1932

Abstract

Self-propelled particles include both self-phoretic synthetic colloids and various microorganisms. By continually consuming energy, they bypass the laws of equilibrium thermodynamics. These laws enforce the Boltzmann distribution in thermal equilibrium: The steady state is then independent of kinetic parameters. In contrast, self-propelled particles tend to accumulate where they move more slowly. They may also slow down at high density for either biochemical or steric reasons. This creates positive feedback, which can lead to motility-induced phase separation (MIPS) between dense and dilute fluid phases. At leading order in gradients, a mapping relates variable-speed, self-propelled particles to passive particles with attractions. This deep link to equilibrium phase separation is confirmed by simulations but generally breaks down at higher order in gradients: New effects, with no equilibrium counterpart, then emerge. We give a selective overview of the fast-developing field of MIPS, focusing on theory and simulation but including a brief speculative survey of its experimental implications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031214-014710
2015-03-10
2024-07-04
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/6/1/annurev-conmatphys-031214-014710.html?itemId=/content/journals/10.1146/annurev-conmatphys-031214-014710&mimeType=html&fmt=ahah

Literature Cited

  1. Narayan V, Ramaswamy S, Menon N. 2007. Science 317:105–8
  2. Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E et al. 2008. Proc. Natl. Acad. Sci. USA 105:1232–37 [Google Scholar]
  3. Katz Y, Tunstrøm K, Ioannou CC, Huepe C, Couzin ID. 2011. Proc. Natl. Acad. Sci. USA 108:18720–25 [Google Scholar]
  4. Schaller V, Weber C, Semmrich C, Frey E, Bausch AR. 2010. Nature 467:73–77 [Google Scholar]
  5. Sumino Y, Nagai KH, Shitaka Y, Tanaka D, Yoshikawa K et al. 2012. Nature 483:448–52 [Google Scholar]
  6. Theurkauff I, Cottin-Bizonne C, Palacci J, Ybert C, Bocquet L. 2012. Phys. Rev. Lett. 108:268303 [Google Scholar]
  7. Buttinoni I, Bialke J, Kummel F, Lowen H, Bechinger C, Speck T. 2013. Phys. Rev. Lett. 110:238301 [Google Scholar]
  8. Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. 2013. Science 339:936–40 [Google Scholar]
  9. Bricard A, Caussin JB, Desreumaux N, Dauchot O, Bartolo D. 2013. Nature 503:95–98 [Google Scholar]
  10. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. 1995. Phys. Rev. Lett. 75:1226–29 [Google Scholar]
  11. Romanczuk P, Bär M, Ebeling W, Lindner B, Schimansky-Geier L. 2012. Eur. Phys. J. Spec. Top. 202:1–162 [Google Scholar]
  12. Cates ME. 2012. Rep. Prog. Phys. 75:042601 [Google Scholar]
  13. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Rev. Mod. Phys. 85:1143–89 [Google Scholar]
  14. Flemming HC. 2002. Appl. Microbiol. Biotechnol. 59:629–40 [Google Scholar]
  15. Costerton JW, Montanaro L, Arciola CR. 2005. Int. J. Artif. Organs 28:1062–68 [Google Scholar]
  16. Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Nat. Rev. Microbiol. 2:95–108 [Google Scholar]
  17. Lee KY, Mooney DJ. 2001. Chem. Rev. 101:1869–79 [Google Scholar]
  18. Logan BE, Regan JM. 2006. Trends Microbiol. 14:512–18 [Google Scholar]
  19. Sokolov A, Aranson IS, Kessler JO, Goldstein RE. 2007. Phys. Rev. Lett. 98:158102 [Google Scholar]
  20. Ramaswamy S, Simha RA, Toner J. 2003. EPL 62:196–202 [Google Scholar]
  21. Peruani F, Deutsch A, Baer M. 2006. Phys. Rev. E 74:030904 [Google Scholar]
  22. Solon A, Tailleur J. 2013. Phys. Rev. Lett. 111:078101 [Google Scholar]
