1932

Abstract

Gastrointestinal nematode (GIN) infection has applied significant evolutionary pressure to the mammalian immune system and remains a global economic and human health burden. Upon infection, type 2 immune sentinels activate a common antihelminth response that mobilizes and remodels the intestinal tissue for effector function; however, there is growing appreciation of the impact GIN infection also has on the distal tissue immune state. Indeed, this effect is observed even in tissues through which GINs never transit. This review highlights how GIN infection modulates systemic immunity through () induction of host resistance and tolerance responses, () secretion of immunomodulatory products, and () interaction with the intestinal microbiome. It also discusses the direct consequences that changes to distal tissue immunity can have for concurrent and subsequent infection, chronic noncommunicable diseases, and vaccination efficacy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-090222-101331
2024-06-28
2024-06-29
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-090222-101331.html?itemId=/content/journals/10.1146/annurev-immunol-090222-101331&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. 2014.. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. . Parasites Vectors 7::37
    [Crossref] [Google Scholar]
  2. 2.
    van der Zande HJP, Zawistowska-Deniziak A, Guigas B. 2019.. Immune regulation of metabolic homeostasis by helminths and their molecules. . Trends Parasitol. 35:(10):795808
    [Crossref] [Google Scholar]
  3. 3.
    Yasuda K, Adachi T, Koida A, Nakanishi K. 2018.. Nematode-infected mice acquire resistance to subsequent infection with unrelated nematode by inducing highly responsive group 2 innate lymphoid cells in the lung. . Front. Immunol. 9::2132
    [Crossref] [Google Scholar]
  4. 4.
    Palm NW, Rosenstein RK, Medzhitov R. 2012.. Allergic host defences. . Nature 484:(7395):46572
    [Crossref] [Google Scholar]
  5. 5.
    Sorobetea D, Svensson-Frej M, Grencis R. 2018.. Immunity to gastrointestinal nematode infections. . Mucosal Immunol. 11:(2):30415
    [Crossref] [Google Scholar]
  6. 6.
    von Moltke J, Pepper M. 2018.. Sentinels of the type 2 immune response. . Trends Immunol. 39:(2):99111
    [Crossref] [Google Scholar]
  7. 7.
    Dahlgren MW, Jones SW, Cautivo KM, Dubinin A, Ortiz-Carpena JF, et al. 2019.. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. . Immunity 50:(3):70722.e6
    [Crossref] [Google Scholar]
  8. 8.
    Hardman CS, Panova V, McKenzie ANJ. 2013.. IL-33 citrine reporter mice reveal the temporal and spatial expression of IL-33 during allergic lung inflammation. . Eur. J. Immunol. 43:(2):48898
    [Crossref] [Google Scholar]
  9. 9.
    Cayrol C, Girard J-P. 2022.. Interleukin-33 (IL-33): a critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. . Cytokine 156::155891
    [Crossref] [Google Scholar]
  10. 10.
    Chen W, Chen S, Yan C, Zhang Y, Zhang R, et al. 2022.. Allergen protease–activated stress granule assembly and gasdermin D fragmentation control interleukin-33 secretion. . Nat. Immunol. 23:(7):102130
    [Crossref] [Google Scholar]
  11. 11.
    Zhao M, Ren K, Xiong X, Xin Y, Zou Y, et al. 2022.. Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and gasdermin C. . Immunity 55:(7):1327
    [Crossref] [Google Scholar]
  12. 12.
    Brusilovsky M, Rochman M, Rochman Y, Caldwell JM, Mack LE, et al. 2021.. Environmental allergens trigger type 2 inflammation through ripoptosome activation. . Nat. Immunol. 22:(10):131626
    [Crossref] [Google Scholar]
  13. 13.
    Hung L-Y, Tanaka Y, Herbine K, Pastore C, Singh B, et al. 2020.. Cellular context of IL-33 expression dictates impact on anti-helminth immunity. . Sci. Immunol. 5:(53):eabc6259
    [Crossref] [Google Scholar]
  14. 14.
    von Moltke J, O'Leary CE, Barrett NA, Kanaoka Y, Austen KF, Locksley RM. 2017.. Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. . J. Exp. Med. 214:(1):2737
    [Crossref] [Google Scholar]
  15. 15.
    Lund SJ, Portillo A, Cavagnero K, Baum RE, Naji LH, et al. 2017.. Leukotriene C4 potentiates IL-33-induced group 2 innate lymphoid cell activation and lung inflammation. . J. Immunol. 199:(3):1096104
    [Crossref] [Google Scholar]
  16. 16.
    Ricardo-Gonzalez RR, Van Dyken SJ, Schneider C, Lee J, Nussbaum JC, et al. 2018.. Tissue signals imprint ILC2 identity with anticipatory function. . Nat. Immunol. 19:(10):109399
    [Crossref] [Google Scholar]
  17. 17.
    Cardoso V, Chesné J, Ribeiro H, García-Cassani B, Carvalho T, et al. 2017.. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. . Nature 549:(7671):27781
    [Crossref] [Google Scholar]
  18. 18.
    Klose CSN, Mahlakõiv T, Moeller JB, Rankin LC, Flamar A-L, et al. 2017.. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. . Nature 549:(7671):28286
    [Crossref] [Google Scholar]
  19. 19.
    Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour R-EE, Nyman J, et al. 2017.. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. . Nature 549:(7672):35156
    [Crossref] [Google Scholar]
  20. 20.
    McGinty JW, Ting H-A, Billipp TE, Nadjsombati MS, Khan DM, et al. 2020.. Tuft-cell-derived leukotrienes drive rapid anti-helminth immunity in the small intestine but are dispensable for anti-protist immunity. . Immunity 52:(3):52841.e7
    [Crossref] [Google Scholar]
  21. 21.
    von Moltke J, Ji M, Liang H-E, Locksley RM. 2016.. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. . Nature 529:(7585):22125
    [Crossref] [Google Scholar]
  22. 22.
    Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I, et al. 2016.. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. . Nature 529:(7585):22630
    [Crossref] [Google Scholar]
  23. 23.
    Ting H-A, von Moltke J. 2019.. The immune function of tuft cells at gut mucosal surfaces and beyond. . J. Immunol. 202:(5):132129
    [Crossref] [Google Scholar]
  24. 24.
    Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, et al. 2016.. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. . Science 351:(6279):132933
    [Crossref] [Google Scholar]
  25. 25.
    Luo X-C, Chen Z-H, Xue J-B, Zhao D-X, Lu C, et al. 2019.. Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. . PNAS 116:(12):556469
    [Crossref] [Google Scholar]
  26. 26.
    Nadjsombati MS, McGinty JW, Lyons-Cohen MR, Jaffe JB, DiPeso L, et al. 2018.. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. . Immunity 49:(1):3341.e7
    [Crossref] [Google Scholar]
  27. 27.
    Lei W, Ren W, Ohmoto M, Urban JF, Matsumoto I, et al. 2018.. Activation of intestinal tuft cell–expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. . PNAS 115:(21):555257
    [Crossref] [Google Scholar]
  28. 28.
    El-Naccache DW, Chen F, Palma MJ, Lemenze A, Fischer MA, et al. 2022.. Adenosine metabolized from extracellular ATP promotes type 2 immunity through triggering A2BAR signaling in intestinal epithelial cells. . Cell Rep. 40:(5):111150
    [Crossref] [Google Scholar]
  29. 29.
    Patel N, Wu W, Mishra PK, Chen F, Millman A, et al. 2014.. A2B adenosine receptor induces protective antihelminth type 2 immune responses. . Cell Host Microbe 15:(3):33950
    [Crossref] [Google Scholar]
  30. 30.
    Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, et al. 2018.. Innate lymphoid cells: 10 years on. . Cell 174:(5):105466
    [Crossref] [Google Scholar]
  31. 31.
    Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, et al. 2013.. Type 2 innate lymphoid cells control eosinophil homeostasis. . Nature 502:(7470):24548
    [Crossref] [Google Scholar]
  32. 32.
    Molofsky AB, Nussbaum JC, Liang H-E, Van Dyken SJ, Cheng LE, et al. 2013.. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. . J. Exp. Med. 210:(3):53549
    [Crossref] [Google Scholar]
  33. 33.
    Gigon L, Fettrelet T, Yousefi S, Simon D, Simon H-U. 2023.. Eosinophils from A to Z. . Allergy 78:(7):181046
    [Crossref] [Google Scholar]
  34. 34.
    Van Dyken SJ, Locksley RM. 2013.. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. . Annu. Rev. Immunol. 31::31743
    [Crossref] [Google Scholar]
  35. 35.
    Serhan N, Basso L, Sibilano R, Petitfils C, Meixiong J, et al. 2019.. House dust mites activate nociceptor–mast cell clusters to drive type 2 skin inflammation. . Nat. Immunol. 20:(11):143543
    [Crossref] [Google Scholar]
  36. 36.
    Saluja R, Khan M, Church MK, Maurer M. 2015.. The role of IL-33 and mast cells in allergy and inflammation. . Clin. Transl. Allergy 5::33
    [Crossref] [Google Scholar]
  37. 37.
    Webb LM, Tait Wojno ED. 2017.. The role of rare innate immune cells in type 2 immune activation against parasitic helminths. . Parasitology 144:(10):1288301
    [Crossref] [Google Scholar]
  38. 38.
    Eberle JU, Voehringer D. 2016.. Role of basophils in protective immunity to parasitic infections. . Semin. Immunopathol. 38:(5):60513
    [Crossref] [Google Scholar]
  39. 39.
    Webb LM, Oyesola OO, Früh SP, Kamynina E, Still KM, et al. 2019.. The Notch signaling pathway promotes basophil responses during helminth-induced type 2 inflammation. . J. Exp. Med. 216:(6):126879
    [Crossref] [Google Scholar]
  40. 40.
    Mayer JU, Demiri M, Agace WW, MacDonald AS, Svensson-Frej M, Milling SW. 2017.. Different populations of CD11b+ dendritic cells drive Th2 responses in the small intestine and colon. . Nat. Commun. 8::15820
    [Crossref] [Google Scholar]
  41. 41.
    Gao Y, Nish SA, Jiang R, Hou L, Licona-Limón P, et al. 2013.. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. . Immunity 39:(4):72232
    [Crossref] [Google Scholar]
  42. 42.
    Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. 2013.. CD301b+ dermal dendritic cells drive T helper 2 cell–mediated immunity. . Immunity 39:(4):73343
    [Crossref] [Google Scholar]
  43. 43.
    McDaniel MM, Lara HI, von Moltke J. 2023.. Initiation of type 2 immunity at barrier surfaces. . Mucosal Immunol. 16:(1):8697
    [Crossref] [Google Scholar]
  44. 44.
    Liu Z, Liu Q, Hamed H, Anthony RM, Foster A, et al. 2005.. IL-2 and autocrine IL-4 drive the in vivo development of antigen-specific Th2 T cells elicited by nematode parasites. . J. Immunol. 174:(4):224249
    [Crossref] [Google Scholar]
  45. 45.
    Chu DK, Mohammed-Ali Z, Jiménez-Saiz R, Walker TD, Goncharova S, et al. 2014.. T helper cell IL-4 drives intestinal Th2 priming to oral peanut antigen, under the control of OX40L and independent of innate-like lymphocytes. . Mucosal Immunol. 7:(6):1395404
    [Crossref] [Google Scholar]
  46. 46.
    Perner C, Flayer CH, Zhu X, Aderhold PA, Dewan ZNA, et al. 2020.. Substance P release by sensory neurons triggers dendritic cell migration and initiates the type-2 immune response to allergens. . Immunity 53:(5):106377.e7
    [Crossref] [Google Scholar]
  47. 47.
    Sokol CL, Camire RB, Jones MC, Luster AD. 2018.. The chemokine receptor CCR8 promotes the migration of dendritic cells into the lymph node parenchyma to initiate the allergic immune response. . Immunity 49:(3):44963.e6
    [Crossref] [Google Scholar]
  48. 48.
    Halim TYF, Steer CA, Mathä L, Gold MJ, Martinez-Gonzalez I, et al. 2014.. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell–mediated allergic lung inflammation. . Immunity 40:(3):42535
    [Crossref] [Google Scholar]
  49. 49.
    Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH, et al. 2014.. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. . Immunity 41:(2):28395
    [Crossref] [Google Scholar]
  50. 50.
    Gurram RK, Wei D, Yu Q, Butcher MJ, Chen X, et al. 2023.. Crosstalk between ILC2s and Th2 cells varies among mouse models. . Cell Rep. 42:(2):112073
    [Crossref] [Google Scholar]
  51. 51.
    Kasal DN, Liang Z, Hollinger MK, O'Leary CY, Lisicka W, et al. 2021.. A Gata3 enhancer necessary for ILC2 development and function. . PNAS 118:(32):e2106311118
    [Crossref] [Google Scholar]
  52. 52.
    Tang X-Z, Kreuk LSM, Cho C, Metzger RJ, Allen CDC. 2022.. Bronchus-associated macrophages efficiently capture and present soluble inhaled antigens and are capable of local Th2 cell activation. . eLife 11::e63296
    [Crossref] [Google Scholar]
  53. 53.
    Van Dyken SJ, Nussbaum JC, Lee J, Molofsky AB, Liang H-E, et al. 2016.. A tissue checkpoint regulates type 2 immunity. . Nat. Immunol. 17:(12):138187
    [Crossref] [Google Scholar]
  54. 54.
    Minutti CM, Drube S, Blair N, Schwartz C, McCrae JC, et al. 2017.. Epidermal growth factor receptor expression licenses type-2 helper T cells to function in a T cell receptor–independent fashion. . Immunity 47:(4):71022.e6
    [Crossref] [Google Scholar]
  55. 55.
    Gowthaman U, Chen JS, Zhang B, Flynn WF, Lu Y, et al. 2019.. Identification of a T follicular helper cell subset that drives anaphylactic IgE. . Science 365:(6456):eaaw6433
    [Crossref] [Google Scholar]
  56. 56.
    Patnode ML, Bando JK, Krummel MF, Locksley RM, Rosen SD. 2014.. Leukotriene B4 amplifies eosinophil accumulation in response to nematodes. . J. Exp. Med. 211:(7):128188
    [Crossref] [Google Scholar]
  57. 57.
    Huang L, Appleton JA. 2016.. Eosinophils in helminth infection: defenders and dupes. . Trends Parasitol. 32:(10):798807
    [Crossref] [Google Scholar]
  58. 58.
    Chen F, El-Naccache DW, Ponessa JJ, Lemenze A, Espinosa V, et al. 2022.. Helminth resistance is mediated by differential activation of recruited monocyte-derived alveolar macrophages and arginine depletion. . Cell Rep. 38:(2):110215
    [Crossref] [Google Scholar]
  59. 59.
    Monticelli LA, Buck MD, Flamar A-L, Saenz SA, Tait Wojno ED, et al. 2016.. Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. . Nat. Immunol. 17:(6):65665
    [Crossref] [Google Scholar]
  60. 60.
    Harris N, Gause WC. 2011.. To B or not to B: B cells and the Th2-type immune response to helminths. . Trends Immunol. 32:(2):8088
    [Crossref] [Google Scholar]
  61. 61.
    Hu Z, Zhang C, Sifuentes-Dominguez L, Zarek CM, Propheter DC, et al. 2021.. Small proline-rich protein 2A is a gut bactericidal protein deployed during helminth infection. . Science 374:(6568):eabe6723
    [Crossref] [Google Scholar]
  62. 62.
    Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, et al. 2002.. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. . Nat. Med. 8:(8):88589
    [Crossref] [Google Scholar]
  63. 63.
    Cliffe LJ, Humphreys NE, Lane TE, Potten CS, Booth C, Grencis RK. 2005.. Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. . Science 308:(5727):146365
    [Crossref] [Google Scholar]
  64. 64.
    Herbert DR, Yang J-Q, Hogan SP, Groschwitz K, Khodoun M, et al. 2009.. Intestinal epithelial cell secretion of RELM-β protects against gastrointestinal worm infection. . J. Exp. Med. 206:(13):294757
    [Crossref] [Google Scholar]
  65. 65.
    Bao K, Reinhardt RL. 2015.. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. . Cytokine 75:(1):2537
    [Crossref] [Google Scholar]
  66. 66.
    Akiho H, Blennerhassett P, Deng Y, Collins SM. 2002.. Role of IL-4, IL-13, and STAT6 in inflammation-induced hypercontractility of murine smooth muscle cells. . Am. J. Physiol. Gastrointest. Liver Physiol. 282:(2):G22632
    [Crossref] [Google Scholar]
  67. 67.
    Zhao A, McDermott J, Urban JF, Gause W, Madden KB, et al. 2003.. Dependence of IL-4, IL-13, and nematode-induced alterations in murine small intestinal smooth muscle contractility on Stat6 and enteric nerves. . J. Immunol. 171:(2):94854
    [Crossref] [Google Scholar]
  68. 68.
    Xue J, Askwith C, Javed NH, Cooke HJ. 2007.. Autonomic nervous system and secretion across the intestinal mucosal surface. . Auton. Neurosci. 133:(1):5563
    [Crossref] [Google Scholar]
  69. 69.
    Specian RD, Neutra MR. 1980.. Mechanism of rapid mucus secretion in goblet cells stimulated by acetylcholine. . J. Cell Biol. 85:(3):62640
    [Crossref] [Google Scholar]
  70. 70.
    McLean LP, Smith A, Cheung L, Urban JF, Sun R, et al. 2016.. Type 3 muscarinic receptors contribute to intestinal mucosal homeostasis and clearance of Nippostrongylus brasiliensis through induction of TH2 cytokines. . Am. J. Physiol. Gastrointest. Liver Physiol. 311:(1):G13041
    [Crossref] [Google Scholar]
  71. 71.
    Madden KB, Yeung KA, Zhao A, Gause WC, Finkelman FD, et al. 2004.. Enteric nematodes induce stereotypic STAT6-dependent alterations in intestinal epithelial cell function. . J. Immunol. 172:(9):561621
    [Crossref] [Google Scholar]
  72. 72.
    Mukai K, Karasuyama H, Kabashima K, Kubo M, Galli SJ. 2017.. Differences in the importance of mast cells, basophils, IgE, and IgG versus that of CD4+ T cells and ILC2 cells in primary and secondary immunity to Strongyloides venezuelensis. . Infect. Immun. 85:(5):e00053
    [Crossref] [Google Scholar]
  73. 73.
    Gieseck RL, Wilson MS, Wynn TA. 2018.. Type 2 immunity in tissue repair and fibrosis. . Nat. Rev. Immunol. 18::6276
    [Crossref] [Google Scholar]
  74. 74.
    Coden ME, Berdnikovs S. 2020.. Eosinophils in wound healing and epithelial remodeling: Is coagulation a missing link?. J. Leukoc. Biol. 108:(1):93103
    [Crossref] [Google Scholar]
  75. 75.
    Monticelli LA, Osborne LC, Noti M, Tran SV, Zaiss DMW, Artis D. 2015.. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. . PNAS 112:(34):1076267
    [Crossref] [Google Scholar]
  76. 76.
    White MPJ, McManus CM, Maizels RM. 2020.. Regulatory T-cells in helminth infection: induction, function and therapeutic potential. . Immunology 160:(3):24860
    [Crossref] [Google Scholar]
  77. 77.
    Mohrs K, Harris DP, Lund FE, Mohrs M. 2005.. Systemic dissemination and persistence of Th2 and type 2 cells in response to infection with a strictly enteric nematode parasite. . J. Immunol. 175:(8):530613
    [Crossref] [Google Scholar]
  78. 78.
    Liu Q, Sundar K, Mishra PK, Mousavi G, Liu Z, et al. 2009.. Helminth infection can reduce insulitis and type 1 diabetes through CD25- and IL-10-independent mechanisms. . Infect. Immun. 77:(12):534758
    [Crossref] [Google Scholar]
  79. 79.
    Mishra PK, Patel N, Wu W, Bleich D, Gause WC. 2013.. Prevention of type 1 diabetes through infection with an intestinal nematode parasite requires IL-10 in the absence of a Th2-type response. . Mucosal Immunol. 6:(2):297308
    [Crossref] [Google Scholar]
  80. 80.
    Yordanova IA, Jürchott K, Steinfelder S, Vogt K, Krüger U, et al. 2022.. The host peritoneal cavity harbors prominent memory Th2 and early recall responses to an intestinal nematode. . Front. Immunol. 13::842870
    [Crossref] [Google Scholar]
  81. 81.
    Lakshmi PN, Johri GN. 1984.. Nematospiroides dubius: adoptive transfer of immunity through peritoneal exudate cells and extent of immunosuppression in recipient Swiss albino mice. . J. Hyg. Epidemiol. Microbiol. Immunol. 28:(4):48591
    [Google Scholar]
  82. 82.
    Steinfelder S, Rausch S, Michael D, Kühl AA, Hartmann S. 2017.. Intestinal helminth infection induces highly functional resident memory CD4+ T cells in mice. . Eur. J. Immunol. 47:(2):35363
    [Crossref] [Google Scholar]
  83. 83.
    Guo L, Huang Y, Chen X, Hu-Li J, Urban JF, Paul WE. 2015.. Innate immunological function of TH2 cells in vivo. . Nat. Immunol. 16:(10):105159
    [Crossref] [Google Scholar]
  84. 84.
    Ahrends T, Aydin B, Matheis F, Classon CH, Marchildon F, et al. 2021.. Enteric pathogens induce tissue tolerance and prevent neuronal loss from subsequent infections. . Cell 184:(23):571527.e12
    [Crossref] [Google Scholar]
  85. 85.
    Classon CH, Li M, Clavero AL, Ma J, Feng X, et al. 2022.. Intestinal helminth infection transforms the CD4+ T cell composition of the skin. . Mucosal Immunol. 15::25767
    [Crossref] [Google Scholar]
  86. 86.
    Kabat AM, Hackl A, Sanin DE, Zeis P, Grzes KM, et al. 2022.. Resident TH2 cells orchestrate adipose tissue remodeling at a site adjacent to infection. . Sci. Immunol. 7:(76):eadd3263
    [Crossref] [Google Scholar]
  87. 87.
    Nutman TB. 2007.. Evaluation and differential diagnosis of marked, persistent eosinophilia. . Immunol. Allergy Clin. N. Am. 27:(3):52949
    [Crossref] [Google Scholar]
  88. 88.
    Ricardo-Gonzalez RR, Schneider C, Liao C, Lee J, Liang H-E, Locksley RM. 2020.. Tissue-specific pathways extrude activated ILC2s to disseminate type 2 immunity. . J. Exp. Med. 217:(4):e20191172
    [Crossref] [Google Scholar]
  89. 89.
    Rennick DM, Thompson-Snipes L, Coffman RL, Seymour BW, Jackson JD, Hudak S. 1990.. In vivo administration of antibody to interleukin-5 inhibits increased generation of eosinophils and their progenitors in bone marrow of parasitized mice. . Blood 76:(2):31216
    [Crossref] [Google Scholar]
  90. 90.
