1932

Abstract

Archaea remains the least-studied and least-characterized domain of life despite its significance not just to the ecology of our planet but also to the evolution of eukaryotes. It is therefore unsurprising that research into horizontal gene transfer (HGT) in archaea has lagged behind that of bacteria. Indeed, several archaeal lineages may owe their very existence to large-scale HGT events, and thus understanding both the molecular mechanisms and the evolutionary impact of HGT in archaea is highly important. Furthermore, some mechanisms of gene exchange, such as plasmids that transmit themselves via membrane vesicles and the formation of cytoplasmic bridges that allows transfer of both chromosomal and plasmid DNA, may be archaea-specific. This review summarizes what we know about HGT in archaea, and the barriers that restrict it, highlighting exciting recent discoveries and pointing out opportunities for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-040820-124627
2022-09-08
2024-06-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-040820-124627.html?itemId=/content/journals/10.1146/annurev-micro-040820-124627&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abby SS, Melcher M, Kerou M, Krupovic M, Stieglmeier M et al. 2018. Candidatus Nitrosocaldus cavascurensis, an ammonia oxidizing, extremely thermophilic archaeon with a highly mobile genome. Front. Microbiol. 9:28
    [Google Scholar]
  2. 2.
    Ajon M, Frols S, van Wolferen M, Stoecker K, Teichmann D et al. 2011. UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. Mol. Microbiol. 82:807–17
    [Google Scholar]
  3. 3.
    Amrani N, Gao XD, Liu P, Edraki A, Mir A et al. 2018. NmeCas9 is an intrinsically high-fidelity genome-editing platform. Genome Biol. 19:214
    [Google Scholar]
  4. 4.
    Andam C, Gogarten JP. 2013. Biased gene transfer contributes to maintaining the tree of life. Lateral Gene Transfer in Evolution U Gophna, 263–74 New York: Springer
    [Google Scholar]
  5. 5.
    Anderson RE, Kouris A, Seward CH, Campbell KM, Whitaker RJ. 2017. Structured populations of Sulfolobus acidocaldarius with susceptibility to mobile genetic elements. Genome Biol. Evol. 9:1699–710
    [Google Scholar]
  6. 6.
    Arnold HP, She Q, Phan H, Stedman K, Prangishvili D et al. 1999. The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol. Microbiol. 34:217–26
    [Google Scholar]
  7. 7.
    Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. 2020. Diversity, ecology and evolution of Archaea. Nat. Microbiol. 5:887–900
    [Google Scholar]
  8. 8.
    Bartke K, Garoff L, Huseby DL, Brandis G, Hughes D. 2021. Genetic architecture and fitness of bacterial interspecies hybrids. Mol. Biol. Evol. 38:1472–81
    [Google Scholar]
  9. 9.
    Barzel A, Naor A, Privman E, Kupiec M, Gophna U. 2011. Homing endonucleases residing within inteins: evolutionary puzzles awaiting genetic solutions. Biochem. Soc. Trans. 39:169–73
    [Google Scholar]
  10. 10.
    Bates S, Cashmore AM, Wilkins BM. 1998. IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae: involvement of the tra2 mating system. J. Bacteriol. 180:6538–43
    [Google Scholar]
  11. 11.
    Becker EA, Seitzer PM, Tritt A, Larsen D, Krusor M et al. 2014. Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. PLOS Genet. 10:e1004784
    [Google Scholar]
  12. 12.
    Bertani G. 1999. Transduction-like gene transfer in the methanogen Methanococcus voltae. J. Bacteriol. 181:2992–3002
    [Google Scholar]
  13. 13.
    Bertani G, Baresi L. 1987. Genetic transformation in the methanogen Methanococcus voltae PS. J. Bacteriol. 169:2730–38
    [Google Scholar]
  14. 14.
    Bharat TAM, von Kugelgen A, Alva V 2021. Molecular logic of prokaryotic surface layer structures. Trends Microbiol. 29:405–15
    [Google Scholar]
  15. 15.
    Bonura T, Smith KC. 1975. Enzymatic production of deoxyribonucleic acid double-strand breaks after ultraviolet irradiation of Escherichia coli K-12. J. Bacteriol. 121:511–17
    [Google Scholar]
  16. 16.
