1932

Abstract

The quantum anomalous Hall effect (QAHE) is a quantized Hall effect that occurs at zero magnetic field. Its mechanism and properties are different from those of conventional quantum Hall effects (QHEs) induced by magnetic field. The first theory of a QHE without a magnetic field was proposed in 1988. Yet, it has taken 25 years to be experimentally realized, which has now happened thanks to the development of the topological insulator—a conceptually new topological state of matter. Here, we review QAHE, beginning with the original theoretical idea and concluding with its final implementation using experimentally accessible materials. The current status and future direction of the field are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-054144
2018-03-10
2024-06-29
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/9/1/annurev-conmatphys-033117-054144.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-054144&mimeType=html&fmt=ahah

Literature Cited

  1. Wen XG. 1.  2007. Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons Oxford, UK: Oxford Univ. Press [Google Scholar]
  2. Tinkham M. 2.  2004. Introduction to Superconductivity New York: Dover Books. , 2nd ed.. [Google Scholar]
  3. von Klitzing K, Dorda G, Peper M. 3.  1980. Phys. Rev. Lett. 45:494–97 [Google Scholar]
  4. Tsui DC, Stormer HL, Gossard AC. 4.  1982. Phys. Rev. Lett. 48:1559–62 [Google Scholar]
  5. Girvin SM. 5.  1990. The Quantum Hall Effect New York: Springer [Google Scholar]
  6. Thouless DJ, Kohmoto M, Nightingale MP, Nijs MD. 6.  1982. Phys. Rev. Lett. 49:405–8 [Google Scholar]
  7. Avron JE, Osadchy D, Seiler R. 7.  2003. Phys. Today 56:38–42 [Google Scholar]
  8. Bernevig BA, Hughes TL. 8.  2013. Topological Insulators and Topological Superconductors Princeton, NJ: Princeton Univ. Press [Google Scholar]
  9. Wen XG. 9.  2016. arXiv1610.03911
  10. Haldane FDM. 10.  1988. Phys. Rev. Lett. 61:2015–18 [Google Scholar]
  11. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y. 11.  et al. 2004. Science 306:666–69 [Google Scholar]
  12. Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. 12.  2010. Rev. Mod. Phys. 82:1539–92 [Google Scholar]
  13. Onoda M, Nagaosa N. 13.  2003. Phys. Rev. Lett. 90:206601 [Google Scholar]
  14. Kane CL, Mele EJ. 14.  2005. Phys. Rev. Lett. 95:146802 [Google Scholar]
  15. Kane CL, Mele EJ. 15.  2005. Phys. Rev. Lett. 95:226801 [Google Scholar]
  16. Bernevig BA, Zhang SC. 16.  2006. Phys. Rev. Lett. 96:106802 [Google Scholar]
  17. Qi XL, Wu YS, Zhang SC. 17.  2006. Phys. Rev. B 74:085308 [Google Scholar]
  18. Hasan MZ, Kane CL. 18.  2010. Rev. Mod. Phys. 82:3045–67 [Google Scholar]
  19. Qi XL, Zhang SC. 19.  2011. Rev. Mod. Phys. 83:1057–110 [Google Scholar]
  20. Fu L, Kane CL, Mele EJ. 20.  2007. Phys. Rev. Lett. 98:106803 [Google Scholar]
  21. Moore JE, Balents L. 21.  2007. Phys. Rev. B 75:121306 [Google Scholar]
  22. Roy R. 22.  2009. Phys. Rev. B 79:195321 [Google Scholar]
