Dewes A, Ong FR, Schmitt V, Lauro R, Boulant N et al. 2012. Phys. Rev. Lett. 108:057002
    [Google Scholar]
  75. 75. 
    Chow JM, Crcoles AD, Gambetta JM, Rigetti C, Johnson BR et al. 2011. Phys. Rev. Lett. 107:080502
    [Google Scholar]
  76. 76. 
    Poletto S, Gambetta JM, Merkel ST, Smolin JA, Chow JM et al. 2012. Phys. Rev. Lett. 109:240505
    [Google Scholar]
  77. 77. 
    Chow JM, Gambetta JM, Cross AW, Merkel ST, Rigetti C, Steffen M 2013. New J. Phys. 15:115012
    [Google Scholar]
  78. 78. 
    Paik H, Mezzacapo A, Sandberg M, McClure D, Abdo B et al. 2016. Phys. Rev. Lett. 117:250502
    [Google Scholar]
  79. 79. 
    McKay DC, Filipp S, Mezzacapo A, Magesan E, Chow JM, Gambetta JM 2016. Phys. Rev. Appl. 6:064007
    [Google Scholar]
  80. 80. 
    Caldwell SA, Didier N, Ryan CA, Sete EA, Hudson A et al. 2018. Phys. Rev. Appl. 10:034050
    [Google Scholar]
  81. 81. 
    Neeley M, Bialczak RC, Lenander M, Lucero E, Mariantoni M et al. 2010. Nature 467:570–73
    [Google Scholar]
  82. 82. 
    Chou KS, Blumoff JZ, Wang CS, Reinhold PC, Axline CJ et al. 2018. Nature 561:368–73
    [Google Scholar]
  83. 83. 
    Blais A, Huang RS, Wallraff A, Girvin SM, Schoelkopf RJ 2004. Phys. Rev. A 69:062320
    [Google Scholar]
  84. 84. 
    Wallraff A, Schuster DI, Blais A, Frunzio L, Majer J et al. 2004. Nature 431:162–66
    [Google Scholar]
  85. 85. 
    Reed MD, Johnson BR, Houck AA, DiCarlo L, Chow JM et al. 2010. Appl. Phys. Lett. 96:203110
    [Google Scholar]
  86. 86. 
    Clerk AA, Devoret MH, Girvin SM, Marquardt F, Schoelkopf RJ 2010. Rev. Mod. Phys. 82:1155–208
    [Google Scholar]
  87. 87. 
    Yurke B, Kaminsky PG, Miller RE, Whittaker EA, Smith AD et al. 1988. Phys. Rev. Lett. 60:764–67
    [Google Scholar]
  88. 88. 
    Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T et al. 2008. Appl. Phys. Lett. 93:042510
    [Google Scholar]
  89. 89. 
    Simoen M, Chang CWS, Krantz P, Bylander J, Wustmann W et al. 2015. J. Appl. Phys. 118:154501
    [Google Scholar]
  90. 90. 
    Mallet F, Ong FR, Palacios-Laloy A, Nguyen F, Bertet P et al. 2009. Nat. Phys. 5:791–95
    [Google Scholar]
  91. 91. 
    Vijay R, Devoret MH, Siddiqi I 2009. Rev. Sci. Instrum. 80:111101
    [Google Scholar]
  92. 92. 
    Lin ZR, Inomata K, Koshino K, Oliver WD, Nakamura Y et al. 2014. Nat. Commun. 5:15
    [Google Scholar]
  93. 93. 
    Krantz P, Bengtsson A, Simoen M, Gustavsson S, Shumeiko V et al. 2016. Nat. Commun. 7:11417
    [Google Scholar]
  94. 94. 
    Mutus JY, White TC, Barends R, Chen Y, Chen Z et al. 2014. Appl. Phys. Lett. 104:263513
    [Google Scholar]
  95. 95. 
    Roy T, Kundu S, Chand M, Vadiraj AM, Ranadive A et al. 2015. Appl. Phys. Lett. 107:262601
    [Google Scholar]
  96. 96. 
    Macklin C, O'Brien K, Hover D, Schwartz ME, Bolkhovsky V et al. 2015. Science 350:307–10
    [Google Scholar]
  97. 97. 