    Bruno A, Dovizio M, Tacconelli S, Contursi A, Ballerini P, Patrignani P. 2018. Antithrombotic agents and cancer. Cancers 10:253
    [Google Scholar]
  17. 17.
    Cabezon E, Ripoll-Rozada J, Pena A, de la Cruz F, Arechaga I. 2015. Towards an integrated model of bacterial conjugation. FEMS Microbiol. Rev. 39:81–95
    [Google Scholar]
  18. 18.
    Cadillo-Quiroz H, Didelot X, Held NL, Herrera A, Darling A et al. 2012. Patterns of gene flow define species of thermophilic Archaea. PLOS Biol. 10:e1001265
    [Google Scholar]
  19. 19.
    Chen I, Christie PJ, Dubnau D. 2005. The ins and outs of DNA transfer in bacteria. Science 310:1456–60
    [Google Scholar]
  20. 20.
    Chen S, Sun S, Korfanty GA, Liu J, Xiang H. 2019. A halocin promotes DNA uptake in Haloferax mediterranei. Front. Microbiol. 10:1960
    [Google Scholar]
  21. 21.
    Chen S, Tulloss RE, Liu Y, Feng B, Zhao Z, Yang ZL. 2012. Lateral gene transfer occurring in haloarchaea: an interpretative imitation study. World J. Microbiol. Biotechnol. 28:2913–18
    [Google Scholar]
  22. 22.
    Cheng R, Huang F, Wu H, Lu X, Yan Y et al. 2021. A nucleotide-sensing endonuclease from the Gabija bacterial defense system. Nucleic Acids Res. 49:5216–29
    [Google Scholar]
  23. 23.
    Chimileski S, Dolas K, Naor A, Gophna U, Papke RT. 2014. Extracellular DNA metabolism in Haloferax volcanii. Front. Microbiol. 5:57
    [Google Scholar]
  24. 24.
    Chimileski S, Franklin MJ, Papke RT. 2014. Biofilms formed by the archaeon Haloferax volcanii exhibit cellular differentiation and social motility, and facilitate horizontal gene transfer. BMC Biol. 12:65
    [Google Scholar]
  25. 25.
    Chimileski S, Papke RT. 2015. Getting a hold on archaeal type IV pili: an expanding repertoire of cellular appendages implicates complex regulation and diverse functions. Front. Microbiol. 6:362
    [Google Scholar]
  26. 26.
    Christie GE, Dokland T. 2012. Pirates of the Caudovirales. Virology 434:210–21
    [Google Scholar]
  27. 27.
    Cline SW, Doolittle WF. 1987. Efficient transfection of the archaebacterium Halobacterium halobium. J. Bacteriol. 169:1341–44
    [Google Scholar]
  28. 28.
    Cline SW, Lam WL, Charlebois RL, Schalkwyk LC, Doolittle WF. 1989. Transformation methods for halophilic archaebacteria. Can. J. Microbiol. 35:148–52
    [Google Scholar]
  29. 29.
    Cobbe N, Heck MM. 2004. The evolution of SMC proteins: phylogenetic analysis and structural implications. Mol. Biol. Evol. 21:332–47
    [Google Scholar]
  30. 30.
    Comolli LR, Banfield JF. 2014. Inter-species interconnections in acid mine drainage microbial communities. Front. Microbiol. 5:367
    [Google Scholar]
  31. 31.
    Deschamps P, Zivanovic Y, Moreira D, Rodriguez-Valera F, Lopez-Garcia P. 2014. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic Thaumarchaeota and Euryarchaeota. Genome Biol. Evol. 6:1549–63
    [Google Scholar]
  32. 32.
    Dodsworth JA, Li L, Wei S, Hedlund BP, Leigh JA, de Figueiredo P. 2010. Interdomain conjugal transfer of DNA from bacteria to archaea. Appl. Environ. Microbiol. 76:5644–47
    [Google Scholar]
  33. 33.
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A et al. 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359:eaar4120
    [Google Scholar]
  34. 34.
    Dubnau D, Blokesch M. 2019. Mechanisms of DNA uptake by naturally competent bacteria. Annu. Rev. Genet. 53:217–37
    [Google Scholar]
  35. 35.
    Ellen AF, Albers SV, Huibers W, Pitcher A, Hobel CF et al. 2009. Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13:67–79
    [Google Scholar]
  36. 36.