    Iwasaki H, Mizuno S, Mayfield R, Shigematsu H, Arinobu Y, et al. 2005.. Identification of eosinophil lineage-committed progenitors in the murine bone marrow. . J. Exp. Med. 201:(12):189197
    [Crossref] [Google Scholar]
  91. 91.
    Quinn SM, Cunningham K, Raverdeau M, Walsh RJ, Curham L, et al. 2019.. Anti-inflammatory trained immunity mediated by helminth products attenuates the induction of T cell–mediated autoimmune disease. . Front. Immunol. 10::1109
    [Crossref] [Google Scholar]
  92. 92.
    Cunningham KT, Finlay CM, Mills KHG. 2021.. Helminth imprinting of hematopoietic stem cells sustains anti-inflammatory trained innate immunity that attenuates autoimmune disease. . J. Immunol. 206:(7):161830
    [Crossref] [Google Scholar]
  93. 93.
    Grencis RK. 2015.. Immunity to helminths: resistance, regulation, and susceptibility to gastrointestinal nematodes. . Annu. Rev. Immunol. 33::20125
    [Crossref] [Google Scholar]
  94. 94.
    Marsland BJ, Kurrer M, Reissmann R, Harris NL, Kopf M. 2008.. Nippostrongylus brasiliensis infection leads to the development of emphysema associated with the induction of alternatively activated macrophages. . Eur. J. Immunol. 38:(2):47988
    [Crossref] [Google Scholar]
  95. 95.
    Harvie M, Camberis M, Tang S-C, Delahunt B, Paul W, Le Gros G. 2010.. The lung is an important site for priming CD4 T-cell-mediated protective immunity against gastrointestinal helminth parasites. . Infect. Immun. 78:(9):375362
    [Crossref] [Google Scholar]
  96. 96.
    Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, et al. 2015.. IL-25-responsive, lineage-negative KLRG1hi cells are multipotential “inflammatory” type 2 innate lymphoid cells. . Nat. Immunol. 16:(2):16169
    [Crossref] [Google Scholar]
  97. 97.
    Huang Y, Mao K, Chen X, Sun M-A, Kawabe T, et al. 2018.. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. . Science 359:(6371):11419
    [Crossref] [Google Scholar]
  98. 98.
    Campbell L, Hepworth MR, Whittingham-Dowd J, Thompson S, Bancroft AJ, et al. 2019.. ILC2s mediate systemic innate protection by priming mucus production at distal mucosal sites. . J. Exp. Med. 216:(12):271423
    [Crossref] [Google Scholar]
  99. 99.
    Filbey KJ, Camberis M, Chandler J, Turner R, Kettle AJ, et al. 2019.. Intestinal helminth infection promotes IL-5- and CD4+ T cell–dependent immunity in the lung against migrating parasites. . Mucosal Immunol. 12:(2):35262
    [Crossref] [Google Scholar]
  100. 100.
    Wilson MS, Taylor MD, Balic A, Finney CAM, Lamb JR, Maizels RM. 2005.. Suppression of allergic airway inflammation by helminth-induced regulatory T cells. . J. Exp. Med. 202:(9):1199212
    [Crossref] [Google Scholar]
  101. 101.
    Feng X, Classon C, Terán G, Yang Y, Li L, et al. 2018.. Atrophy of skin-draining lymph nodes predisposes for impaired immune responses to secondary infection in mice with chronic intestinal nematode infection. . PLOS Pathog. 14:(5):e1007008
    [Crossref] [Google Scholar]
  102. 102.
    King IL, Mohrs K, Meli AP, Downey J, Lanthier P, et al. 2017.. Intestinal helminth infection impacts the systemic distribution and function of the naive lymphocyte pool. . Mucosal Immunol. 10:(5):116068
    [Crossref] [Google Scholar]
  103. 103.
    Filbey KJ, Mehta PH, Meijlink KJ, Pellefigues C, Schmidt AJ, Le Gros G. 2020.. The gastrointestinal helminth Heligmosomoides bakeri suppresses inflammation in a model of contact hypersensitivity. . Front. Immunol. 11::950
    [Crossref] [Google Scholar]
  104. 104.
    Wu D, Molofsky AB, Liang H-E, Ricardo-Gonzalez RR, Jouihan HA, et al. 2011.. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. . Science 332:(6026):24347
    [Crossref] [Google Scholar]
  105. 105.
    Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, et al. 2015.. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. . Nature 519:(7542):24246
    [Crossref] [Google Scholar]
  106. 106.
    Blackwell AD, Tamayo MA, Beheim B, Trumble BC, Stieglitz J, et al. 2015.. Helminth infection, fecundity, and age of first pregnancy in women. . Science 350:(6263):97072
    [Crossref] [Google Scholar]
  107. 107.
    Gravitt PE, Marks M, Kosek M, Huang C, Cabrera L, et al. 2016.. Soil-transmitted helminth infections are associated with an increase in human papillomavirus prevalence and a T-helper type 2 cytokine signature in cervical fluids. . J. Infect. Dis. 213:(5):72330
    [Crossref] [Google Scholar]
  108. 108.
    Chetty A, Darby MG, Vornewald PM, Martín-Alonso M, Filz A, et al. 2021.. Il4ra-independent vaginal eosinophil accumulation following helminth infection exacerbates epithelial ulcerative pathology of HSV-2 infection. . Cell Host Microbe 29:(4):57993.e5
    [Crossref] [Google Scholar]
  109. 109.
    Maizels RM, Smits HH, McSorley HJ. 2018.. Modulation of host immunity by helminths: the expanding repertoire of parasite effector molecules. . Immunity 49:(5):80118
    [Crossref] [Google Scholar]
  110. 110.
    Grainger JR, Smith KA, Hewitson JP, McSorley HJ, Harcus Y, et al. 2010.. Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. . J. Exp. Med. 207:(11):233141
    [Crossref] [Google Scholar]
  111. 111.
    Johnston CJC, Smyth DJ, Kodali RB, White MPJ, Harcus Y, et al. 2017.. A structurally distinct TGF-β mimic from an intestinal helminth parasite potently induces regulatory T cells. . Nat. Commun. 8::1741
    [Crossref] [Google Scholar]
  112. 112.
    Osbourn M, Soares DC, Vacca F, Cohen ES, Scott IC, et al. 2017.. HpARI protein secreted by a helminth parasite suppresses interleukin-33. . Immunity 47:(4):73951.e5
    [Crossref] [Google Scholar]
  113. 113.
    Vacca F, Chauché C, Jamwal A, Hinchy EC, Heieis G, et al. 2020.. A helminth-derived suppressor of ST2 blocks allergic responses. . eLife 9::e54017
    [Crossref] [Google Scholar]
  114. 114.
    Mukundan A, Byeon C-H, Hinck CS, Cunningham K, Campion T, et al. 2022.. Convergent evolution of a parasite-encoded complement control protein scaffold to mimic binding of mammalian TGF-β to its receptors, TβRI and TβRII. . J. Biol. Chem. 298:(6):101994
    [Crossref] [Google Scholar]
  115. 115.
    Bancroft AJ, Levy CW, Jowitt TA, Hayes KS, Thompson S, et al. 2019.. The major secreted protein of the whipworm parasite tethers to matrix and inhibits interleukin-13 function. . Nat. Commun. 10::2344
    [Crossref] [Google Scholar]
  116. 116.
    Raposo G, Stahl PD. 2019.. Extracellular vesicles: a new communication paradigm?. Nat. Rev. Mol. Cell Biol. 20:(9):50910
    [Crossref] [Google Scholar]
  117. 117.
    Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, et al. 2014.. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. . Nat. Commun. 5::5488
    [Crossref] [Google Scholar]
  118. 118.
