1932

Abstract

Researchers in human–robot collaboration have extensively studied methods for inferring human intentions and predicting their actions, as this is an important precursor for robots to provide useful assistance. We review contemporary methods for intention inference and human activity prediction. Our survey finds that intentions and goals are often inferred via Bayesian posterior estimation and Markov decision processes that model internal human states as unobserved variables or represent both agents in a shared probabilistic framework. An alternative approach is to use neural networks and other supervised learning approaches to directly map observable outcomes to intentions and to make predictions about future human activity based on past observations. That said, due to the complexity of human intentions, existing work usually reasons about limited domains, makes unrealistic simplifications about intentions, and is mostly constrained to short-term predictions. This state of the art provides opportunity for future research that could include more nuanced models of intents, reason over longer horizons, and account for the human tendency to adapt.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-071223-105834
2024-07-10
2025-03-14
The full text of this item is not currently available.

Literature Cited

  1. 1.
    Grosz BJ. 1996. Collaborative systems (AAAI-94 Presidential Address). JournalTitleAI Mag. 1726785
    [Google Scholar]
  2. 2.
    Hoffman G, Breazeal C. 2004.. Collaboration in human-robot teams. . In BookTitleAIAA 1st Intelligent Systems Technical Conference, pap. 2004-6434 . cityPalo Alto, CA:: AAAI
    [Google Scholar]
  3. 3.
    Hoffman G Breazeal C. 2007. Cost-based anticipatory action selection for human–robot fluency. JournalTitleIEEE Trans. Robot. 23595261
    [Google Scholar]
  4. 4.
    Chang ML Gutierrez RA Khante P Short ES Thomaz AL. 2018. Effects of integrated intent recognition and communication on human-robot collaboration. BookTitle2018 IEEE/RSJ International Conference on Intelligent Robots and Systems338186 cityPiscataway, NJ: IEEE
    [Google Scholar]
  5. 5.
    Tabrez A Luebbers MB Hayes B. 2020. A survey of mental modeling techniques in human–robot teaming. JournalTitleCurr. Robot. Rep. 1425967
    [Google Scholar]
  6. 6.
    Felip J Gonzalez-Aguirre D Nachman L. 2022. Intuitive & efficient human-robot collaboration via real-time approximate Bayesian inference. BookTitle2022 IEEE/RSJ International Conference on Intelligent Robots and Systems309399 cityPiscataway, NJ: IEEE
    [Google Scholar]
  7. 7.
    Le AT Kratzer P Hagenmayer S Toussaint M Mainprice J. 2021. Hierarchical human-motion prediction and logic-geometric programming for minimal interference human-robot tasks. BookTitle2021 30th IEEE International Conference on Robot and Human Interactive Communication714 cityPiscataway, NJ: IEEE
    [Google Scholar]
  8. 8.
    Cheng Y Tomizuka M. 2022. Long-term trajectory prediction of the human hand and duration estimation of the human action. JournalTitleIEEE Robot. Autom. Lett. 7124754
    [Google Scholar]
  9. 9.
    Schaal S. 2006. Dynamic movement primitives—a framework for motor control in humans and humanoid robotics. BookTitleAdaptive Motion of Animals and Machines H Kimura, K Tsuchiya, A Ishiguro, H Witte 26180 cityTokyo: Springer
    [Google Scholar]
  10. 10.
    Qiao CZ Sakr M Muelling K Admoni H. 2021. Learning from demonstration for real-time user goal prediction and shared assistive control. BookTitle2021 IEEE International Conference on Robotics and Automation327075 cityPiscataway, NJ: IEEE
    [Google Scholar]
  11. 11.
    Ortenzi V Cosgun A Pardi T Chan WP Croft E Kulic D. 2021. Object handovers: a review for robotics. JournalTitleIEEE Trans. Robot. 376185573
    [Google Scholar]
  12. 12.
    Zhuang Z Ben-Shabat Y Zhang J Gould S Mahony R. 2022. GoferBot: a visual guided human-robot collaborative assembly system. BookTitle2022 IEEE/RSJ International Conference on Intelligent Robots and Systems891017 cityPiscataway, NJ: IEEE
    [Google Scholar]
  13. 13.