    Eppley JM, Tyson GW, Getz WM, Banfield JF. 2007. Genetic exchange across a species boundary in the archaeal genus Ferroplasma. Genetics 177:407–16
    [Google Scholar]
  37. 37.
    Erdmann S, Tschitschko B, Zhong L, Raftery MJ, Cavicchioli R. 2017. A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells. Nat. Microbiol. 2:1446–55
    [Google Scholar]
  38. 38.
    Esterman ES, Wolf YI, Kogay R, Koonin EV, Zhaxybayeva O. 2021. Evolution of DNA packaging in gene transfer agents. Virus Evol. 7:veab015
    [Google Scholar]
  39. 39.
    Fink C, Beblawy S, Enkerlin AM, Muhling L, Angenent LT, Molitor B. 2021. A shuttle-vector system allows heterologous gene expression in the thermophilic methanogen Methanothermobacter thermautotrophicus ΔH. mBio 12:e0276621
    [Google Scholar]
  40. 40.
    Fonseca DR, Halim MFA, Holten MP, Costa KC. 2020. Type IV-like pili facilitate transformation in naturally competent archaea. J. Bacteriol. 202:e00355–20
    [Google Scholar]
  41. 41.
    Forterre P, Gribaldo S, Brochier-Armanet C. 2009. Happy together: genomic insights into the unique Nanoarchaeum/Ignicoccus association. J. Biol. 8:7
    [Google Scholar]
  42. 42.
    Frols S, Ajon M, Wagner M, Teichmann D, Zolghadr B et al. 2008. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol. Microbiol. 70:938–52
    [Google Scholar]
  43. 43.
    Frols S, Dyall-Smith M, Pfeifer F. 2012. Biofilm formation by haloarchaea. Environ. Microbiol. 14:3159–74
    [Google Scholar]
  44. 44.
    Frols S, Gordon PM, Panlilio MA, Duggin IG, Bell SD et al. 2007. Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage. J. Bacteriol. 189:8708–18
    [Google Scholar]
  45. 45.
    Frols S, White MF, Schleper C. 2009. Reactions to UV damage in the model archaeon Sulfolobus solfataricus. Biochem. Soc. Trans. 37:36–41
    [Google Scholar]
  46. 46.
    Gaudin M, Krupovic M, Marguet E, Gauliard E, Cvirkaite-Krupovic V et al. 2014. Extracellular membrane vesicles harbouring viral genomes. Environ. Microbiol. 16:1167–75
    [Google Scholar]
  47. 47.
    Gill S, Catchpole R, Forterre P. 2019. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol. Rev. 43:273–303
    [Google Scholar]
  48. 48.
    Gogarten JP, Doolittle WF, Lawrence JG. 2002. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19:2226–38
    [Google Scholar]
  49. 49.
    Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S et al. 2015. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 34:169–83
    [Google Scholar]
  50. 50.
    Gordeeva J, Morozova N, Sierro N, Isaev A, Sinkunas T et al. 2019. BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site. Nucleic Acids Res. 47:253–65
    [Google Scholar]
  51. 51.
    Griffith F. 1928. The significance of pneumococcal types. J. Hyg. 27:113–59
    [Google Scholar]
  52. 52.
    Grogan DW. 1996. Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidocaldarius. J. Bacteriol. 178:3207–11
    [Google Scholar]
  53. 53.
    Groussin M, Boussau B, Szollosi G, Eme L, Gouy M et al. 2016. Gene acquisitions from bacteria at the origins of major archaeal clades are vastly overestimated. Mol. Biol. Evol. 33:305–10
    [Google Scholar]
  54. 54.
    Guschinskaya N, Brunel R, Tourte M, Lipscomb GL, Adams MWW et al. 2016. Random mutagenesis of the hyperthermophilic archaeon Pyrococcus furiosus using in vitro mariner transposition and natural transformation. Sci. Rep. 6:36711
    [Google Scholar]
  55. 55.
    Hamerly T, Tripet BP, Tigges M, Giannone RJ, Wurch L et al. 2015. Untargeted metabolomics studies employing NMR and LC-MS reveal metabolic coupling between Nanoarcheum equitans and its archaeal host Ignicoccus hospitalis. Metabolomics 11:895–907
    [Google Scholar]
  56. 56.
    Hamm JN, Erdmann S, Eloe-Fadrosh EA, Angeloni A, Zhong L et al. 2019. Unexpected host dependency of Antarctic Nanohaloarchaeota. PNAS 116:14661–70
    [Google Scholar]
  57. 57.