  23. Yan B, Zhang SC. 23.  2012. Rep. Prog. Phys. 75:096501 [Google Scholar]
  24. Bernevig BA, Hughes TL, Zhang SC. 24.  2006. Science 314:1757–61 [Google Scholar]
  25. Liu CX, Hughes TL, Qi XL, Wang K, Zhang SC. 25.  2008. Phys. Rev. Lett. 100:236601 [Google Scholar]
  26. König M, Wiedmann S, Brüne C, Roth A, Buhmann H. 26.  et al. 2007. Science 318:766–70 [Google Scholar]
  27. Knez I, Du RR, Sullivan G. 27.  2011. Phys. Rev. Lett. 107:136603 [Google Scholar]
  28. Nichele F, Suominen HJ, Kjaergaard M, Marcus CM, Sajadi E. 28.  et al. 2016. New J. Phys. 18:083005 [Google Scholar]
  29. Fu L, Kane CL. 29.  2007. Phys. Rev. B 76:045302 [Google Scholar]
  30. Hsieh D, Qian D, Wray L, Xia Y, Hor YS. 30.  et al. 2008. Nature 452:970–74 [Google Scholar]
  31. Hsieh D, Xia Y, Wray L, Qian D, Pal A. 31.  et al. 2009. Science 323:919–22 [Google Scholar]
  32. Zhang H, Liu CX, Qi XL, Dai X, Fang Z, Zhang SC. 32.  2009. Nat. Phys. 5:438–42 [Google Scholar]
  33. Xia Y, Qian D, Hsieh D, Wray L, Pal A. 33.  et al. 2009. Nat. Phys. 5:398–402 [Google Scholar]
  34. Chen YL, Analytis JG, Chu JH, Liu ZK, Mo SK. 34.  et al. 2009. Science 325:178–81 [Google Scholar]
  35. Hsieh D, Xia Y, Qian D, Wray L, Dil H. 35.  et al. 2009. Nature 460:1101–5 [Google Scholar]
  36. Liu CX, Qi XL, Dai X, Fang Z, Zhang SC. 36.  2008. Phys. Rev. Lett. 101:146802 [Google Scholar]
  37. Qi XL, Hughes TL, Zhang SC. 37.  2008. Phys. Rev. B 78:195424 [Google Scholar]
  38. Yu R, Zhang W, Zhang H J, Zhang SC, Dai X, Fang Z. 38.  2010. Science 329:61–64 [Google Scholar]
  39. Nomura K, Nagaosa N. 39.  2011. Phys. Rev. Lett. 106:166802 [Google Scholar]
  40. Buhmann H. 40.  2012. Bull. Am. Phys. Soc. 57:P27.1 http://meetings.aps.org/link/BAPS.2012.MAR.P27.1 [Google Scholar]
  41. Liu CX, Zhang HJ, Yan B, Qi X-L, Frauenheim T. 41.  et al. 2010. Phys Rev B 81:041307 [Google Scholar]
  42. Assaf BA, Cardinal T, Wei P, Katmis F, Moodera JS. 42.  et al. 2013. Appl. Phys. Lett. 102:012102 [Google Scholar]
  43. Jiang Z, Chang CZ, Tang C, Zheng JG, Moodera JS. 43.  et al. 2016. AIP Adv 6:055809 [Google Scholar]
  44. Katmis F, Lauter V, Nogueira FS, Assaf BA, Jamer ME. 44.  et al. 2016. Nature 533:513–16 [Google Scholar]
  45. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D. 45.  2000. Science 287:1019–22 [Google Scholar]
  46. Ohno H. 46.  1998. Science 281:951–56 [Google Scholar]
  47. Dietl T, Ohno H. 47.  2014. Rev. Mod. Phys. 86:187 [Google Scholar]
  48. Zhang J, Chang CZ, Tang PZ, Zhang ZC, Feng X. 48.  et al. 2013. Science 339:1582–86 [Google Scholar]
  49. Chien YJ. 49.  2007. Transition Metal-Doped Sb2Te3 and Bi2Te3 Diluted Magnetic Semiconductors PhD thesis, Univ. Michigan Ann Arbor: [Google Scholar]
  50. Hor YS, Roushan P, Beidenkopf H, Seo J, Qu D. 50.  et al. 2010. Phys. Rev. B 81:195203 [Google Scholar]
  51. Chang CZ, Zhang J, Liu M, Zhang Z, Feng X. 51.  et al. 2013. Adv. Mater. 25:1065–70 [Google Scholar]