    Krastanov S, Albert VV, Shen C, Zou CL, Heeres RW et al. 2015. Phys. Rev. A 92:040303
    [Google Scholar]
  98. 98. 
    Reagor M, Paik H, Catelani G, Sun L, Axline C et al. 2013. Appl. Phys. Lett. 102:192604
    [Google Scholar]
  99. 99. 
    Reagor M, Pfaff W, Axline C, Heeres RW, Ofek N et al. 2016. Phys. Rev. B 94:014506
    [Google Scholar]
  100. 100. 
    Gottesman D, Kitaev A, Preskill J 2001. Phys. Rev. A 64:012310
    [Google Scholar]
  101. 101. 
    Heeres RW, Vlastakis B, Holland E, Krastanov S, Albert VV et al. 2015. Phys. Rev. Lett. 115:137002
    [Google Scholar]
  102. 102. 
    Heeres RW, Reinhold P, Ofek N, Frunzio L, Jiang L et al. 2017. Nat. Commun. 8:94
    [Google Scholar]
  103. 103. 
    Sun L, Petrenko A, Leghtas Z, Vlastakis B, Kirchmair G et al. 2014. Nature 511:444–48
    [Google Scholar]
  104. 104. 
    Gambetta J, Blais A, Schuster DI, Wallraff A, Frunzio L et al. 2006. Phys. Rev. A 74:042318
    [Google Scholar]
  105. 105. 
    Schuster DI, Houck AA, Schreier JA, Wallraff A, Gambetta JM et al. 2007. Nature 445:515–18
    [Google Scholar]
  106. 106. 
    Lutterbach LG, Davidovich L 1997. Phys. Rev. Lett. 78:2547–50
    [Google Scholar]
  107. 107. 
    Cohen J, Smith WC, Devoret MH, Mirrahimi M 2017. Phys. Rev. Lett. 119:060503
    [Google Scholar]
  108. 108. 
    Boixo S, Isakov SV, Smelyanskiy VN, Babbush R, Ding N et al. 2018. Nat. Phys. 14:595–600
    [Google Scholar]
  109. 109. 
    IBM News Room 2016. IBM makes quantum computing available on IBM cloud to accelerate innovation News release, May 4. https://www-03.ibm.com/press/us/en/pressrelease/49661.wss
    [Google Scholar]
  110. 110. 
    Arute F, Arya K, Babbush R, Bacon D, Bardin JC et al. 2019. Nature 574:505–10
    [Google Scholar]
  111. 111. 
    Preskill J 2011. Quantum computing and the entanglement frontier Paper presented at the 25th Solvay Conference on Physics, The Theory of the Quantum World, Brussels, Belgium, Oct. 19–22. arXiv:1203.5813
    [Google Scholar]
  112. 112. 
    Pednault E, Gunnels JA, Nannicini G, Horesh L, Wisnieff R 2019. arXiv:1910.09534
  113. 113. 
    Paraoanu GS 2014. J. Low Temp. Phys. 175:633–54
    [Google Scholar]
  114. 114. 
    Buluta I, Nori F 2009. Science 326:108–11
    [Google Scholar]
  115. 115. 
    Feynman RP 1982. Int. J. Theor. Phys. 21:467–88
    [Google Scholar]
  116. 116. 
    Lloyd S 1996. Science 273:1073–78
    [Google Scholar]
  117. 117. 
    Georgescu IM, Ashhab S, Nori F 2014. Rev. Mod. Phys. 86:153–85 https://doi.org/10.1103/RevModPhys.86.153
    [Crossref] [Google Scholar]
  118. 118. 
    Braumüller J, Marthaler M, Schneider A, Stehli A, Rotzinger H et al. 2017. Nat. Commun. 8:779
    [Google Scholar]
  119. 119. 
    Potonik A, Bargerbos A, Schrder FAYN, Khan SA, Collodo MC et al. 2018. Nat. Commun. 9:904
    [Google Scholar]
  120. 120. 