    Choi A Jawed MK Joo J. 2022. Preemptive motion planning for human-to-robot indirect placement handovers. BookTitle2022 International Conference on Robotics and Automation474349 cityPiscataway, NJ: IEEE
    [Google Scholar]
  14. 14.
    Laplaza J Garrell A Moreno-Noguer F Sanfeliu A. 2022. Context and intention for 3D human motion prediction: experimentation and user study in handover tasks. BookTitle2022 31st IEEE International Conference on Robot and Human Interactive Communication63035 cityPiscataway, NJ: IEEE
    [Google Scholar]
  15. 15.
    Nikolaidis S Shah J. 2013. Human-robot cross-training: computational formulation, modeling and evaluation of a human team training strategy. BookTitleHRI '13: Proceedings of the 8th ACM/IEEE International Conference on Human-Robot Interaction3340 cityPiscataway, NJ: IEEE
    [Google Scholar]
  16. 16.
    Jin W Murphey TD Lu Z Mou S. 2023. Learning from human directional corrections. JournalTitleIEEE Trans. Robot. 39162544
    [Google Scholar]
  17. 17.
    Schrum ML Hedlund-Botti E Moorman N Gombolay MC. 2022. MIND MELD: personalized meta-learning for robot-centric imitation learning. BookTitleHRI '22: Proceedings of the 2022 ACM/IEEE International Conference on Human-Robot Interaction15765 cityPiscataway, NJ: IEEE
    [Google Scholar]
  18. 18.
    Haninger K Hegeler C Peternel L. 2022. Model predictive control with Gaussian processes for flexible multi-modal physical human robot interaction. BookTitle2022 International Conference on Robotics and Automation694855 cityPiscataway, NJ: IEEE
    [Google Scholar]
  19. 19.
    El Makrini I Omidi M Fusaro F Lamon E Ajoudani A Vanderborght B. 2022. A hierarchical finite-state machine-based task allocation framework for human-robot collaborative assembly tasks. BookTitle2022 IEEE/RSJ International Conference on Intelligent Robots and Systems1023844 cityPiscataway, NJ: IEEE
    [Google Scholar]
  20. 20.
    Al-Saadi Z Hamad YM Aydin Y Kucukyilmaz A Basdogan C. 2023. Resolving conflicts during human-robot co-manipulation. BookTitleHRI '23: Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction24351 cityNew York: ACM
    [Google Scholar]
  21. 21.
    Jain S, Argall B. 2019.. Probabilistic human intent recognition for shared autonomy in assistive robotics. . JournalTitleACM Trans. Human-Robot Interact. 9(1):2
    [Google Scholar]
  22. 22.
    Iregui S Schutter JD Aertbelien E. 2021. Reconfigurable constraint-based reactive framework for assistive robotics with adaptable levels of autonomy. JournalTitleIEEE Robot. Autom. Lett. 647397405
    [Google Scholar]
  23. 23.
    Jonnavittula A Losey DP. 2021. I know what you meant: learning human objectives by (under)estimating their choice set. BookTitle2021 IEEE International Conference on Robotics and Automation274753 cityPiscataway, NJ: IEEE
    [Google Scholar]
  24. 24.
    Repiso E Garrell A Sanfeliu A. 2020. People’s adaptive side-by-side model evolved to accompany groups of people by social robots. JournalTitleIEEE Robot. Autom. Lett. 52238794
    [Google Scholar]
  25. 25.
    Hu Y Ryu J Gundana D Petersen KH Kress-Gazit H Hoffman G. 2023. Nudging or waiting? Automatically synthesized robot strategies for evacuating noncompliant users in an emergency situation. BookTitleHRI '23: Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction60311 cityNew York: ACM
    [Google Scholar]
  26. 26.
    Thompson S Horiuchi T Kagami S. 2009. A probabilistic model of human motion and navigation intent for mobile robot path planning. BookTitle2009 4th International Conference on Autonomous Robots and Agents66368 cityPiscataway, NJ: IEEE
    [Google Scholar]
  27. 27.
    Bui HH Venkatesh S West G. 2001. Tracking and surveillance in wide-area spatial environments using the abstract hidden Markov model. JournalTitleInt. J. Pattern Recognit. Artif. Intell. 15117796
    [Google Scholar]
  28. 28.