  52. Li YY, Wang G, Zhu XG, Liu MH, Ye C. 52.  et al. 2010. Adv. Mater. 22:4002–7 [Google Scholar]
  53. Song CL, Wang YL, Jiang YP, Zhang Y, Chang CZ. 53.  et al. 2010. Appl. Phys. Lett. 97:143118 [Google Scholar]
  54. Zhang Y, He K, Chang CZ, Song CL, Wang LL. 54.  et al. 2010. Nat. Phys. 6:584–8 [Google Scholar]
  55. Wang G, Zhu XG, Wen J, Chen X, He K. 55.  et al. 2010. Nano Res 3:874–80 [Google Scholar]
  56. Wang G, Zhu XG, Sun YY, Li YY, Zhang T. 56.  et al. 2011. Adv. Mater. 2:2929–32 [Google Scholar]
  57. Jiang YP, Sun YY, Chen M, Wang Y, Li Z. 57.  et al. 2012. Phys. Rev. Lett. 108:066809 [Google Scholar]
  58. Zhang J, Chang CZ, Zhang ZC, Wen J, Feng X. 58.  et al. 2011. Nat. Commun. 2:574 [Google Scholar]
  59. Li M, Chang CZ, Wu L, Tao J, Zhao W. 59.  et al. 2015. Phys. Rev. Lett. 114:146802 [Google Scholar]
  60. Chang CZ, Zhang J, Feng X, Shen J, Zhang Z. 60.  et al. 2013. Science 340:167–70 [Google Scholar]
  61. Chen J, Qin HJ, Yang F, Liu J, Guan T. 61.  et al. 2010. Phys. Rev. Lett. 105:176602 [Google Scholar]
  62. Checkelsky JG, Yoshimi R, Tsukazaki A, Takahashi KS, Kozuka Y. 62.  et al. 2014. Nat. Phys. 10:731–36 [Google Scholar]
  63. Kou X, Guo ST, Fan Y, Pan L, Lang M. 63.  et al. 2014. Phys. Rev. Lett. 113:137201 [Google Scholar]
  64. Kandala A, Richardella A, Kempinger S, Liu CX, Samarth N. 64.  2015. Nat. Commun. 6:7434 [Google Scholar]
  65. Checkelsky JG, Ye J, Onose Y, Iwasa Y, Tokura Y. 65.  2012. Nat. Phys. 8:729–33 [Google Scholar]
  66. Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T. 66.  et al. 2014. Nature 515:237–40 [Google Scholar]
  67. Timm C. 67.  2003. J. Phys. Condens. Matter 15:R1865 [Google Scholar]
  68. Das Sarma S, Hwang SH, Kaminski A. 68.  2003. Phys. Rev. B 67:155201 [Google Scholar]
  69. Feng X, Feng Y, Wang J, Ou Y, Hao Z. 69.  et al. 2016. Adv. Mater. 28:6386–90 [Google Scholar]
  70. Wang J, Lian B, Zhang SC. 70.  2015. Phys. Scr. T164:014003 [Google Scholar]
  71. Lee I, Kima CK, Lee J, Billinge SJL, Zhong R. 71.  et al. 2015. PNAS 112:1316–21 [Google Scholar]
  72. Lachman EO, Young AF, Richardella AR, Cuppens J, Naren HR. 72.  et al. 2015. Sci. Adv. 1:e1500740 [Google Scholar]
  73. Liu M, Wang W, Richardella AR, Kandala A, Li J. 73.  et al. 2016. Sci. Adv. 2:e1600167 [Google Scholar]
  74. Grauer S, Schreyeck S, Winnerlein M, Brunner K, Gould C. 74.  et al. 2015. Phys. Rev. B 92:201304 [Google Scholar]
  75. Feng Y, Feng X, Ou Y, Wang J, Liu C. 75.  et al. 2015. Phys. Rev. Lett. 115:126801 [Google Scholar]
  76. Kou X, Pan L, Wang J, Fan Y, Choi ES. 76.  et al. 2015. Nat. Commun. 6:8474 [Google Scholar]
  77. Wang J, Lian B, Zhang SC. 77.  2014. Phys. Rev. B 89:085106 [Google Scholar]
  78. Bestwick AJ, Fox EJ, Kou X, Pan L, Wang KL. 78.  2015. Phys. Rev. Lett. 114:187201 [Google Scholar]
  79. Chang CZ, Zhao WW, Kim DY, Zhang HJ, Assaf BA. 79.  et al. 2015. Nat. Mater. 14:473–77 [Google Scholar]
  80. Chang CZ, Zhao WW, Kim DY, Wei P, Jain JK. 80.  et al. 2015. Phys. Rev. Lett. 115:057206 [Google Scholar]