    Langford NK, Sagastizabal R, Kounalakis M, Dickel C, Bruno A et al. 2017. Nat. Commun. 8:1715
    [Google Scholar]
  121. 121. 
    Aspuru-Guzik A 2005. Science 309:1704–7
    [Google Scholar]
  122. 122. 
    García-Ripoll JJ, Solano E, Martin-Delgado MA 2008. Phys. Rev. B 77:024522
    [Google Scholar]
  123. 123. 
    Houck AA, Türeci HE, Koch J 2012. Nat. Phys. 8:292–99
    [Google Scholar]
  124. 124. 
    Suzuki M 1990. Phys. Lett. A 146:319–23
    [Google Scholar]
  125. 125. 
    Babbush R, McClean J, Wecker D, Aspuru-Guzik A, Wiebe N 2015. Phys. Rev. A 91:022311
    [Google Scholar]
  126. 126. 
    Barends R, Lamata L, Kelly J, García-Álvarez L, Fowler AG et al. 2015. Nat. Commun. 6:7654
    [Google Scholar]
  127. 127. 
    Heras UL, García-Álvarez L, Mezzacapo A, Solano E, Lamata L 2015. EPJ Quantum Technol. 2:8
    [Google Scholar]
  128. 128. 
    Barends R, Shabani A, Lamata L, Kelly J, Mezzacapo A et al. 2016. Nature 534:222
    [Google Scholar]
  129. 129. 
    Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P et al. 2015. Phys. Rev. X 5:021027
    [Google Scholar]
  130. 130. 
    Heras UL, Mezzacapo A, Lamata L, Filipp S, Wallraff A, Solano E 2014. Phys. Rev. Lett. 112:200501
    [Google Scholar]
  131. 131. 
    García-Álvarez L, Las Heras U, Mezzacapo A, Sanz M, Solano E, Lamata L 2016. Sci. Rep. 6:27836
    [Google Scholar]
  132. 132. 
    Viehmann O, von Delft J, Marquardt F 2013. Phys. Rev. Lett. 110:030601
    [Google Scholar]
  133. 133. 
    Tian L 2010. Phys. Rev. Lett. 105:167001
    [Google Scholar]
  134. 134. 
    Zhang Y, Yu L, Liang JQ, Chen G, Jia S, Nori F 2014. Sci. Rep. 4:4083
    [Google Scholar]
  135. 135. 
    Reiner JM, Marthaler M, Braumüller J, Weides M, Schön G 2016. Phys. Rev. A 94:032338
    [Google Scholar]
  136. 136. 
    Mei F, Stojanović VM, Siddiqi I, Tian L 2013. Phys. Rev. B 88:224502
    [Google Scholar]
  137. 137. 
    Pedernales JS, Candia RD, Ballester D, Solano E 2013. New J. Phys. 15:055008
    [Google Scholar]
  138. 138. 
    Ballester D, Romero G, García-Ripoll JJ, Deppe F, Solano E 2012. Phys. Rev. X 2:021007
    [Google Scholar]
  139. 139. 
    Yan Z, Zhang Y-R, Gong M, Wu Y, Zheng Y et al. 2019. Science 364:753–56
    [Google Scholar]
  140. 140. 
    Ma R, Saxberg B, Owens C, Leung N, Lu Y et al. 2019. Nature 566:51
    [Google Scholar]
  141. 141. 
    Roushan P, Neill C, Megrant A, Chen Y, Babbush R et al. 2016. Nat. Phys. 13:146
    [Google Scholar]
  142. 142. 
    Roushan P, Neill C, Tangpanitanon J, Bastidas VM, Megrant A et al. 2017. Science 358:1175–79
    [Google Scholar]
  143. 143. 
    Mostame S, Rebentrost P, Eisfeld A, Kerman AJ, Tsomokos DI, Aspuru-Guzik A 2012. New J. Phys. 14:105013
    [Google Scholar]
  144. 144. 
    Leggett A, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger W 1987. Rev. Mod. Phys. 59:1–85
    [Google Scholar]
  145. 145. 
    Magazz L, Forn-Daz P, Belyansky R, Orgiazzi JL, Yurtalan MA et al. 2018. Nat. Commun. 9:1403
    [Google Scholar]
  146. 146. 