  23. Cisneros LH, Cortez R, Dombrowski C, Goldstein RE, Kessler JO. 2007. Exp. Fluids 43:737–53 [Google Scholar]
  24. Tailleur J, Cates ME. 2009. EPL 86:600002 [Google Scholar]
  25. Palacci J, Cottin-Bizonne C, Ybert C, Bocquet L. 2010. Phys. Rev. Lett. 105:088304 [Google Scholar]
  26. Enculescu M, Stark H. 2011. Phys. Rev. Lett. 107:058301 [Google Scholar]
  27. Galajda P, Keymer J, Chaikin P, Austin R. 2007. J. Bacteriol. 189:8704–7 [Google Scholar]
  28. Wan MB, Reichhardt CO, Nussinov Z, Reichhardt C. 2008. Phys. Rev. Lett. 101:018102 [Google Scholar]
  29. Di Leonardo R, Angelani L, Dell’Arciprete D, Ruocco G, Iebba V et al. 2010. Proc. Natl. Acad. Sci. USA 107:9541–45 [Google Scholar]
  30. Angelani L, Di Leonardo R, Giancarlo R. 2009. Phys. Rev. Lett. 102:048104 [Google Scholar]
  31. Sokolov A, Apodaca MM, Grzybowski BA, Aronson IS. 2010. Proc. Natl. Acad. Sci. USA 107:969–74 [Google Scholar]
  32. Miller MB, Bassler BL. 2001. Annu. Rev. Microbiol. 55:165–99 [Google Scholar]
  33. Thompson AG, Tailleur J, Cates ME, Blythe RA. 2011. J. Stat. Mech. 2011(2):P02029
  34. Fily Y, Marchetti MC. 2012. Phys. Rev. Lett. 108:235702 [Google Scholar]
  35. Redner GS, Hagan MF, Baskaran A. 2013. Phys. Rev. Lett. 110:055701 [Google Scholar]
  36. Bialké J, Löwen H, Speck T. 2013. EPL 103:30008 [Google Scholar]
  37. Levis D, Berthier L. 2014. Phys. Rev. E 89:062301
  38. Tailleur J, Cates ME. 2008. Phys. Rev. Lett. 100:218103 [Google Scholar]
  39. Schnitzer MJ. 1993. Phys. Rev. E 48:2553–68 [Google Scholar]
  40. van Kampen NG. 1988. J. Phys. Chem. Solids 49:673–77 [Google Scholar]
  41. Schnitzer MJ, Block SM, Berg HC, Purcell EM. 1990. Symp. Soc. Gen. Microbiol. 46:15–33 [Google Scholar]
  42. Leighton D, Acrivos A. 1987. J. Fluid Mech. 181:415–39
  43. Berg HC. 2003. E. coli in Motion. New York: Springer
  44. Cates ME, Tailleur J. 2013. EPL 101:20010 [Google Scholar]
  45. Dean DS. 1996. J. Phys. A 29:L613–17 [Google Scholar]
  46. Øksendal B. 2003. Stochastic Differential Equations: an Introduction with Applications. Berlin-Heidelberg, Ger.: Springer [Google Scholar]
  47. Liu C, Fu X, Liu L, Ren X, Chau CK et al. 2011. Science 334:238–41 [Google Scholar]
  48. Fu X, Tang LH, Liu C, Huang JD, Hwa T et al. 2012. Phys. Rev. Lett. 108:198102 [Google Scholar]
  49. Speck T, Bialké J, Menzel AM, Löwen H. 2014. Phys. Rev. Lett. 112:218304 [Google Scholar]
  50. Onuki A. 2002. Phase Transition Dynamics. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  51. Bray AJ. 2002. Adv. Phys. 51:481–587 [Google Scholar]
  52. Fily Y, Henkes S, Marchetti MC. 2014. Soft Matter 10:2132–40 [Google Scholar]
  53. Schütz G, Sandow S. 1994. Phys. Rev. E 49:2726–41 [Google Scholar]
  54. Tailleur J, Kurchan J, Lecomte V. 2008. J. Phys. A 41:505001 [Google Scholar]
  55. Soto R, Golestanian R. 2014. Phys. Rev. E 89:012706 [Google Scholar]
  56. Stenhammar J, Tiribocchi A, Allen RJ, Marenduzzo D, Cates ME. 2013. Phys. Rev. Lett. 111:145702 [Google Scholar]
  57. Stenhammar J, Marenduzzo D, Allen RJ, Cates ME. 2014. Soft Matter 14:1489–99 [Google Scholar]
  58. Wysocki A, Winkler RG, Gompper G. 2014. EPL 105:48004 [Google Scholar]
  59. Berthier L. 2014. Phys. Rev. Lett. 112:220602 [Google Scholar]
  60. Henkes S, Fily Y, Marchetti MC. 2011. Phys. Rev. E 84:040301 [Google Scholar]
  61. Redner GS, Baskaran A, Hagan MF. 2013. Phys. Rev. E 88:012305 [Google Scholar]
  62. Wittkowski R, Tiribocchi A, Stenhammar J, Allen RJ, Marenduzzo D, Cates ME. 2014. Nat. Commun. 5:4351 [Google Scholar]