    Bandyopadhyay T Won KS Frazzoli E Hsu D Lee WS Rus D. 2013. Intention-aware motion planning. BookTitleAlgorithmic Foundations of Robotics X E Frazzoli, T Lozano-Pérez, N Roy, D Rus 47591 cityBerlin: Springer
    [Google Scholar]
  29. 29.
    Bennewitz M Burgard W Thrun S. 2003. Adapting navigation strategies using motions patterns of people. BookTitle2003 IEEE International Conference on Robotics and Automation 220005 cityPiscataway, NJ: IEEE
    [Google Scholar]
  30. 30.
    Kollmitz M, Hsiao K, Gaa J, Burgard W. 2015.. Time dependent planning on a layered social cost map for human-aware robot navigation. . In BookTitle2015 European Conference on Mobile Robots. cityPiscataway, NJ:: IEEE. https://doi.org/10.1109/ECMR.2015.7324184
    [Google Scholar]
  31. 31.
    Van Trees HL. 2002.. BookTitleOptimum Array Processing. cityNew York:: Wiley-Intersci.
    [Google Scholar]
  32. 32.
    Baker CL Saxe R Tenenbaum JB. 2009. Action understanding as inverse planning. JournalTitleCognition 113332949
    [Google Scholar]
  33. 33.
    Ziebart BD Maas A Bagnell JA Dey AK. 2008. Maximum entropy inverse reinforcement learning. BookTitleAAAI '08: Proceedings of the 23rd National Conference on Artificial Intelligence 3143338 cityPalo Alto, CA: AAAI Press
    [Google Scholar]
  34. 34.
    Bobu A Scobee DRR Fisac JF Sastry SS Dragan AD. 2020. LESS is more: rethinking probabilistic models of human behavior. BookTitleHRI '20: Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction42937 cityNew York: ACM
    [Google Scholar]
  35. 35.
    Zanchettin AM Rocco P. 2017. Probabilistic inference of human arm reaching target for effective human-robot collaboration. BookTitle2017 IEEE/RSJ International Conference on Intelligent Robots and Systems6595600 cityPiscataway, NJ: IEEE
    [Google Scholar]
  36. 36.
    Cramer M Kellens K Demeester E. 2021. Probabilistic decision model for adaptive task planning in human-robot collaborative assembly based on designer and operator intents. JournalTitleIEEE Robot. Autom. Lett. 64732532
    [Google Scholar]
  37. 37.
    Kurniawati H Hsu D Lee WS. 2009. SARSOP: efficient point-based POMDP planning by approximating optimally reachable belief spaces. BookTitleRobotics: Science and Systems IV O Brock, J Trinkle, F Ramos 6572 cityCambridge, MA: MIT Press
    [Google Scholar]
  38. 38.
    Zhao M Simmons R Admoni H. 2022. Coordination with humans via strategy matching. BookTitle2022 IEEE/RSJ International Conference on Intelligent Robots and Systems911623 cityPiscataway, NJ: IEEE
    [Google Scholar]
  39. 39.
    Hadfield-Menell D Dragan A Abbeel P Russell S. 2016. Cooperative inverse reinforcement learning. BookTitleAdvances in Neural Information Processing Systems 29 D Lee, M Sugiyama, U Luxburg, I Guyon, R Garnett 391624 cityRed Hook, NY: Curran
    [Google Scholar]
  40. 40.
    Losey DP Bajcsy A O'Malley MK Dragan AD. 2021. Physical interaction as communication: learning robot objectives online from human corrections. JournalTitleInt. J. Robot. Res. 4112044
    [Google Scholar]
  41. 41.
    Li M Canberk A Losey DP Sadigh D. 2021. Learning human objectives from sequences of physical corrections. BookTitle2021 IEEE International Conference on Robotics and Automation287783 cityPiscataway, NJ: IEEE
    [Google Scholar]
  42. 42.
    Nemlekar H Dhanaraj N Guan A Gupta SK Nikolaidis S. 2023. Transfer learning of human preferences for proactive robot assistance in assembly tasks. BookTitleHRI '23: Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction57583 cityNew York: ACM
    [Google Scholar]
  43. 43.