    Hausner G, Hafez M, Edgell DR. 2014. Bacterial group I introns: mobile RNA catalysts. Mobile DNA 5:8
    [Google Scholar]
  58. 58.
    Heimerl T, Flechsler J, Pickl C, Heinz V, Salecker B et al. 2017. A complex endomembrane system in the archaeon Ignicoccus hospitalis tapped by Nanoarchaeum equitans. Front. Microbiol. 8:1072
    [Google Scholar]
  59. 59.
    Hileman TH, Santangelo TJ. 2012. Genetics techniques for Thermococcus kodakarensis. Front. Microbiol. 3:195
    [Google Scholar]
  60. 60.
    Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M et al. 2020. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577:519–25
    [Google Scholar]
  61. 61.
    Isaev AB, Musharova OS, Severinov KV. 2021. Microbial arsenal of antiviral—Part I. Biochemistry 86:319–37
    [Google Scholar]
  62. 62.
    Jahn U, Gallenberger M, Paper W, Junglas B, Eisenreich W et al. 2008. Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two archaea. J. Bacteriol. 190:1743–50
    [Google Scholar]
  63. 63.
    Jay ZJ, Beam JP, Dlakic M, Rusch DB, Kozubal MA, Inskeep WP. 2018. Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nat. Microbiol. 3:732–40
    [Google Scholar]
  64. 64.
    Jungbluth SP, Amend JP, Rappe MS. 2017. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids. Scientific Data 4:170037
    [Google Scholar]
  65. 65.
    Kaminski L, Guan Z, Yurist-Doutsch S, Eichler J. 2013. Two distinct N-glycosylation pathways process the Haloferax volcanii S-layer glycoprotein upon changes in environmental salinity. mBio 4:e00716–13
    [Google Scholar]
  66. 66.
    Kanhere A, Vingron M. 2009. Horizontal gene transfers in prokaryotes show differential preferences for metabolic and translational genes. BMC Evol. Biol. 9:9
    [Google Scholar]
  67. 67.
    Koerdt A, Godeke J, Berger J, Thormann KM, Albers SV. 2010. Crenarchaeal biofilm formation under extreme conditions. PLOS ONE 5:e14104
    [Google Scholar]
  68. 68.
    Koonin EV. 2015. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier?. Philos. Trans. R. Soc. Lond B. 370:20140333
    [Google Scholar]
  69. 69.
    Koonin EV, Dolja VV. 2014. Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol. Mol. Biol. Rev. 78:278–303
    [Google Scholar]
  70. 70.
    Koonin EV, Makarova KS, Wolf YI. 2017. Evolutionary genomics of defense systems in archaea and bacteria. Annu. Rev. Microbiol. 71:233–61
    [Google Scholar]
  71. 71.
    Kozubal MA, Romine M, Jennings R, Jay ZJ, Tringe SG et al. 2013. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME J. 7:622–34
    [Google Scholar]
  72. 72.
    Krupovic M, Cvirkaite-Krupovic V, Iranzo J, Prangishvili D, Koonin EV. 2018. Viruses of archaea: structural, functional, environmental and evolutionary genomics. Virus Res. 244:181–93
    [Google Scholar]
  73. 73.
    Krupovic M, Makarova KS, Wolf YI, Medvedeva S, Prangishvili D et al. 2019. Integrated mobile genetic elements in Thaumarchaeota. Environ. Microbiol. 21:2056–78
    [Google Scholar]
  74. 74.
    Kuwabara T, Minaba M, Iwayama Y, Inouye I, Nakashima M et al. 2005. Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount. Int. J. Syst. Evol. Microbiol. 55:2507–14
    [Google Scholar]
  75. 75.
    Kuwabara T, Minaba M, Ogi N, Kamekura M. 2007. Thermococcus celericrescens sp. nov., a fast-growing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 57:437–43
    [Google Scholar]
  76. 76.
    Lang AS, Zhaxybayeva O, Beatty JT. 2012. Gene transfer agents: phage-like elements of genetic exchange. Nat. Rev. Microbiol. 10:472–82
    [Google Scholar]
  77. 77.
    Lecocq M, Groussin M, Gouy M, Brochier-Armanet C. 2021. The molecular determinants of thermoadaptation: Methanococcales as a case study. Mol. Biol. Evol. 38:1761–76
    [Google Scholar]
  78. 78.