    Coakley G, McCaskill JL, Borger JG, Simbari F, Robertson E, et al. 2017.. Extracellular vesicles from a helminth parasite suppress macrophage activation and constitute an effective vaccine for protective immunity. . Cell Rep. 19:(8):154557
    [Crossref] [Google Scholar]
  119. 119.
    Eichenberger RM, Ryan S, Jones L, Buitrago G, Polster R, et al. 2018.. Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice. . Front. Immunol. 9::850
    [Crossref] [Google Scholar]
  120. 120.
    Drurey C, Lindholm HT, Coakley G, Poveda MC, Löser S, et al. 2021.. Intestinal epithelial tuft cell induction is negated by a murine helminth and its secreted products. . J. Exp. Med. 219:(1):e20211140
    [Crossref] [Google Scholar]
  121. 121.
    Karo-Atar D, Ouladan S, Javkar T, Joumier L, Matheson MK, et al. 2022.. Helminth-induced reprogramming of the stem cell compartment inhibits type 2 immunity. . J. Exp. Med. 219:(9):e20212311
    [Crossref] [Google Scholar]
  122. 122.
    Ayyaz A, Kumar S, Sangiorgi B, Ghoshal B, Gosio J, et al. 2019.. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. . Nature 569:(7754):12125
    [Crossref] [Google Scholar]
  123. 123.
    Nusse YM, Savage AK, Marangoni P, Rosendahl-Huber AKM, Landman TA, et al. 2018.. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. . Nature 559:(7712):10913
    [Crossref] [Google Scholar]
  124. 124.
    Ogilvie BM, Rothwell TL, Bremner KC, Schnitzerling HJ, Nolan J, Keith RK. 1973.. Acetylcholinesterase secretion by parasitic nematodes. I. Evidence for secretion of the enzyme by a number of species. . Int. J. Parasitol. 3:(5):58997
    [Crossref] [Google Scholar]
  125. 125.
    Bouchery T, Moyat M, Sotillo J, Silverstein S, Volpe B, et al. 2020.. Hookworms evade host immunity by secreting a deoxyribonuclease to degrade neutrophil extracellular traps. . Cell Host Microbe 27:(2):27789.e6
    [Crossref] [Google Scholar]
  126. 126.
    Navarro S, Pickering DA, Ferreira IB, Jones L, Ryan S, et al. 2016.. Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma. . Sci. Transl. Med. 8::362ra143
    [Crossref] [Google Scholar]
  127. 127.
    Ferreira IB, Pickering DA, Troy S, Croese J, Loukas A, Navarro S. 2017.. Suppression of inflammation and tissue damage by a hookworm recombinant protein in experimental colitis. . Clin. Transl. Immunol. 6:(10):e157
    [Crossref] [Google Scholar]
  128. 128.
    Castelletto ML, Gang SS, Hallem EA. 2020.. Recent advances in functional genomics for parasitic nematodes of mammals. . J. Exp. Biol. 223:(Suppl. 1):jeb206482
    [Crossref] [Google Scholar]
  129. 129.
    Lok JB. 2019.. CRISPR/Cas9 mutagenesis and expression of dominant mutant transgenes as functional genomic approaches in parasitic nematodes. . Front. Genet. 10::656
    [Crossref] [Google Scholar]
  130. 130.
    Mendez P, Walsh B, Hallem EA. 2022.. Using newly optimized genetic tools to probe Strongyloides sensory behaviors. . Mol. Biochem. Parasitol. 250::111491
    [Crossref] [Google Scholar]
  131. 131.
    Quinzo MJ, Perteguer MJ, Brindley PJ, Loukas A, Sotillo J. 2022.. Transgenesis in parasitic helminths: a brief history and prospects for the future. . Parasites Vectors 15:(1):110
    [Crossref] [Google Scholar]
  132. 132.
    Castelletto ML, Hallem EA. 2021.. Generating transgenics and knockouts in Strongyloides species by microinjection. . J. Vis. Exp. 176::63023
    [Google Scholar]
  133. 133.
    Douglas B, Wei Y, Li X, Ferguson A, Hung L-Y, et al. 2021.. Transgenic expression of a T cell epitope in Strongyloides ratti reveals that helminth-specific CD4+ T cells constitute both Th2 and Treg populations. . PLOS Pathog. 17:(7):e1009709
    [Crossref] [Google Scholar]
  134. 134.
    Hagen J, Sarkies P, Selkirk ME. 2021.. Lentiviral transduction facilitates RNA interference in the nematode parasite Nippostrongylus brasiliensis. . PLOS Pathog. 17:(1):e1009286
    [Crossref] [Google Scholar]
  135. 135.
    Gang SS, Castelletto ML, Bryant AS, Yang E, Mancuso N, et al. 2017.. Targeted mutagenesis in a human-parasitic nematode. . PLOS Pathog. 13:(10):e1006675
    [Crossref] [Google Scholar]
  136. 136.
    Lok JB, Shao H, Massey HC, Li X. 2017.. Transgenesis in Strongyloides and related parasitic nematodes: historical perspectives, current functional genomic applications and progress towards gene disruption and editing. . Parasitology 144:(3):32742
    [Crossref] [Google Scholar]
  137. 137.
    Adams S, Pathak P, Shao H, Lok JB, Pires-daSilva A. 2019.. Liposome-based transfection enhances RNAi and CRISPR-mediated mutagenesis in non-model nematode systems. . Sci. Rep. 9::483
    [Crossref] [Google Scholar]
  138. 138.
    Hagen J, Ghosh S, Sarkies P, Selkirk ME. 2023.. Gene editing in the nematode parasite Nippostrongylus brasiliensis using extracellular vesicles to deliver active Cas9/guide RNA complexes. . Front. Parasitol. 2::1071738
    [Crossref] [Google Scholar]
  139. 139.
    Wang J, Paz C, Padalino G, Coghlan A, Lu Z, et al. 2020.. Large-scale RNAi screening uncovers therapeutic targets in the parasite Schistosoma mansoni. . Science 369:(6511):164953
    [Crossref] [Google Scholar]
  140. 140.
    Geldhof P, Visser A, Clark D, Saunders G, Britton C, et al. 2007.. RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects. . Parasitology 134:(5):60919
    [Crossref] [Google Scholar]
  141. 141.
    Dulovic A, Streit A. 2019.. RNAi-mediated knockdown of daf-12 in the model parasitic nematode Strongyloides ratti. . PLOS Pathog. 15:(3):e1007705
    [Crossref] [Google Scholar]
  142. 142.
    Lee SC, Tang MS, Lim YAL, Choy SH, Kurtz ZD, et al. 2014.. Helminth colonization is associated with increased diversity of the gut microbiota. . PLOS Negl. Trop. Dis. 8:(5):e2880
    [Crossref] [Google Scholar]
  143. 143.
    Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, et al. 2015.. Host genetic variation impacts microbiome composition across human body sites. . Genome Biol. 16::191
    [Crossref] [Google Scholar]
  144. 144.
    Hayes KS, Bancroft AJ, Goldrick M, Portsmouth C, Roberts IS, Grencis RK. 2010.. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. . Science 328:(5984):139194
    [Crossref] [Google Scholar]
  145. 145.
    White EC, Houlden A, Bancroft AJ, Hayes KS, Goldrick M, et al. 2018.. Manipulation of host and parasite microbiotas: survival strategies during chronic nematode infection. . Sci. Adv. 4:(3):eaap7399
    [Crossref] [Google Scholar]
  146. 146.
    Rausch S, Midha A, Kuhring M, Affinass N, Radonic A, et al. 2018.. Parasitic nematodes exert antimicrobial activity and benefit from microbiota-driven support for host immune regulation. . Front. Immunol. 9::2282
    [Crossref] [Google Scholar]
  147. 147.
