1932

Abstract

The RecQ helicases are conserved from bacteria to humans and play a critical role in genome stability. In humans, loss of RecQ gene function is associated with cancer predisposition and/or premature aging. Recent experiments have shown that the RecQ helicases function during distinct steps during DNA repair; DNA end resection, displacement-loop (D-loop) processing, branch migration, and resolution of double Holliday junctions (dHJs). RecQ function in these different processing steps has important implications for its role in repair of double-strand breaks (DSBs) that occur during DNA replication and meiosis, as well as at specific genomic loci such as telomeres.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-102209-163602
2010-12-01
2024-07-02
Loading full text...

Full text loading...

/deliver/fulltext/genet/44/1/annurev-genet-102209-163602.html?itemId=/content/journals/10.1146/annurev-genet-102209-163602&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmad F, Stewart E. 1.  2005. The N-terminal region of the Schizosaccharomyces pombe recQ helicase, Rqh1p, physically interacts with topoisomerase III and is required for Rqh1p function. Mol. Genet. Genomics 273:102–14 [Google Scholar]
  2. Argueso J, Kijas A, Sarin S, Heck J, Waase M, Alani E. 2.  2003. Systematic mutagenesis of the Saccharomyces cerevisiae MLH1 gene reveals distinct roles for Mlh1p in meiotic crossing over and in vegetative and meiotic mismatch repair. Mol. Cell. Biol. 23:873–86 [Google Scholar]
  3. Bachrati C, Borts R, Hickson I. 3.  2006. Mobile D-loops are a preferred substrate for the Bloom's syndrome helicase. Nucleic Acids Res. 34:2269–79 [Google Scholar]
  4. Bachrati C, Hickson I. 4.  2003. RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem. J. 374:577–606 [Google Scholar]
  5. Bae SH, Bae KH, Kim JA, Seo YS. 5.  2001. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412:456–61 [Google Scholar]
  6. Baumann C, Korner R, Hofmann K, Nigg EA. 6.  2007. PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128:101–14 [Google Scholar]
  7. Bennett RJ, Keck J, Wang J. 7.  1999. Binding specificity determines polarity of DNA unwinding by the Sgs1 protein of S. cerevisiae. J. Mol. Biol. 289:235–48 [Google Scholar]
  8. Bennett RJ, Noirot-Gros M, Wang J. 8.  2000. Interaction between yeast Sgs1 helicase and DNA topoisomerase III. J. Biol. Chem. 275:26898–905 [Google Scholar]
  9. Bennett RJ, Sharp JA, Wang JC. 9.  1998. Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J. Biol. Chem. 273:9644–50 [Google Scholar]
  10. Bernstein KA, Shor E, Sunjevaric I, Fumasoni M, Burgess RC. 10.  et al. 2009. Sgs1 function in the repair of DNA replication intermediates is separable from its role in homologous recombinational repair. EMBO J. 28:915–25 [Google Scholar]
  11. Bhattacharyya S, Sandy A, Groden J. 11.  2010. Unwinding protein complexes in ALTernative telomere maintenance. J. Cell Biochem. 109:7–15 [Google Scholar]
  12. Bjergbaek L, Cobb JA, Tsai-Pflugfelder M, Gasser SM. 12.  2005. Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J. 24:405–17 [Google Scholar]
  13. Blander G, Kipnis J, Leal JFM, Yu CE, Schellenberg GD, Oren M. 13.  1999. Physical and functional interaction between p53 and the Werner's syndrome protein. J. Biol. Chem. 274:29463–69 [Google Scholar]
  14. Bloom D.14.  1954. Congenital telangiectatic erythema resembling lupus erythematosus in dwarfs; probably a syndrome entity. AMA Am. J. Dis. Child. 88:754–58 [Google Scholar]
  15. Bonetti D, Martina M, Clerici M, Lucchini G, Longhese MP. 15.  2009. Multiple pathways regulate 3′ overhang generation at S. cerevisiae telomeres. Mol. Cell 35:70–81 [Google Scholar]
  16. Branzei D, Sollier J, Liberi G, Zhao X, Maeda D. 16.  et al. 2006. Ubc9- and Mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127:509–22 [Google Scholar]
  17. Branzei D, Vanoli F, Foiani M. 17.  2008. SUMOylation regulates Rad18-mediated template switch. Nature 456:915–20 [Google Scholar]
  18. Brosh RM Jr, Orren DK, Nehlin JO, Ravn PH, Kenny MK. 18.  et al. 1999. Functional and physical interaction between WRN helicase and human replication protein A. J. Biol. Chem. 274:18341–50 [Google Scholar]
  19. Brosh RM, Li JL, Kenny MK, Karow JK, Cooper MP. 19.  et al. 2000. Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity. J. Biol. Chem. 275:23500–8 [Google Scholar]
  20. Bugreev D, Brosh RJ, Mazin A. 20.  2008. RECQ1 possesses DNA branch migration activity. J. Biol. Chem. 283:20231–42 [Google Scholar]
  21. Bugreev D, Yu X, Egelman E, Mazin A. 21.  2007. Novel pro- and anti-recombination activities of the Bloom's syndrome helicase. Genes Dev. 21:3085–94 [Google Scholar]