    Letarov AV. 2020. History of early bacteriophage research and emergence of key concepts in virology. Biochemistry 85:1093–110
    [Google Scholar]
  79. 79.
    Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE Jr. et al. 2011. Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl. Environ. Microbiol. 77:2232–38
    [Google Scholar]
  80. 80.
    Liu J, Cvirkaite-Krupovic V, Commere PH, Yang Y, Zhou F et al. 2021. Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments. ISME J. 15:2892–905
    [Google Scholar]
  81. 81.
    Llosa M, Gomis-Ruth FX, Coll M, de la Cruz F. 2002. Bacterial conjugation: a two-step mechanism for DNA transport. Mol. Microbiol. 45:1–8
    [Google Scholar]
  82. 82.
    Lopez-Garcia P, Zivanovic Y, Deschamps P, Moreira D. 2015. Bacterial gene import and mesophilic adaptation in archaea. Nat. Rev. Microbiol. 13:447–56
    [Google Scholar]
  83. 83.
    Lurie-Weinberger MN, Gophna U 2015. Archaea in and on the human body: health implications and future directions. PLOS Pathog 11:e1004833
    [Google Scholar]
  84. 84.
    Lurie-Weinberger MN, Peeri M, Gophna U. 2012. Contribution of lateral gene transfer to the gene repertoire of a gut-adapted methanogen. Genomics 99:52–58
    [Google Scholar]
  85. 85.
    Lurie-Weinberger MN, Peeri M, Tuller T, Gophna U. 2012. Extensive inter-domain lateral gene transfer in the evolution of the human commensal Methanosphaera stadtmanae. Front. Genet. 3:182
    [Google Scholar]
  86. 86.
    Majewski J, Cohan FM. 1998. The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics 148:13–18
    [Google Scholar]
  87. 87.
    Majewski J, Cohan FM. 1999. DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153:1525–33
    [Google Scholar]
  88. 88.
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS et al. 2020. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18:67–83
    [Google Scholar]
  89. 89.
    Marguet E, Gaudin M, Gauliard E, Fourquaux I, le Blond du Plouy S et al. 2013. Membrane vesicles, nanopods and/or nanotubes produced by hyperthermophilic archaea of the genus Thermococcus. Biochem. Soc. Trans. 41:436–42
    [Google Scholar]
  90. 90.
    Martijn J, Schon ME, Lind AE, Vosseberg J, Williams TA et al. 2020. Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition. Nat. Commun. 11:5490
    [Google Scholar]
  91. 91.
    Méheust R, Watson AK, Lapointe F-J, Papke RT, Lopez P, Bapteste E. 2018. Hundreds of novel composite genes and chimeric genes with bacterial origins contributed to haloarchaeal evolution. Genome Biol. 19:75
    [Google Scholar]
  92. 92.
    Mell JC, Redfield RJ. 2014. Natural competence and the evolution of DNA uptake specificity. J. Bacteriol. 196:1471–83
    [Google Scholar]
  93. 93.
    Meng J, Xu J, Qin D, He Y, Xiao X, Wang F 2014. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J. 8:650–59
    [Google Scholar]
  94. 94.
    Mevarech M, Werczberger R. 1985. Genetic transfer in Halobacterium volcanii. J. Bacteriol. 162:461–62
    [Google Scholar]
  95. 95.
    Naor A, Altman-Price N, Soucy SM, Green AG, Mitiagin Y et al. 2016. Impact of a homing intein on recombination frequency and organismal fitness. PNAS 113:E4654–61
    [Google Scholar]
  96. 96.
    Naor A, Lapierre P, Mevarech M, Papke RT, Gophna U. 2012. Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr. Biol. 22:1444–48
    [Google Scholar]
  97. 97.
    Naor A, Yair Y, Gophna U. 2013. A halocin-H4 mutant Haloferax mediterranei strain retains the ability to inhibit growth of other halophilic archaea. Extremophiles 17:973–79
    [Google Scholar]
  98. 98.
    Nelson-Sathi S, Dagan T, Landan G, Janssen A, Steel M et al. 2012. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. PNAS 109:20537–42
    [Google Scholar]
  99. 99.