  81. Li W, Claassen M, Chang CZ, Moritz B, Jia T. 81.  et al. 2016. Sci. Rep. 6:32732 [Google Scholar]
  82. Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y. 82.  et al. 2015. Appl. Phys. Lett. 107:182401 [Google Scholar]
  83. Ou Y, Liu C, Zhang L, Feng Y, Jiang G. 83.  et al. 2016. APL Mater 4:086101 [Google Scholar]
  84. Ou Y, Liu C, Jiang G, Feng Y, Zhao D. 84.  et al. 2017. Adv. Mater. 30:1703062 [Google Scholar]
  85. Qi S, Qiao Z, Deng X, Cubuk ED, Chen H. 85.  et al. 2016. Phys. Rev. Lett. 117:056804 [Google Scholar]
  86. Han Y, Wan JG, Ge GX, Song FQ, Wang GH. 86.  2015. Sci. Rep. 5:16843 [Google Scholar]
  87. Wang ZF, Liu Z, Liu F. 87.  2013. Phys. Rev. Lett. 110:196801 [Google Scholar]
  88. Tang E, Mei JW, Wen XG. 88.  2011. Phys. Rev. Lett. 106:236802 [Google Scholar]
  89. Lang M, Montazeri M, Onbasli MC, Kou X, Fan Y. 89.  et al. 2014. Nano Lett 14:3459–65 [Google Scholar]
  90. Andriotis AN, Menon M. 90.  2013. Phys. Rev. B 87:155309 [Google Scholar]
  91. Himpsel FJ, Ortega JE Mankey GJ, Willis RF. 91.  1998. Adv. Phys. 47:511–97 [Google Scholar]
  92. Luo W, Qi XL. 92.  2013. Phys. Rev. B 87:085431 [Google Scholar]
  93. Eremeev SV, Men'shov VN, Tugushev VV, Echenique PM, Chulkov EV. 93.  2013. Phys. Rev. B 88:144430 [Google Scholar]
  94. Men'shov VN, Tugushev VV, Eremeev SV, Echenique PM, Chulkov EV. 94.  2013. Phys. Rev. B 88:224401 [Google Scholar]
  95. Wang F, Ran Y. 95.  2011. Phys. Rev. B 84:241103R) [Google Scholar]
  96. Fang C, Gilbert MJ, Bernevig BA. 96.  2014. Phys. Rev. Lett. 112:046801 [Google Scholar]
  97. Wang J, Lian B, Zhang H, Xu Y, Zhang SC. 97.  2013. Phys. Rev. Lett. 111:136801 [Google Scholar]
  98. Wan X, Turner AM, Vishwanath A, Savrasov SY. 98.  2011. Phys. Rev. B 83:205101 [Google Scholar]
  99. Burkov AA, Balents L. 99.  2011. Phys. Rev. Lett. 107:127205 [Google Scholar]
  100. Xu G, Weng H, Wang Z, Dai X, Fang Z. 100.  2011. Phys. Rev. Lett. 107:186806 [Google Scholar]
  101. Alicea J. 101.  2012. Rep. Prog. Phys. 75:076501 [Google Scholar]
  102. Bonderson P, Das Sarma S, Freedman M, Nayak C. 102.  2010. arXiv1003.2856
  103. Qi XL, Hughes TL, Zhang SC. 103.  2012. Phys. Rev. B 82:184516 [Google Scholar]
  104. Fu L, Kane CL. 104.  2009. Phys. Rev. Lett. 102:216403 [Google Scholar]
  105. Akhmerov AR, Nilsson CN, Beenakker CWJ. 105.  2009. Phys. Rev. Lett. 102:216404 [Google Scholar]
  106. Chung SB, Qi XL, Maciejko J, Zhang SC. 106.  2011. Phys. Rev. B 83:100512 [Google Scholar]
  107. Wang J, Zhou Q, Lian B, Zhang SC. 107.  2015. Phys. Rev. B 92:064520 [Google Scholar]
  108. He QL, Pan L, Stern AL, Burks E, Che X. 108.  et al. 2017. Science 357:294–99 [Google Scholar]
  109. Alicea J, Fendley P. 109.  2016. Annu. Rev. Condens. Matter Phys. 7:119–39 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-033117-054144
Loading
/content/journals/10.1146/annurev-conmatphys-033117-054144
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error