    Nikolaidis S Ramakrishnan R Gu K Shah J. 2015. Efficient model learning from joint-action demonstrations for human-robot collaborative tasks. BookTitleHRI '15: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction18996 cityNew York: ACM
    [Google Scholar]
  44. 44.
    Tsitos AC Dagioglou M Giannakopoulos T. 2022. Real-time feasibility of a human intention method evaluated through a competitive human-robot reaching game. BookTitleHRI '22: Proceedings of the 2022 ACM/IEEE International Conference on Human-Robot Interaction108084 cityPiscataway, NJ: IEEE
    [Google Scholar]
  45. 45.
    Cao Z Hidalgo G Simon T Wei SE Sheikh Y. 2021. OpenPose: realtime multi-person 2D pose estimation using part affinity fields. JournalTitleIEEE Trans. Pattern Anal. Mach. Intell. 43117286
    [Google Scholar]
  46. 46.
    Sidiropoulos A Karayiannidis Y Doulgeri Z. 2021. Human-robot collaborative object transfer using human motion prediction based on Cartesian pose dynamic movement primitives. BookTitle2021 IEEE International Conference on Robotics and Automation375864 cityPiscataway, NJ: IEEE
    [Google Scholar]
  47. 47.
    Paraschos A Daniel C Peters J Neumann G. 2013. Probabilistic movement primitives. BookTitleNeural Information Processing Systems 25261624 cityRed Hook, NY: Curran
    [Google Scholar]
  48. 48.
    Ly KT Poozhiyil M Pandya H Neumann G Kucukyilmaz A. 2021. Intent-aware predictive haptic guidance and its application to shared control teleoperation. BookTitle2021 30th IEEE International Conference on Robot and Human Interactive Communication56572 cityPiscataway, NJ: IEEE
    [Google Scholar]
  49. 49.
    Hu Z Xu Y Lin W Wang Z Sun Z. 2022. Augmented pointing gesture estimation for human-robot interaction. BookTitle2022 International Conference on Robotics and Automation641622 cityPiscataway, NJ: IEEE
    [Google Scholar]
  50. 50.
    Urkmez M Bozma HI. 2022. Detecting 3D hand pointing direction from RGB-D data in wide-ranging HRI scenarios. BookTitleHRI '22: Proceedings of the 2022 ACM/IEEE International Conference on Human-Robot Interaction44150 cityPiscataway, NJ: IEEE
    [Google Scholar]
  51. 51.
    Carreira J Zisserman A. 2017. Quo vadis, action recognition?. A new model and the kinetics dataset BookTitle2017 IEEE Conference on Computer Vision and Pattern Recognition472433 cityPiscataway, NJ: IEEE
    [Google Scholar]
  52. 52.
    Cui Y Karamcheti S Palleti R Shivakumar N Liang P Sadigh D. 2023. No, to the right: online language corrections for robotic manipulation via shared autonomy. BookTitleHRI '23: Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction93101 cityNew York: ACM
    [Google Scholar]
  53. 53.
    Lee J Moray N. 1992. Trust, control strategies and allocation of function in human-machine systems. JournalTitleErgonomics 3510124370
    [Google Scholar]
  54. 54.
    Xu A Dudek G. 2015. OPTIMo: Online Probabilistic Trust Inference Model for asymmetric human-robot collaborations. BookTitleHRI '15: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction22128 cityNew York: ACM
    [Google Scholar]
  55. 55.
    Zahedi Z Verma M Sreedharan S Kambhampati S. 2023. Trust-aware planning: modeling trust evolution in iterated human-robot interaction. BookTitleHRI '23: Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction28189 cityNew York: ACM
    [Google Scholar]
  56. 56.
    Chen M, Nikolaidis S, Soh H, Hsu D, Srinivasa S. 2020.. Trust-aware decision making for human-robot collaboration. . JournalTitleACM Trans. Human-Robot Interact. 9(2):9
    [Google Scholar]
  57. 57.
    Guo Y Shi C Yang XJ. 2021. Reverse psychology in trust-aware human-robot interaction. JournalTitleIEEE Robot. Autom. Lett. 63485158
    [Google Scholar]
  58. 58.