    Nelson-Sathi S, Sousa FL, Roettger M, Lozada-Chavez N, Thiergart T et al. 2015. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517:77–80
    [Google Scholar]
  100. 100.
    Novikova O, Jayachandran P, Kelley DS, Morton Z, Merwin S et al. 2016. Intein clustering suggests functional importance in different domains of life. Mol. Biol. Evol. 33:783–99
    [Google Scholar]
  101. 101.
    Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S et al. 2018. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 3:90–98
    [Google Scholar]
  102. 102.
    Papke RT, Koenig JE, Rodriguez-Valera F, Doolittle WF. 2004. Frequent recombination in a saltern population of Halorubrum. Science 306:1928–29
    [Google Scholar]
  103. 103.
    Patel GB, Nash JH, Agnew BJ, Sprott GD. 1994. Natural and electroporation-mediated transformation of Methanococcus voltae protoplasts. Appl. Environ. Microbiol. 60:903–7
    [Google Scholar]
  104. 104.
    Pfeifer E, Moura de Sousa JA, Touchon M, Rocha EPC. 2021. Bacteria have numerous distinctive groups of phage-plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res. 49:2655–73
    [Google Scholar]
  105. 105.
    Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N et al. 2008. A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biol. 9:R158
    [Google Scholar]
  106. 106.
    Pohlschroder M, Esquivel RN. 2015. Archaeal type IV pili and their involvement in biofilm formation. Front. Microbiol. 6:190
    [Google Scholar]
  107. 107.
    Probst AJ, Ladd B, Jarett JK, Geller-McGrath DE, Sieber CMK et al. 2018. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3:328–36
    [Google Scholar]
  108. 108.
    Quax TE, Lucas S, Reimann J, Pehau-Arnaudet G, Prevost MC et al. 2011. Simple and elegant design of a virion egress structure in Archaea. PNAS 108:3354–59
    [Google Scholar]
  109. 109.
    Rodrigues-Oliveira T, Belmok A, Vasconcellos D, Schuster B, Kyaw CM. 2017. Archaeal S-layers: overview and current state of the art. Front. Microbiol. 8:2597
    [Google Scholar]
  110. 110.
    Rosenshine I, Tchelet R, Mevarech M. 1989. The mechanism of DNA transfer in the mating system of an archaebacterium. Science 245:1387–89
    [Google Scholar]
  111. 111.
    Rousset F, Cabezas-Caballero J, Piastra-Facon F, Fernandez-Rodriguez J, Clermont O et al. 2021. The impact of genetic diversity on gene essentiality within the Escherichia coli species. Nat. Microbiol. 6:301–12
    [Google Scholar]
  112. 112.
    Santangelo TJ, Cubonova L, Reeve JN. 2008. Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. Appl. Environ. Microbiol. 74:3099–104
    [Google Scholar]
  113. 113.
    Sato T, Fukui T, Atomi H, Imanaka T. 2003. Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 185:210–20
    [Google Scholar]
  114. 114.
    Sato T, Takada D, Itoh T, Ohkuma M, Atomi H. 2020. Integration of large heterologous DNA fragments into the genome of Thermococcus kodakarensis. Extremophiles 24:339–53
    [Google Scholar]
  115. 115.
    Schleper C, Holz I, Janekovic D, Murphy J, Zillig W. 1995. A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J. Bacteriol. 177:4417–26
    [Google Scholar]
  116. 116.
    Schleper C, Kubo K, Zillig W. 1992. The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. PNAS 89:7645–49
    [Google Scholar]
  117. 117.
    Schmidt KJ, Beck KE, Grogan DW. 1999. UV stimulation of chromosomal marker exchange in Sulfolobus acidocaldarius: implications for DNA repair, conjugation and homologous recombination at extremely high temperatures. Genetics 152:1407–15
    [Google Scholar]
  118. 118.
    Schulze S, Pfeiffer F, Garcia BA, Pohlschroder M. 2021. Comprehensive glycoproteomics shines new light on the complexity and extent of glycosylation in archaea. PLOS Biol. 19:e3001277
    [Google Scholar]
  119. 119.
    Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J et al. 2019. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10:1822
    [Google Scholar]
  120. 120.
    Shalev Y, Turgeman-Grott I, Tamir A, Eichler J, Gophna U. 2017. Cell surface glycosylation is required for efficient mating of Haloferax volcanii. Front. Microbiol 8:1253
    [Google Scholar]
  121. 121.