    Moyat M, Lebon L, Perdijk O, Wickramasinghe LC, Zaiss MM, et al. 2022.. Microbial regulation of intestinal motility provides resistance against helminth infection. . Mucosal Immunol. 15:(6):128395
    [Crossref] [Google Scholar]
  148. 148.
    Walk ST, Blum AM, Ewing SA-S, Weinstock JV, Young VB. 2010.. Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. . Inflamm. Bowel Dis. 16:(11):184149
    [Crossref] [Google Scholar]
  149. 149.
    Rausch S, Held J, Fischer A, Heimesaat MM, Kühl AA, et al. 2013.. Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract. . PLOS ONE 8:(9):e74026
    [Crossref] [Google Scholar]
  150. 150.
    Su C, Su L, Li Y, Long SR, Chang J, et al. 2018.. Helminth-induced alterations of the gut microbiota exacerbate bacterial colitis. . Mucosal Immunol. 11:(1):14457
    [Crossref] [Google Scholar]
  151. 151.
    Afrin T, Murase K, Kounosu A, Hunt VL, Bligh M, et al. 2019.. Sequential changes in the host gut microbiota during infection with the intestinal parasitic nematode Strongyloides venezuelensis. . Front. Cell Infect. Microbiol. 9::217
    [Crossref] [Google Scholar]
  152. 152.
    Fricke WF, Song Y, Wang A-J, Smith A, Grinchuk V, et al. 2015.. Type 2 immunity–dependent reduction of segmented filamentous bacteria in mice infected with the helminthic parasite Nippostrongylus brasiliensis. . Microbiome 3:(1):40
    [Crossref] [Google Scholar]
  153. 153.
    Ramanan D, Bowcutt R, Lee SC, Tang MS, Kurtz ZD, et al. 2016.. Helminth infection promotes colonization resistance via type 2 immunity. . Science 352:(6285):60812
    [Crossref] [Google Scholar]
  154. 154.
    Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, et al. 2015.. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. . Immunity 43:(5):9981010
    [Crossref] [Google Scholar]
  155. 155.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, et al. 2013.. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. . Science 341:(6145):56973
    [Crossref] [Google Scholar]
  156. 156.
    McFarlane AJ, McSorley HJ, Davidson DJ, Fitch PM, Errington C, et al. 2017.. Enteric helminth-induced type I interferon signaling protects against pulmonary virus infection through interaction with the microbiota. . J. Allergy Clin. Immunol. 140:(4):106878.e6
    [Crossref] [Google Scholar]
  157. 157.
    Finkelman FD, Shea-Donohue T, Morris SC, Gildea L, Strait R, et al. 2004.. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. . Immunol. Rev. 201:(1):13955
    [Crossref] [Google Scholar]
  158. 158.
    Urban JF, Noben-Trauth N, Donaldson DD, Madden KB, Morris SC, et al. 1998.. IL-13, IL-4Rα, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. . Immunity 8:(2):25564
    [Crossref] [Google Scholar]
  159. 159.
    Cliffe LJ, Potten CS, Booth CE, Grencis RK. 2007.. An increase in epithelial cell apoptosis is associated with chronic intestinal nematode infection. . Infect. Immun. 75:(4):155664
    [Crossref] [Google Scholar]
  160. 160.
    Kazacos KR. 1975.. Increased resistance in the rat to Nippostrongylus brasiliensis following immunization against Trichinella spiralis. . Vet. Parasitol. 1:(2):16574
    [Crossref] [Google Scholar]
  161. 161.
    Baek B-K, Islam MK, Kim J-H, Lee J-W, Hur J. 1999.. Partial cross-resistance between Strongyloides venezuelensis and Nippostrongylus brasiliensis in rats. . Korean J. Parasitol. 37:(2):1017
    [Crossref] [Google Scholar]
  162. 162.
    Nawa Y, Mimori T, Korenaga M, Tada I. 1982.. Stage-specific cross-resistance between Nippostrongylus brasiliensis and Strongyloides ratti (Nematoda) in rats. . J. Parasitol. 68:(5):8048
    [Crossref] [Google Scholar]
  163. 163.
    Kazacos KR, Thorson RE. 1975.. Cross-resistance between Nippostrongylus brasiliensis and Strongyloides ratti in rats. . J. Parasitol. 61:(3):52529
    [Crossref] [Google Scholar]
  164. 164.
    Obata-Ninomiya K, Ishiwata K, Tsutsui H, Nei Y, Yoshikawa S, et al. 2013.. The skin is an important bulwark of acquired immunity against intestinal helminths. . J. Exp. Med. 210:(12):258395
    [Crossref] [Google Scholar]
  165. 165.
    Schneider C, O'Leary CE, von Moltke J, Liang H-E, Ang QY, et al. 2018.. A metabolite-triggered tuft cell–ILC2 circuit drives small intestinal remodeling. . Cell 174:(2):27184.e14
    [Crossref] [Google Scholar]
  166. 166.
    Leonardi-Bee J, Pritchard D, Britton J. 2006.. Asthma and current intestinal parasite infection. . Am. J. Respir. Crit. Care Med. 174:(5):51423
    [Crossref] [Google Scholar]
  167. 167.
    Feary J, Britton J, Leonardi-Bee J. 2011.. Atopy and current intestinal parasite infection: a systematic review and meta-analysis. . Allergy 66:(4):56978
    [Crossref] [Google Scholar]
  168. 168.
    Rodrigues LC, Newcombe PJ, Cunha SS, Alcantara-Neves NM, Genser B, et al. 2008.. Early infection with Trichuris trichiura and allergen skin test reactivity in later childhood. . Clin. Exp. Allergy 38:(11):176977
    [Crossref] [Google Scholar]
  169. 169.
    Cooper PJ, Chico ME, Vaca MG, Sandoval CA, Loor S, et al. 2018.. Effect of early-life geohelminth infections on the development of wheezing at 5 years of age. . Am. J. Respir. Crit. Care Med. 197:(3):36472
    [Crossref] [Google Scholar]
  170. 170.
    Cooper PJ, Chico ME, Rodrigues LC, Ordonez M, Strachan D, et al. 2003.. Reduced risk of atopy among school-age children infected with geohelminth parasites in a rural area of the tropics. . J. Allergy Clin. Immunol. 111:(5):9951000
    [Crossref] [Google Scholar]
  171. 171.
    Haileamlak A, Dagoye D, Williams H, Venn AJ, Hubbard R, et al. 2005.. Early life risk factors for atopic dermatitis in Ethiopian children. . J. Allergy Clin. Immunol. 115:(2):37076
    [Crossref] [Google Scholar]
  172. 172.
    Schäfer T, Meyer T, Ring J, Wichmann H-E, Heinrich J. 2005.. Worm infestation and the negative association with eczema (atopic/nonatopic) and allergic sensitization. . Allergy 60:(8):101420
    [Crossref] [Google Scholar]
  173. 173.
    Scrivener S, Yemaneberhan H, Zebenigus M, Tilahun D, Girma S, et al. 2001.. Independent effects of intestinal parasite infection and domestic allergen exposure on risk of wheeze in Ethiopia: a nested case-control study. . Lancet 358:(9292):149399
    [Crossref] [Google Scholar]
  174. 174.
    Lynch NR, Palenque M, Hagel I, DiPrisco MC. 1997.. Clinical improvement of asthma after anthelminthic treatment in a tropical situation. . Am. J. Respir. Crit. Care Med. 156:(1):5054
    [Crossref] [Google Scholar]
  175. 175.
    van den Biggelaar AHJ, Rodrigues LC, van Ree R, van der Zee JS, Hoeksma-Kruize YCM, et al. 2004.. Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren. . J. Infect. Dis. 189:(5):892900
    [Crossref] [Google Scholar]
  176. 176.