    Azevedo-Sa H Yang XJ Robert LP Tilbury DM. 2021. A unified bi-directional model for natural and artificial trust in human–robot collaboration. JournalTitleIEEE Robot. Autom. Lett. 63591320
    [Google Scholar]
  59. 59.
    Wang Q Liu D Carmichael MG Aldini S Lin CT. 2022. Computational model of robot trust in human co-worker for physical human-robot collaboration. JournalTitleIEEE Robot. Autom. Lett. 72314653
    [Google Scholar]
  60. 60.
    Carreno-Medrano P Smith SL Kulic D. 2023. Joint estimation of expertise and reward preferences from human demonstrations. JournalTitleIEEE Trans. Robot. 39168198
    [Google Scholar]
  61. 61.
    Liu R, Natarajan M, Gombolay MC. 2021.. Coordinating human-robot teams with dynamic and stochastic task proficiencies. . JournalTitleACM Trans. Human-Robot Interact. 11(1):5
    [Google Scholar]
  62. 62.
    Kolb J Kishore M Shaw K Ravichandar H Chernova S. 2021. Predicting individual human performance in human-robot teaming. BookTitle2021 30th IEEE International Conference on Robot and Human Interactive Communication4550 cityPiscataway, NJ: IEEE
    [Google Scholar]
  63. 63.
    Nanavati A Mavrogiannis C Weatherwax K Takayama L Cakmak M Srinivasa S. 2021. Modeling human helpfulness with individual and contextual factors for robot planning. BookTitleRobotics: Science and Systems XVII D Shell, M Toussaint, MA Hsieh pap. 16 cityN.p.: Robot. Sci. Syst. Found.
    [Google Scholar]
  64. 64.
    Messeri C Bicchi A Zanchettin AM Rocco P. 2022. A dynamic task allocation strategy to mitigate the human physical fatigue in collaborative robotics. JournalTitleIEEE Robot. Autom. Lett. 72217885
    [Google Scholar]
  65. 65.
    Lagomarsino M Lorenzini M Momi ED Ajoudani A. 2022. Robot trajectory adaptation to optimise the trade-off between human cognitive ergonomics and workplace productivity in collaborative tasks. BookTitle2022 IEEE/RSJ International Conference on Intelligent Robots and Systems66369 cityPiscataway, NJ: IEEE
    [Google Scholar]
  66. 66.
    Kalatzis A Hopko S Mehta RK Stanley L Wittie MP. 2022. Sex parity in cognitive fatigue model development for effective human-robot collaboration. BookTitle2022 IEEE/RSJ International Conference on Intelligent Robots and Systems1095158 cityPiscataway, NJ: IEEE
    [Google Scholar]
  67. 67.
    Mohamed Y Ballardini G Parreira MT Lemaignan S Leite I. 2022. Automatic frustration detection using thermal imaging. BookTitleHRI '22: Proceedings of the 2022 ACM/IEEE International Conference on Human-Robot Interaction45159 cityPiscataway, NJ: IEEE
    [Google Scholar]
  68. 68.
    Nguyen A Xie B. 2021. Human arm motion prediction in reaching movements. BookTitle2021 30th IEEE International Conference on Robot and Human Interactive Communication111723 cityPiscataway, NJ: IEEE
    [Google Scholar]
  69. 69.
    Erickson Z Clever HM Gangaram V Xing E Turk G et al. 2023. Characterizing multidimensional capacitive servoing for physical human–robot interaction. JournalTitleIEEE Trans. Robot. 39135772
    [Google Scholar]
  70. 70.
    Ondras J Anwar A Wu T Bu F Jung M et al. 2022. Human-robot commensality: bite timing prediction for robot-assisted feeding in groups. BookTitleProceedings of the 6th Conference on Robot Learning K Liu, D Kulic, J Ichnowski 92133 Proc. Mach. Learn. Res. 205. cityN.p.: PMLR
    [Google Scholar]
  71. 71.
    Wan W Yang L Liu L Zhang Z Jia R et al. 2022. Learn to predict how humans manipulate large-sized objects from interactive motions. JournalTitleIEEE Robot. Autom. Lett. 7247029
    [Google Scholar]
  72. 72.