    Leppäkangas J, Braumüller J, Hauck M, Reiner JM, Schwenk I et al. 2018. Phys. Rev. A 97:052321
    [Google Scholar]
  147. 147. 
    Forn-Díaz P, García-Ripoll J, Peropadre B, Orgiazzi JL, Yurtalan M et al. 2016. Nat. Phys. 13:39–43
    [Google Scholar]
  148. 148. 
    Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll JJ, Solano E et al. 2010. Phys. Rev. Lett. 105:237001
    [Google Scholar]
  149. 149. 
    Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, Semba K 2016. Nat. Phys. 13:44–47
    [Google Scholar]
  150. 150. 
    Lamata L, Parra-Rodriguez A, Sanz M, Solano E 2018. Adv. Phys. X 3:1457981
    [Google Scholar]
  151. 151. 
    Mezzacapo A, Las Heras U, Pedernales JS, DiCarlo L, Solano E, Lamata L 2014. Sci. Rep. 4:7482
    [Google Scholar]
  152. 152. 
    García-Álvarez L, Casanova J, Mezzacapo A, Egusquiza IL, Lamata L et al. 2015. Phys. Rev. Lett. 114:070502
    [Google Scholar]
  153. 153. 
    Lucero E, Barends R, Chen Y, Kelly J, Mariantoni M et al. 2012. Nat. Phys. 8:719–23
    [Google Scholar]
  154. 154. 
    Moll N, Barkoutsos P, Bishop LS, Chow JM, Cross A et al. 2018. Quantum Sci. Technol. 3:030503
    [Google Scholar]
  155. 155. 
    Peruzzo A, McClean J, Shadbolt P, Yung MH, Zhou XQ et al. 2014. Nat. Commun. 5:4213
    [Google Scholar]
  156. 156. 
    McClean JR, Schwartz ME, Carter J, de Jong WA 2016. Phys. Rev. A 95:042308
    [Google Scholar]
  157. 157. 
    Rowe DJ 1968. Rev. Mod. Phys. 40:153–66
    [Google Scholar]
  158. 158. 
    O'Malley PJ, Babbush R, Kivlichan ID, Romero J, McClean JR et al. 2016. Phys. Rev. X 6:031007
    [Google Scholar]
  159. 159. 
    Kandala A, Mezzacapo A, Temme K, Takita M, Brink M et al. 2017. Nature 549:242–46
    [Google Scholar]
  160. 160. 
    Colless JI, Ramasesh VV, Dahlen D, Blok MS, Kimchi-Schwartz ME et al. 2018. Phys. Rev. X 8:011021
    [Google Scholar]
  161. 161. 
    Ganzhorn M, Egger DJ, Barkoutsos PK, Ollitrault P, Salis G et al. 2018. Phys. Rev. Appl. 11:044092
    [Google Scholar]
  162. 162. 
    Harrow AW, Hassidim A, Lloyd S 2009. Phys. Rev. Lett. 103:150502
    [Google Scholar]
  163. 163. 
    Zheng Y, Song C, Chen MC, Xia B, Liu W et al. 2017. Phys. Rev. Lett. 118:210504
    [Google Scholar]
  164. 164. 
    Farhi E, Goldstone J, Gutmann S 2014. Rep. No. MIT-CTP/4610. arXiv:1411.4028
  165. 165. 
    Farhi E, Neven H 2018. Rep. No. MIT-CTP/4985. arXiv:1802.06002
  166. 166. 
    Mitarai K, Negoro M, Kitagawa M, Fujii K 2018. Phys. Rev. A 98:032309
    [Google Scholar]
  167. 167. 
    Havlek V, Crcoles AD, Temme K, Harrow AW, Kandala A et al. 2019. Nature 567:209
    [Google Scholar]
  168. 168. 
    Risté D, da Silva MP, Ryan CA, Cross AW, Smolin JA et al. 2017. NPJ Quantum Inf. 3:16
    [Google Scholar]
  169. 169. 
    Giovannetti V, Lloyd S, Maccone L 2008. Phys. Rev. Lett. 100:160501
    [Google Scholar]
  170. 170. 