    Flohr C, Tuyen LN, Quinnell RJ, Lewis S, Minh TT, et al. 2010.. Reduced helminth burden increases allergen skin sensitization but not clinical allergy: a randomized, double-blind, placebo-controlled trial in Vietnam. . Clin. Exp. Allergy 40:(1):13142
    [Crossref] [Google Scholar]
  177. 177.
    Bager P, Arnved J, Rønborg S, Wohlfahrt J, Poulsen LK, et al. 2010.. Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. . J. Allergy Clin. Immunol. 125:(1):12330.e3
    [Crossref] [Google Scholar]
  178. 178.
    Bager P, Kapel C, Roepstorff A, Thamsborg S, Arnved J, et al. 2011.. Symptoms after ingestion of pig whipworm Trichuris suis eggs in a randomized placebo-controlled double-blind clinical trial. . PLOS ONE 6:(8):e22346
    [Crossref] [Google Scholar]
  179. 179.
    Smith KA, Filbey KJ, Reynolds LA, Hewitson JP, Harcus Y, et al. 2016.. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. . Mucosal Immunol. 9:(2):42843
    [Crossref] [Google Scholar]
  180. 180.
    Bashir MEH, Andersen P, Fuss IJ, Shi HN, Nagler-Anderson C. 2002.. An enteric helminth infection protects against an allergic response to dietary antigen. . J. Immunol. 169:(6):328492
    [Crossref] [Google Scholar]
  181. 181.
    Kitagaki K, Businga TR, Racila D, Elliott DE, Weinstock JV, Kline JN. 2006.. Intestinal helminths protect in a murine model of asthma. . J. Immunol. 177:(3):162835
    [Crossref] [Google Scholar]
  182. 182.
    Hartmann S, Schnoeller C, Dahten A, Avagyan A, Rausch S, et al. 2009.. Gastrointestinal nematode infection interferes with experimental allergic airway inflammation but not atopic dermatitis. . Clin. Exp. Allergy 39:(10):158596
    [Crossref] [Google Scholar]
  183. 183.
    McSorley HJ, O'Gorman MT, Blair N, Sutherland TE, Filbey KJ, Maizels RM. 2012.. Suppression of type 2 immunity and allergic airway inflammation by secreted products of the helminth Heligmosomoides polygyrus. . Eur. J. Immunol. 42:(10):266782
    [Crossref] [Google Scholar]
  184. 184.
    McSorley HJ, Blair NF, Smith KA, McKenzie ANJ, Maizels RM. 2014.. Blockade of IL-33 release and suppression of type 2 innate lymphoid cell responses by helminth secreted products in airway allergy. . Mucosal Immunol. 7:(5):106878
    [Crossref] [Google Scholar]
  185. 185.
    Chauché C, Rasid O, Donachie A-M, McManus CM, Löser S, et al. 2022.. Suppression of airway allergic eosinophilia by Hp-TGM, a helminth mimic of TGF-β. . Immunology 167:(2):197211
    [Crossref] [Google Scholar]
  186. 186.
    Zaccone P, Hall SW. 2012.. Helminth infection and type 1 diabetes. . Rev. Diabetes Stud. 9:(4):27286
    [Crossref] [Google Scholar]
  187. 187.
    Saunders KA, Raine T, Cooke A, Lawrence CE. 2007.. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. . Infect. Immun. 75:(1):397407
    [Crossref] [Google Scholar]
  188. 188.
    Summers RW, Elliott DE, Qadir K, Urban JF, Thompson R, Weinstock JV. 2003.. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. . Am. J. Gastroenterol. 98:(9):203441
    [Crossref] [Google Scholar]
  189. 189.
    Summers RW, Elliott DE, Urban JF, Thompson R, Weinstock JV. 2005.. Trichuris suis therapy in Crohn's disease. . Gut 54:(1):8790
    [Crossref] [Google Scholar]
  190. 190.
    Summers RW, Elliott DE, Urban JF, Thompson RA, Weinstock JV. 2005.. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. . Gastroenterology 128:(4):82532
    [Crossref] [Google Scholar]
  191. 191.
    Schölmerich J, Fellermann K, Seibold FW, Rogler G, Langhorst J, et al. 2017.. A randomised, double-blind, placebo-controlled trial of Trichuris suis ova in active Crohn's disease. . J. Crohn's Colitis 11:(4):39099
    [Google Scholar]
  192. 192.
    Khan WI, Blennerhasset PA, Varghese AK, Chowdhury SK, Omsted P, et al. 2002.. Intestinal nematode infection ameliorates experimental colitis in mice. . Infect. Immun. 70:(11):593137
    [Crossref] [Google Scholar]
  193. 193.
    Setiawan T, Metwali A, Blum AM, Ince MN, Urban JF, et al. 2007.. Heligmosomoides polygyrus promotes regulatory T-cell cytokine production in the murine normal distal intestine. . Infect. Immun. 75:(9):465563
    [Crossref] [Google Scholar]
  194. 194.
    Elliott DE, Setiawan T, Metwali A, Blum A, Urban JF Jr., Weinstock JV. 2004.. Heligmosomoides polygyrus inhibits established colitis in IL-10-deficient mice. . Eur. J. Immunol. 34:(10):269098
    [Crossref] [Google Scholar]
  195. 195.
    Hang L, Setiawan T, Blum AM, Urban J, Stoyanoff K, et al. 2010.. Heligmosomoides polygyrus infection can inhibit colitis through direct interaction with innate immunity. . J. Immunol. 185:(6):318489
    [Crossref] [Google Scholar]
  196. 196.
    Blum AM, Hang L, Setiawan T, Urban JP Jr., Stoyanoff KM, et al. 2012.. Heligmosomoides polygyrus bakeri induces tolerogenic dendritic cells that block colitis and prevent antigen-specific gut T cell responses. . J. Immunol. 189:(5):251220
    [Crossref] [Google Scholar]
  197. 197.
    Broadhurst MJ, Ardeshir A, Kanwar B, Mirpuri J, Gundra UM, et al. 2012.. Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon. . PLOS Pathog. 8:(11):e1003000
    [Crossref] [Google Scholar]
  198. 198.
    Chen C-C, Louie S, McCormick B, Walker WA, Shi HN. 2005.. Concurrent infection with an intestinal helminth parasite impairs host resistance to enteric Citrobacter rodentium and enhances Citrobacter-induced colitis in mice. . Infect. Immun. 73:(9):546881
    [Crossref] [Google Scholar]
  199. 199.
    Correale J, Farez M. 2007.. Association between parasite infection and immune responses in multiple sclerosis. . Ann. Neurol. 61:(2):97108
    [Crossref] [Google Scholar]
  200. 200.
    Correale J, Farez MF. 2011.. The impact of parasite infections on the course of multiple sclerosis. . J. Neuroimmunol. 233:(1):611
    [Crossref] [Google Scholar]
  201. 201.
    Fleming J, Isaak A, Lee J, Luzzio C, Carrithers M, et al. 2011.. Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study. . Mult. Scler. 17:(6):74354
    [Crossref] [Google Scholar]
  202. 202.
    Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, Stosic-Grujicic S, Milic M, Sofronic-Milosavljevic L. 2010.. Mechanisms of modulation of experimental autoimmune encephalomyelitis by chronic Trichinella spiralis infection in Dark Agouti rats. . Parasite Immunol. 32:(6):45059
    [Crossref] [Google Scholar]
  203. 203.
    White MPJ, Johnston CJC, Grainger JR, Konkel JE, O'Connor RA, et al. 2020.. The helminth parasite Heligmosomoides polygyrus attenuates EAE in an IL-4Rα-dependent manner. . Front. Immunol. 11::1830
    [Crossref] [Google Scholar]
  204. 204.
    Hays R, Esterman A, Giacomin P, Loukas A, McDermott R. 2015.. Does Strongyloides stercoralis infection protect against type 2 diabetes in humans? Evidence from Australian Aboriginal adults. . Diabetes Res. Clin. Pract. 107:(3):35561
    [Crossref] [Google Scholar]
  205. 205.