    Alahi A Goel K Ramanathan V Robicquet A Fei-Fei L Savarese S. 2016. Social LSTM: human trajectory prediction in crowded spaces. BookTitle2016 IEEE Conference on Computer Vision and Pattern Recognition96171 cityPiscataway, NJ: IEEE
    [Google Scholar]
  73. 73.
    Chang P Luo R Dorostian M Padr T. 2021. A shared control method for collaborative human-robot plug task. JournalTitleIEEE Robot. Autom. Lett. 64742936
    [Google Scholar]
  74. 74.
    Yasar MS Iqbal T. 2021. A scalable approach to predict multi-agent motion for human-robot collaboration. JournalTitleIEEE Robot. Autom. Lett. 62168693
    [Google Scholar]
  75. 75.
    Li S Figueroa N Shah AJ Shah JA. 2021. Provably safe and efficient motion planning with uncertain human dynamics. BookTitleRobotics: Science and Systems XVII D Shell, M Toussaint, MA Hsieh pap. 50. cityN.p.: Robot. Sci. Syst. Found.
    [Google Scholar]
  76. 76.
    Jin Z Liu A Zhang WA Yu L Su CY. 2023. A learning based hierarchical control framework for human–robot collaboration. JournalTitleIEEE Trans. Autom. Sci. Eng. 20150617
    [Google Scholar]
  77. 77.
    Vianello L Mouret JB Dalin E Aubry A Ivaldi S. 2021. Human posture prediction during physical human-robot interaction. JournalTitleIEEE Robot. Autom. Lett. 63604653
    [Google Scholar]
  78. 78.
    Tejwani R Kuo YL Shu T Stankovits B Gutfreund D et al. 2022. Incorporating rich social interactions into MDPs. BookTitle2022 International Conference on Robotics and Automation7395401 cityPiscataway, NJ: IEEE
    [Google Scholar]
  79. 79.
    Gershman SJ Daw ND. 2017. Reinforcement learning and episodic memory in humans and animals: an integrative framework. JournalTitleAnnu. Rev. Psychol. 6810128
    [Google Scholar]
  80. 80.
    Nikolaidis S Kuznetsov A Hsu D Srinivasa S. 2016. Formalizing human-robot mutual adaptation: a bounded memory model. BookTitleHRI '16: The Eleventh ACM/IEEE International Conference on Human Robot Interaction7582 cityPiscataway, NJ: IEEE
    [Google Scholar]
  81. 81.
    Parekh S Habibian S Losey DP. 2022. RILI: robustly influencing latent intent. BookTitle2022 IEEE/RSJ International Conference on Intelligent Robots and Systems213542 cityPiscataway, NJ: IEEE
    [Google Scholar]
  82. 82.
    Tian R Tomizuka M Dragan AD Bajcsy A. 2023. Towards modeling and influencing the dynamics of human learning. BookTitleHRI '23: Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction35058 cityNew York: ACM
    [Google Scholar]
  83. 83.
    Cohen PR Levesque HJ. 1990. Intention is choice with commitment. JournalTitleArtif. Intell. 422–321361
    [Google Scholar]
  84. 84.
    Rao AS Georgeff ML. 1995. BDI agents: from theory to practice. BookTitleProceedings of the First International Conference on Multi-Agent Systems (ICMAS-95)31219 cityPalo Alto, CA: AAAI Press
    [Google Scholar]
  85. 85.
    Bratman M. 1987.. BookTitleIntention, Plans, and Practical Reason. cityCambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  86. 86.
    Georgeff M Pell B Pollack M Tambe M Wooldridge M. 1999. The belief-desire-intention model of agency. BookTitleIntelligent Agents V: Agents Theories, Architectures, and Languages JP Müller, AS Rao, MP Singh 110 cityBerlin: Springer
    [Google Scholar]
  87. 87.
    Patel M Chernova S. 2023. Proactive robot assistance via spatio-temporal object modeling. BookTitleProceedings of the 6th Conference on Robot Learning K Liu, D Kulic, J Ichnowski 88191 Proc. Mach. Learn. Res. 205 cityN.p.: PMLR
    [Google Scholar]
/content/journals/10.1146/annurev-control-071223-105834
Loading
/content/journals/10.1146/annurev-control-071223-105834
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error