    She Q, Shen B, Chen L 2004. Archaeal integrases and mechanisms of gene capture. Biochem. Soc. Trans. 32:222–26
    [Google Scholar]
  122. 122.
    Sivabalasarma S, Wetzel H, Nussbaum P, van der Does C, Beeby M, Albers SV. 2020. Analysis of cell-cell bridges in Haloferax volcanii using electron cryo-tomography reveal a continuous cytoplasm and S-layer. Front. Microbiol 11:612239
    [Google Scholar]
  123. 123.
    Sleytr UB, Schuster B, Egelseer EM, Pum D. 2014. S-layers: principles and applications. FEMS Microbiol. Rev. 38:823–64
    [Google Scholar]
  124. 124.
    Snyder JC, Bolduc B, Young MJ. 2015. 40 years of archaeal virology: expanding viral diversity. Virology 479–480:369–78
    [Google Scholar]
  125. 125.
    Soler N, Forterre P. 2020. Vesiduction: the fourth way of HGT. Environ. Microbiol. 22:2457–60
    [Google Scholar]
  126. 126.
    Soler N, Gaudin M, Marguet E, Forterre P. 2011. Plasmids, viruses and virus-like membrane vesicles from Thermococcales. Biochem. Soc. Transact. 39:36–44
    [Google Scholar]
  127. 127.
    Soler N, Marguet E, Verbavatz JM, Forterre P. 2008. Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales. Res. Microbiol. 159:390–99
    [Google Scholar]
  128. 128.
    Song Y, Zhu Z, Zhou W, Zhang YPJ. 2021. High-efficiency transformation of archaea by direct PCR products with its application to directed evolution of a thermostable enzyme. Microb. Biotechnol. 14:453–64
    [Google Scholar]
  129. 129.
    Soppa J. 2001. Prokaryotic structural maintenance of chromosomes (SMC) proteins: distribution, phylogeny, and comparison with MukBs and additional prokaryotic and eukaryotic coiled-coil proteins. Gene 278:253–64
    [Google Scholar]
  130. 130.
    Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN et al. 2017. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2:17081
    [Google Scholar]
  131. 131.
    Soucy SM, Fullmer MS, Papke RT, Gogarten JP. 2014. Inteins as indicators of gene flow in the halobacteria. Front. Microbiol 5:299
    [Google Scholar]
  132. 132.
    Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J et al. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–79
    [Google Scholar]
  133. 133.
    Stachler AE, Turgeman-Grott I, Shtifman-Segal E, Allers T, Marchfelder A, Gophna U. 2017. High tolerance to self-targeting of the genome by the endogenous CRISPR-Cas system in an archaeon. Nucleic Acids Res. 45:5208–16
    [Google Scholar]
  134. 134.
    Stone E, Campbell K, Grant I, McAuliffe O. 2019. Understanding and exploiting phage-host interactions. Viruses 11:567
    [Google Scholar]
  135. 135.
    Suzuki S, Kurosawa N. 2019. Participation of UV-regulated genes in the response to helix-distorting DNA damage in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Microbes Environ. 34:363–73
    [Google Scholar]
  136. 136.
    Svirskaite J, Oksanen HM, Daugelavicius R, Bamford DH. 2016. Monitoring physiological changes in haloarchaeal cell during virus release. Viruses 8:59
    [Google Scholar]
  137. 137.
    Swithers KS, Soucy SM, Lasek-Nesselquist E, Lapierre P, Gogarten JP. 2013. Distribution and evolution of the mobile vma-1b intein. Mol. Biol. Evol. 30:2676–87
    [Google Scholar]
  138. 138.
    Tatum EL, Lederberg J. 1947. Gene recombination in the bacterium Escherichia coli. J. Bacteriol. 53:673–84
    [Google Scholar]
  139. 139.
    Tchelet R, Mevarech M. 1993. Interspecies genetic transfer in halophilic archaebacteria. Syst. Appl. Microbiol. 16:578–81
    [Google Scholar]
  140. 140.
    Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP. 2011. Evolution of introns in the archaeal world. PNAS 108:4782–87
    [Google Scholar]
  141. 141.
    Touchon M, Perrin A, Moura de Sousa JA, Vangchhia B, Burn S et al. 2020. Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLOS Genet. 16:e1008866
    [Google Scholar]
  142. 142.