    Ciliberto C, Herbster M, Ialongo AD, Pontil M, Rocchetto A et al. 2018. Proc. R. Soc. A: Math. Phys. Eng. Sci. 474:20170551
    [Google Scholar]
  171. 171. 
    Naik RK, Leung N, Chakram S, Groszkowski P, Lu Y et al. 2017. Nat. Commun. 8:1904
    [Google Scholar]
  172. 172. 
    Aharonov D, van Dam W, Kempe J, Landau Z, Lloyd S, Regev O 2008. SIAM Rev. 50:755–87
    [Google Scholar]
  173. 173. 
    Vinci W, Lidar DA 2017. NPJ Quantum Inf. 3:38
    [Google Scholar]
  174. 174. 
    Kadowaki T, Nishimori H 1998. Phys. Rev. E 58:5355–63
    [Google Scholar]
  175. 175. 
    Boixo S, Smelyanskiy VN, Shabani A, Isakov SV, Dykman M et al. 2016. Nat. Commun. 7:10327
    [Google Scholar]
  176. 176. 
    Harris R, Sato Y, Berkley AJ, Reis M, Altomare F et al. 2018. Science 361:162–65
    [Google Scholar]
  177. 177. 
    King AD, Carrasquilla J, Raymond J, Ozfidan I, Andriyash E et al. 2018. Nature 560:456–60
    [Google Scholar]
  178. 178. 
    Jiang S, Britt KA, McCaskey AJ, Humble TS, Kais S 2018. Sci. Rep. 8:17667
    [Google Scholar]
  179. 179. 
    Peng W, Wang B, Hu F, Wang Y, Fang X et al. 2019. Sci. China Phys. Mech. Astron. 62:60311
    [Google Scholar]
  180. 180. 
    Ronnow TF, Wang Z, Job J, Boixo S, Isakov SV et al. 2014. Science 345:420–24
    [Google Scholar]
  181. 181. 
    Bravyi S, Divincenzo DP, Oliveira R, Terhal BM 2008. Quantum Inf. Comput. 8:361–85
    [Google Scholar]
  182. 182. 
    Denchev VS, Boixo S, Isakov SV, Ding N, Babbush R et al. 2016. Phys. Rev. X 6:031015
    [Google Scholar]
  183. 183. 
    Mandrà S, Zhu Z, Wang W, Perdomo-Ortiz A, Katzgraber HG 2016. Phys. Rev. A 94:022337
    [Google Scholar]
  184. 184. 
    Ozfidan I, Deng C, Smirnov AY, Lanting T, Harris R 2019. arXiv:1903.06139
  185. 185. 
    Gottesman D 1997. Stabilizer codes and quantum error correction PhD Thesis, Calif. Inst. Technol., Pasadena
    [Google Scholar]
  186. 186. 
    Aharonov D, Ben-Or M 2008. SIAM J. Comput. 38:1207–82
    [Google Scholar]
  187. 187. 
    Fowler AG, Mariantoni M, Martinis JM, Cleland AN 2012. Phys. Rev. A 86:032324
    [Google Scholar]
  188. 188. 
    Tomita Y, Svore KM 2014. Phys. Rev. A 90:062320
    [Google Scholar]
  189. 189. 
    Reed MD, DiCarlo L, Nigg SE, Sun L, Frunzio L et al. 2012. Nature 482:382–85
    [Google Scholar]
  190. 190. 
    Chow JM, Gambetta JM, Magesan E, Abraham DW, Cross AW et al. 2014. Nat. Commun. 5:4015
    [Google Scholar]
  191. 191. 
    Saira O, Groen J, Cramer J, Meretska M, de Lange G, DiCarlo L 2014. Phys. Rev. Lett. 112:070502
    [Google Scholar]
  192. 192. 
    Kelly J, Barends R, Campbell B, Chen Y, Chen Z et al. 2014. Phys. Rev. Lett. 112:240504
    [Google Scholar]
  193. 193. 
    Barends R, Kelly J, Megrant A, Sank D, Jeffrey E et al. 2013. Phys. Rev. Lett. 111:080502
    [Google Scholar]
  194. 194. 