  22. Bussen W, Raynard S, Busygina V, Singh A, Sung P. 22.  2007. Holliday junction processing activity of the BLM-Topo IIIalpha-BLAP75 complex. J. Biol. Chem. 282:31484–92 [Google Scholar]
  23. Caspari T, Murray JM, Carr AM. 23.  2002. Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III. Genes Dev. 16:1195–208 [Google Scholar]
  24. Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S. 24.  et al. 2010. DNA end resection by the Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature In press [Google Scholar]
  25. Cejka P, Kowalczykowski SC. 25.  2010. The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds Holliday junctions. J. Biol. Chem. 285:8290–301 [Google Scholar]
  26. Cejka P, Plank JL, Bachrati CZ, Hickson ID, Kowalczykowski SC. 26.  2010. Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3. Nat. Struct. Mol. Biol. In press [Google Scholar]
  27. Chan KL, North PS, Hickson ID. 27.  2007. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J. 26:3397–409 [Google Scholar]
  28. Chan KL, Palmai-Pallag T, Ying S, Hickson ID. 28.  2009. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat. Cell Biol. 11:753–60 [Google Scholar]
  29. Chang M, Bellaoui M, Zhang C, Desai R, Morozov P. 29.  et al. 2005. RMI1/NCE4, a suppressor of genome instability, encodes a member of the RecQ helicase/Topo III complex. EMBO J. 24:2024–33 [Google Scholar]
  30. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P. 30.  et al. 2004. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat. Genet. 36:877–82 [Google Scholar]
  31. Chen C, Brill S. 31.  2007. Binding and activation of DNA topoisomerase III by the Rmi1 subunit. J. Biol. Chem. 282:28971–79 [Google Scholar]
  32. Chen CF, Brill SJ. 32.  2010. An essential DNA strand-exchange activity is conserved in the divergent N-termini of BLM orthologs. EMBO J. 29:1713–25 [Google Scholar]
  33. Chester N, Kuo F, Kozak C, O'Hara CD, Leder P. 33.  1998. Stage-specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom's syndrome gene. Genes Dev. 12:3382–93 [Google Scholar]
  34. Chiolo I, Carotenuto W, Maffioletti G, Petrini J, Foiani M, Liberi G. 34.  2005. Srs2 and Sgs1 DNA helicases associate with Mre11 in different subcomplexes following checkpoint activation and CDK1-mediated Srs2 phosphorylation. Mol. Cell. Biol. 25:5738–51 [Google Scholar]
  35. Chung WH, Zhu Z, Papusha A, Malkova A, Ira G. 35.  2010. Defective resection at DNA doubled-strand breaks leads to de novo telomere formation and enhances gene targeting. PLoS Genet. 6:5e1000948 [Google Scholar]
  36. Cobb JA, Bjergbaek L, Shimada K, Frei C, Gasser SM. 36.  2003. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J. 22:4325–36 [Google Scholar]
  37. Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA. 37.  et al. 2000. Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep. 1:80–84 [Google Scholar]
  38. Crabbe L, Verdun RE, Haggblom CI, Karlseder J. 38.  2004. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306:1951–53 [Google Scholar]
  39. Cromie G, Hyppa R, Smith G. 39.  2008. The fission yeast BLM homolog Rqh1 promotes meiotic recombination. Genetics 179:1157–67 [Google Scholar]
  40. Davies SL, North PS, Dart A, Lakin ND, Hickson ID. 40.  2004. Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol. Cell. Biol. 24:1279–91 [Google Scholar]
  41. Dherin C, Gueneau E, Francin M, Nunez M, Miron S. 41.  et al. 2008. Characterization of a highly conserved binding site of Mlh1 required for exonuclease I-dependent mismatch repair. Mol. Cell. Biol. 29:907–18 [Google Scholar]
  42. Doe C, Dixon J, Osman F, Whitby M. 42.  2000. Partial suppression of the fission yeast rqh1- phenotype by expression of a bacterial Holliday junction resolvase. EMBO J. 19:2751–62 [Google Scholar]
  43. Dutertre S, Ababou M, Onclercq R, Delic J, Chatton B. 43.  et al. 2000. Cell cycle regulation of the endogenous wild type Bloom's syndrome DNA helicase. Oncogene 19:2731–38 [Google Scholar]
  44. Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ. 44.  et al. 1995. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83:655–66 [Google Scholar]
  45. Frei C, Gasser SM. 45.  2000. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 14:81–96 [Google Scholar]
  46. Fricke W, Kaliraman V, Brill S. 46.  2001. Mapping the DNA topoisomerase III binding domain of the Sgs1 DNA helicase. J. Biol. Chem. 276:8848–55 [Google Scholar]
/content/journals/10.1146/annurev-genet-102209-163602
Loading
/content/journals/10.1146/annurev-genet-102209-163602
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error