    Tripepi M, Imam S, Pohlschroder M. 2010. Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion. J. Bacteriol. 192:3093–102
    [Google Scholar]
  143. 143.
    Turgeman-Grott I, Joseph S, Marton S, Eizenshtein K, Naor A et al. 2019. Pervasive acquisition of CRISPR memory driven by inter-species mating of archaea can limit gene transfer and influence speciation. Nat. Microbiol. 4:177–86
    [Google Scholar]
  144. 144.
    van Wolferen M, Ajon M, Driessen AJ, Albers SV. 2013. Molecular analysis of the UV-inducible pili operon from Sulfolobus acidocaldarius. MicrobiologyOpen 2:928–37
    [Google Scholar]
  145. 145.
    van Wolferen M, Shajahan A, Heinrich K, Brenzinger S, Black IM et al. 2020. Species-specific recognition of Sulfolobales mediated by UV-inducible pili and S-layer glycosylation patterns. mBio 11:e03014–19
    [Google Scholar]
  146. 146.
    van Wolferen M, Wagner A, van der Does C, Albers SV. 2016. The archaeal Ced system imports DNA. PNAS 113:2496–501
    [Google Scholar]
  147. 147.
    Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ et al. 2016. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1:16170
    [Google Scholar]
  148. 148.
    Vulic M, Dionisio F, Taddei F, Radman M. 1997. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. PNAS 94:9763–67
    [Google Scholar]
  149. 149.
    Wagner A, Whitaker RJ, Krause DJ, Heilers JH, van Wolferen M et al. 2017. Mechanisms of gene flow in archaea. Nat. Rev. Microbiol 15:492–501
    [Google Scholar]
  150. 150.
    Wang Y, Duan Z, Zhu H, Guo X, Wang Z et al. 2007. A novel Sulfolobus non-conjugative extrachromosomal genetic element capable of integration into the host genome and spreading in the presence of a fusellovirus. Virology 363:124–33
    [Google Scholar]
  151. 151.
    Wang Y, Wegener G, Hou J, Wang F, Xiao X 2019. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat. Microbiol. 4:595–602
    [Google Scholar]
  152. 152.
    Waters VL. 2001. Conjugation between bacterial and mammalian cells. Nat. Genet. 29:375–76
    [Google Scholar]
  153. 153.
    Woese CR, Kandler O, Wheelis ML. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87:4576–79
    [Google Scholar]
  154. 154.
    Wolfe JM, Fournier GP. 2018. Horizontal gene transfer constrains the timing of methanogen evolution. Nat. Ecol. Evol. 2:897–903
    [Google Scholar]
  155. 155.
    Wood ER, Ghane F, Grogan DW. 1997. Genetic responses of the thermophilic archaeon Sulfolobus acidocaldarius to short-wavelength UV light. J. Bacteriol. 179:5693–98
    [Google Scholar]
  156. 156.
    Worrell VE, Nagle DP Jr., McCarthy D, Eisenbraun A. 1988. Genetic transformation system in the archaebacterium Methanobacterium thermoautotrophicum Marburg. J. Bacteriol. 170:653–56
    [Google Scholar]
  157. 157.
    Xiong L, Liu S, Chen S, Xiao Y, Zhu B et al. 2019. A new type of DNA phosphorothioation-based antiviral system in archaea. Nat. Commun. 10:1688
    [Google Scholar]
  158. 158.
    Xiong X, Wu G, Wei Y, Liu L, Zhang Y et al. 2020. SspABCD-SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nat. Microbiol. 5:7917–28
    [Google Scholar]
  159. 159.
    Yokoyama H, Kamei N, Konishi K, Hara K, Ishikawa Y et al. 2021. Preparation, crystallization, and X-ray data collection of archaeal oligopeptide permease A. Crystallogr. Rep. 66:1300–5
    [Google Scholar]
  160. 160.
    Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L et al. 2017. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–58
    [Google Scholar]
  161. 161.
    Zawadzki P, Roberts MS, Cohan FM. 1995. The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140:917–32
    [Google Scholar]
  162. 162.
    Zolghadr B, Klingl A, Koerdt A, Driessen AJ, Rachel R, Albers SV 2010. Appendage-mediated surface adherence of Sulfolobus solfataricus. J. Bacteriol. 192:104–10
    [Google Scholar]
/content/journals/10.1146/annurev-micro-040820-124627
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error