    Wiria AE, Hamid F, Wammes LJ, Prasetyani MA, Dekkers OM, et al. 2015.. Infection with soil-transmitted helminths is associated with increased insulin sensitivity. . PLOS ONE 10:(6):e0127746
    [Crossref] [Google Scholar]
  206. 206.
    Rajamanickam A, Munisankar S, Bhootra Y, Dolla C, Thiruvengadam K, et al. 2019.. Metabolic consequences of concomitant Strongyloides stercoralis infection in patients with type 2 diabetes mellitus. . Clin. Infect. Dis. 69:(4):697704
    [Crossref] [Google Scholar]
  207. 207.
    Yang Z, Grinchuk V, Smith A, Qin B, Bohl JA, et al. 2013.. Parasitic nematode–induced modulation of body weight and associated metabolic dysfunction in mouse models of obesity. . Infect. Immun. 81:(6):190514
    [Crossref] [Google Scholar]
  208. 208.
    Su CW, Chen C-Y, Li Y, Long SR, Massey W, et al. 2018.. Helminth infection protects against high fat diet–induced obesity via induction of alternatively activated macrophages. . Sci. Rep. 8::4607
    [Crossref] [Google Scholar]
  209. 209.
    Morimoto M, Azuma N, Kadowaki H, Abe T, Suto Y. 2016.. Regulation of type 2 diabetes by helminth-induced Th2 immune response. . J. Vet. Med. Sci. 78:(12):185564
    [Crossref] [Google Scholar]
  210. 210.
    Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, et al. 2007.. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. . Nature 447:(7148):111620
    [Crossref] [Google Scholar]
  211. 211.
    Lumeng CN, Bodzin JL, Saltiel AR. 2007.. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. . J. Clin. Investig. 117:(1):17584
    [Crossref] [Google Scholar]
  212. 212.
    Tahapary DL, de Ruiter K, Martin I, Brienen EAT, van Lieshout L, et al. 2017.. Effect of anthelmintic treatment on leptin, adiponectin and leptin to adiponectin ratio: a randomized-controlled trial. . Nutr. Diabetes 7:(10):e289
    [Crossref] [Google Scholar]
  213. 213.
    Salgame P, Yap GS, Gause WC. 2013.. Effect of helminth-induced immunity on infections with microbial pathogens. . Nat. Immunol. 14:(11):111826
    [Crossref] [Google Scholar]
  214. 214.
    Osborne LC, Monticelli LA, Nice TJ, Sutherland TE, Siracusa MC, et al. 2014.. Virus–helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. . Science 345:(6196):57882
    [Crossref] [Google Scholar]
  215. 215.
    Strine MS, Alfajaro MM, Graziano VR, Song J, Hsieh LL, et al. 2022.. Tuft-cell-intrinsic and -extrinsic mediators of norovirus tropism regulate viral immunity. . Cell Rep. 41:(6):111593
    [Crossref] [Google Scholar]
  216. 216.
    Wilen CB, Lee S, Hsieh LL, Orchard RC, Desai C, et al. 2018.. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. . Science 360:(6385):2048
    [Crossref] [Google Scholar]
  217. 217.
    Desai P, Janova H, White JP, Reynoso GV, Hickman HD, et al. 2021.. Enteric helminth coinfection enhances host susceptibility to neurotropic flaviviruses via a tuft cell–IL-4 receptor signaling axis. . Cell 184:(5):121431.e16
    [Crossref] [Google Scholar]
  218. 218.
    Gazzinelli-Guimarães PH, de Freitas LFD, Gazzinelli-Guimarães AC, Coelho F, Barbosa FS, et al. 2017.. Concomitant helminth infection downmodulates the Vaccinia virus–specific immune response and potentiates virus-associated pathology. . Int. J. Parasitol. 47:(1):110
    [Crossref] [Google Scholar]
  219. 219.
    Oh JE, Kim B-C, Chang D-H, Kwon M, Lee SY, et al. 2016.. Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa. . PNAS 113:(6):E76271
    [Crossref] [Google Scholar]
  220. 220.
    Reese TA, Wakeman BS, Choi HS, Hufford MM, Huang SC, et al. 2014.. Helminth infection reactivates latent γ-herpesvirus via cytokine competition at a viral promoter. . Science 345:(6196):57377
    [Crossref] [Google Scholar]
  221. 221.
    Bobat S, Darby M, Mrdjen D, Cook C, Logan E, et al. 2014.. Natural and vaccine-mediated immunity to Salmonella Typhimurium is impaired by the helminth Nippostrongylus brasiliensis. . PLOS Negl. Trop. Dis. 8:(12):e3341
    [Crossref] [Google Scholar]
  222. 222.
    Reynolds LA, Redpath SA, Yurist-Doutsch S, Gill N, Brown EM, et al. 2017.. Enteric helminths promote Salmonella coinfection by altering the intestinal metabolome. . J. Infect. Dis. 215:(8):124554
    [Crossref] [Google Scholar]
  223. 223.
    Potian JA, Rafi W, Bhatt K, McBride A, Gause WC, Salgame P. 2011.. Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. . J. Exp. Med. 208:(9):186374
    [Crossref] [Google Scholar]
  224. 224.
    Harris J, Haro SAD, Master SS, Keane J, Roberts EA, et al. 2007.. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. . Immunity 27:(3):50517
    [Crossref] [Google Scholar]
  225. 225.
    Su Z, Segura M, Morgan K, Loredo-Osti JC, Stevenson MM. 2005.. Impairment of protective immunity to blood-stage malaria by concurrent nematode infection. . Infect. Immun. 73:(6):353139
    [Crossref] [Google Scholar]
  226. 226.
    Segura M, Matte C, Thawani N, Su Z, Stevenson MM. 2009.. Modulation of malaria-induced immunopathology by concurrent gastrointestinal nematode infection in mice. . Int. J. Parasitol. 39:(14):152532
    [Crossref] [Google Scholar]
  227. 227.
    Furze RC, Hussell T, Selkirk ME. 2006.. Amelioration of influenza-induced pathology in mice by coinfection with Trichinella spiralis. . Infect. Immun. 74:(3):192432
    [Crossref] [Google Scholar]
  228. 228.
    Oyesola OO, Hilligan KL, Namasivayam S, Howard N, Clancy CS, et al. 2023.. Exposure to lung-migrating helminth protects against murine SARS-CoV-2 infection through macrophage-dependent T cell activation. . Sci. Immunol. 8:(86):eadf8161
    [Crossref] [Google Scholar]
  229. 229.
    Rolot M, Dougall AM, Chetty A, Javaux J, Chen T, et al. 2018.. Helminth-induced IL-4 expands bystander memory CD8+ T cells for early control of viral infection. . Nat. Commun. 9::4516
    [Crossref] [Google Scholar]
  230. 230.
    Lin JS, Mohrs K, Szaba FM, Kummer LW, Leadbetter EA, Mohrs M. 2019.. Virtual memory CD8 T cells expanded by helminth infection confer broad protection against bacterial infection. . Mucosal Immunol. 12:(1):25864
    [Crossref] [Google Scholar]
  231. 231.
    Zhang Y, Hardy LC, Kapita CM, Hall JA, Arbeeva L, et al. 2023.. Intestinal helminth infection impairs oral and parenteral vaccine efficacy. . J. Immunol. 211:(3):389402
    [Crossref] [Google Scholar]
  232. 232.
    Wait LF, Dobson AP, Graham AL. 2020.. Do parasite infections interfere with immunisation? A review and meta-analysis. . Vaccine 38:(35):558290
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-090222-101331
Loading
/content/journals/10.1146/annurev-immunol-090222-101331
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error