    Risté D, Poletto S, Huang MZ, Bruno A, Vesterinen V et al. 2015. Nat. Commun. 6:6983
    [Google Scholar]
  195. 195. 
    Crcoles AD, Magesan E, Srinivasan SJ, Cross AW, Steffen M et al. 2015. Nat. Commun. 6:6979
    [Google Scholar]
  196. 196. 
    Andersen CK, Remm A, Balasiu S, Krinner S, Heinsoo J et al. 2019. NPJ Quantum Inf. 5:69
    [Google Scholar]
  197. 197. 
    Bultink CC, O'Brien TE, Vollmer R, Muthusubramanian N, Beekman MW 2019. arXiv:1905.12731
  198. 198. 
    Takita M, Crcoles A, Magesan E, Abdo B, Brink M et al. 2016. Phys. Rev. Lett. 117:210505
    [Google Scholar]
  199. 199. 
    Versluis R, Poletto S, Khammassi N, Tarasinski B, Haider N et al. 2017. Phys. Rev. Appl. 8:034021
    [Google Scholar]
  200. 200. 
    Gottesman D 2009. arXiv:0904.2557
  201. 201. 
    Gottesman D 2016. arXiv:1610.03507
  202. 202. 
    Takita M, Cross AW, Crcoles A, Chow JM, Gambetta JM 2017. Phys. Rev. Lett. 119:180501
    [Google Scholar]
  203. 203. 
    Vuillot C 2018. Quantum Inf. Comput. 18:949–64
    [Google Scholar]
  204. 204. 
    Harper R, Flammia ST 2019. Phys. Rev. Lett. 122:080504
    [Google Scholar]
  205. 205. 
    Cochrane PT, Milburn GJ, Munro WJ 1999. Phys. Rev. A 59:2631–34
    [Google Scholar]
  206. 206. 
    Mirrahimi M, Leghtas Z, Albert VV, Touzard S, Schoelkopf RJ et al. 2014. New J. Phys. 16:045014
    [Google Scholar]
  207. 207. 
    Michael MH, Silveri M, Brierley RT, Albert VV, Salmilehto J et al. 2016. Phys. Rev. X 6:031006
    [Google Scholar]
  208. 208. 
    Vlastakis B, Kirchmair G, Leghtas Z, Nigg SE, Frunzio L et al. 2013. Science 342:607–10
    [Google Scholar]
  209. 209. 
    Axline CJ, Burkhart LD, Pfaff W, Zhang M, Chou K et al. 2018. Nat. Phys. 14:705–10
    [Google Scholar]
  210. 210. 
    Gao YY, Lester BJ, Chou K, Frunzio L, Devoret MH, Jiang L et al. 2019. Nature 556:509–12
    [Google Scholar]
  211. 211. 
    Campbell ET, Terhal BM, Vuillot C 2017. Nature 549:172–79
    [Google Scholar]
  212. 212. 
    Brooks P, Kitaev A, Preskill J 2013. Phys. Rev. A 87:052306
    [Google Scholar]
  213. 213. 
    Kapit E 2018. Phys. Rev. Lett. 120:050503
    [Google Scholar]
  214. 214. 
    Kerman AJ 2010. Phys. Rev. Lett. 104:027002
    [Google Scholar]
  215. 215. 
    de Lange G, van Heck B, Bruno A, van Woerkom D, Geresdi A et al. 2015. Phys. Rev. Lett. 115:127002
    [Google Scholar]
  216. 216. 
    Casparis L, Connolly MR, Kjaergaard M, Pearson NJ, Kringhøj A et al. 2018. Nat. Nanotechnol. 13:915–19
    [Google Scholar]
  217. 217. 
    Proctor TJ, Carignan-Dugas A, Rudinger K, Nielsen E, Blume-Kohout R et al. 2019. Phys. Rev. Lett. 123:030503
    [Google Scholar]
  218. 218. 
    Rosenberg D, Kim D, Das R, Yost D, Gustavsson S et al. 2017. NPJ Quantum Inf. 3:42
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031119-050605
Loading
/content/journals/10.1146/annurev-conmatphys-031119-050605
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error