  63. Nash RW, Adhikari R, Tailleur J, Cates ME. 2010. Phys. Rev. Lett. 104:258101 [Google Scholar]
  64. Sutherland IW. 2001. Microbiology 147:3–9 [Google Scholar]
  65. Budrene EO, Berg HC. 1991. Nature 349:630–33 [Google Scholar]
  66. Woodward DE, Tyson R, Myerscough MR, Murray JD, Budrene EO, Berg HC. 1995. Biophys. J. 68:2181–89 [Google Scholar]
  67. Tyson R, Lubkin SR, Murray JD. 1999. Proc. Biol. Sci. 266:299–304 [Google Scholar]
  68. Budrene EO, Berg HC. 1995. Nature 376:49–53 [Google Scholar]
  69. Cates ME, Marenduzzo D, Pagonabarraga I, Tailleur J. 2010. Proc. Natl. Acad. Sci. USA 107:11715–20 [Google Scholar]
  70. Brenner MP. 2010. Proc. Natl. Acad. Sci. USA 107:11653–65 [Google Scholar]
  71. Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R. 2007. Phys. Rev. Lett. 99:048102 [Google Scholar]
  72. Ibele M, Mallouk TE, Sen A. 2009. Angew. Chem. Int. Ed. 48:3308–12 [Google Scholar]
  73. Thutupalli S, Seemann R, Herminghaus S. 2011. New J. Phys. 13:073021 [Google Scholar]
  74. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J. 2005. Nature 437:862–65 [Google Scholar]
  75. Brown A, Poon WCK. 2014. Soft Matter 10:4016–27 [Google Scholar]
  76. Schwarz-Linek J, Valeriani C, Cacciuto A, Cates ME, Marenduzzo D et al. 2012. Proc. Natl. Acad. Sci. USA 109:4052–57 [Google Scholar]
  77. Saha S, Golestanian R, Ramaswamy S. 2014. Phys. Rev. E 89:062316 [Google Scholar]
  78. Mognetti BM, Sarić A, Angioletti-Uberti S, Cacciuto A, Valeriani C, Frenkel D. 2013. Phys. Rev. Lett. 111:245702 [Google Scholar]
  79. Ishikawa T, Pedley TJ. 2008. Phys. Rev. Lett. 100:088103 [Google Scholar]
  80. Llopis I, Pagonabarraga I. 2006. EPL 75:999–1005 [Google Scholar]
  81. Matas-Navarro R, Golestanian R, Liverpool TB, Fielding SM. 2014. Phys. Rev. E 90:032304 [Google Scholar]
  82. Zöttl A, Stark H. 2014. Phys. Rev. Lett. 112:118101 [Google Scholar]
  83. Pohl O, Stark H. 2014. Phys. Rev. Lett. 112:238303 [Google Scholar]
  84. Bray AJ, Emmott CL. 1995. Phys. Rev. B 52:R685–88 [Google Scholar]
  85. Lu CYD, Olmsted PD, Ball RC. 2000. Phys. Rev. Lett. 84:642–45 [Google Scholar]
  86. Watson SJ, Norris SA. 2006. Phys. Rev. Lett. 96:176103 [Google Scholar]
  87. Chaikin P, Lubensky EC. 1995. Principles of Condensed Matter Physics. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  88. Conan-Doyle A. 1894. The Memoirs of Sherlock Holmes. Ch.1: Silver Blaze. London: George Newnes Ltd. [Google Scholar]
  89. Ramaswamy S. 2010. Annu. Rev. Condens. Matter Phys. 1:323–345 [Google Scholar]
  90. Barre J, Chetrite R, Muratori M, Peruani F. 2014. J. Stat. Phys. In press [Google Scholar]
  91. Farrell FDC, Marchetti MC, Marenduzzo D, Tailleur J. 2012. Phys. Rev. Lett. 108:248101 [Google Scholar]
  92. Baskaran A, Marchetti MC. 2008. Phys. Rev. Lett. 101:268101 [Google Scholar]
  93. Ginelli F, Peruani F, Baer M, Chate H. 2010. Phys. Rev. Lett. 104:184502 [Google Scholar]
  94. Wensink H, Löwen H. 2012. J. Phys. Condens. Matter 24:464130 [Google Scholar]
  95. McCandlish SR, Baskaran A, Hagan MF. 2012. Soft Matter 8:2527–34 [Google Scholar]
  96. Abkenar M, Marx K, Auth T, Gompper G. 2013. Phys. Rev. E 88:062314 [Google Scholar]
  97. Hernandez-Ortiz JP, Graham MD. 2005. Phys. Rev. Lett. 95:204501 [Google Scholar]
  98. Saintillan D, Shelley MJ. 2007. Phys. Rev. Lett. 99:058102 [Google Scholar]
  99. Saintillan D, Shelley MJ. 2008. Phys. Rev. Lett. 100:178103 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031214-014710
Loading
/content/journals/10.1146/annurev-conmatphys-031214-014710
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error