1932

Abstract

The study of high-energy heavy-ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider has evolved from a qualitative understanding to the precise extraction of the properties of the quantum chromodynamics medium at extremely high temperatures. Jet quenching has offered unique insights into the transport properties of the quark–gluon plasma (QGP) created in these energetic collisions. Apart from medium modification of jets, jet-induced medium excitation constitutes another crucial aspect of jet–QGP interaction and is indispensable in understanding the soft components of jets. We review recent theoretical and phenomenological developments regarding medium response to jet energy loss, including an overview of both weakly and strongly coupled approaches for describing the thermalization and propagation of energy deposition from jets, effects of medium response on jet observables, and exploration of its unique signatures in jet–hadron correlations. Jet-induced medium excitation is shown to be an essential component in probing the in-medium dynamics of jets and a critical step toward precise extraction of the QGP properties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-112822-031317
2023-09-25
2024-06-27
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-112822-031317.html?itemId=/content/journals/10.1146/annurev-nucl-112822-031317&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wang XN, Gyulassy M. Phys. Rev. Lett. 68:1480 1992.)
    [Google Scholar]
  2. 2.
    Qin GY, Wang XN. Int. J. Mod. Phys. E 24:1530014 2015.)
    [Google Scholar]
  3. 3.
    Majumder A, van Leeuwen M. Prog. Part. Nucl. Phys. 66:41 2011.)
    [Google Scholar]
  4. 4.
    Blaizot JP, Mehtar-Tani Y. Int. J. Mod. Phys. E 24:1530012 2015.)
    [Google Scholar]
  5. 5.
    Cao S, Wang XN. Rep. Prog. Phys. 84:024301 2021.)
    [Google Scholar]
  6. 6.
    Bjorken JD. Report FERMILAB-PUB-82-059-THY Fermi National Accel. Lab. Batavia, IL: 1982.)
  7. 7.
    Braaten E, Thoma MH. Phys. Rev. D 44:2625 1991.)
    [Google Scholar]
  8. 8.
    Djordjevic M. Phys. Rev. C 74:064907 2006.)
    [Google Scholar]
  9. 9.
    Qin GY et al. Phys. Rev. Lett. 100:072301 2008.)
    [Google Scholar]
  10. 10.
    Baier R, Dokshitzer YL, Peigne S, Schiff D. Phys. Lett. B 345:277 1995.)
    [Google Scholar]
  11. 11.
    Baier R et al. Nucl. Phys. B 483:291 1997.)
    [Google Scholar]
  12. 12.
    Zakharov BG JETP Lett. 63:952 1996.)
    [Google Scholar]
  13. 13.
    Gyulassy M, Levai P, Vitev I. Nucl. Phys. B 571:197 2000.)
    [Google Scholar]
  14. 14.
    Wiedemann UA. Nucl. Phys. B 588:303 2000.)
    [Google Scholar]
  15. 15.
    Arnold P, Moore GD, Yaffe LG. J. High Energy Phys. 0206:030 2002.)
    [Google Scholar]
  16. 16.
    Wang XN, Guo XF. Nucl. Phys. A 696:788 2001.)
    [Google Scholar]
  17. 17.
    Aad G et al. (ATLAS Collab.) Phys. Rev. Lett. 114:072302 2015.)
    [Google Scholar]
  18. 18.
    Khachatryan V et al. (CMS Collab.) J. High Energy Phys. 1704:39 2017.)
    [Google Scholar]
  19. 19.
    Acharya S et al. (ALICE Collab.) J. High Energy Phys. 1811:13 2018.)
    [Google Scholar]
  20. 20.
    Bass SA et al. Phys. Rev. C 79:024901 2009.)
    [Google Scholar]
  21. 21.
    Aad G et al. (ATLAS Collab.) Phys. Rev. Lett. 105:252303 2010.)
    [Google Scholar]
  22. 22.
    Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 718:773 2013.)
    [Google Scholar]
  23. 23.
    Zhang H, Owens JF, Wang E, Wang XN. Phys. Rev. Lett. 98:212301 2007.)
    [Google Scholar]
  24. 24.
    Qin GY et al. Phys. Rev. C 80:054909 2009.)
    [Google Scholar]
  25. 25.
    Qin GY, Müller B. Phys. Rev. Lett. 106:162302 2011. Erratum Phys. Rev. Lett. 108:189904 2012.)
    [Google Scholar]
  26. 26.
    Chen L et al. Phys. Lett. B 773:672 2017.)
    [Google Scholar]
  27. 27.
    Chen W et al. Phys. Lett. B 777:86 2018.)
    [Google Scholar]
  28. 28.
    Luo T, Cao S, He Y, Wang XN. Phys. Lett. B 782:707 2018.)
    [Google Scholar]
  29. 29.
    Zhang SL, Luo T, Wang XN, Zhang BW. Phys. Rev. C 98:021901 2018.)
    [Google Scholar]
  30. 30.
    Chatrchyan S et al. (CMS Collab.) J. High Energy Phys. 1210:87 2012.)
    [Google Scholar]
  31. 31.
    Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 730:243 2014.)
    [Google Scholar]
  32. 32.
    Aad G et al. (ATLAS Collab.) Phys. Lett. B 739:320 2014.)
    [Google Scholar]
  33. 33.
    Abdallah MS et al. (STAR Collab.) Phys. Rev. C 105:044906 2022.)
    [Google Scholar]
  34. 34.
    Chang NB, Qin GY. Phys. Rev. C 94:024902 2016.)
    [Google Scholar]
  35. 35.
    Tachibana Y, Chang NB, Qin GY. Phys. Rev. C 95:044909 2017.)
    [Google Scholar]
  36. 36.
    Chang NB, Tachibana Y, Qin GY. Phys. Lett. B 801:135181 2020.)
    [Google Scholar]
  37. 37.
    Tachibana Y et al. (JETSCAPE Collab.) arXiv:2301.02485 [hep-ph] 2023.)
  38. 38.
    Majumder A, Shen C. Phys. Rev. Lett. 109:202301 2012.)
    [Google Scholar]
  39. 39.
    Blaizot JP, Iancu E, Mehtar-Tani Y. Phys. Rev. Lett. 111:052001 2013.)
    [Google Scholar]
  40. 40.
    Djordjevic M, Djordjevic M, Blagojevic B. Phys. Lett. B 737:298 2014.)
    [Google Scholar]
  41. 41.
    Xing WJ, Cao S, Qin GY, Xing H. Phys. Lett. B 805:135424 2020.)
    [Google Scholar]
  42. 42.
    Huss A et al. Phys. Rev. Lett. 126:192301 2021.)
    [Google Scholar]
  43. 43.
    Caucal P, Iancu E, Mueller AH, Soyez G. Phys. Rev. Lett. 120:232001 2018.)
    [Google Scholar]
  44. 44.
    Mehtar-Tani Y, Pablos D, Tywoniuk K. Phys. Rev. Lett. 127:252301 2021.)
    [Google Scholar]
  45. 45.
    Zhao W et al. Phys. Rev. Lett. 128:022302 2022.)
    [Google Scholar]
  46. 46.
    Liu YF et al. Phys. Rev. C 105:044904 2022.)
    [Google Scholar]
  47. 47.
    Kumar A et al. (JETSCAPE Collab.) Phys. Rev. C 107:034911 2023.)
    [Google Scholar]
  48. 48.
    Zhang SL et al. arXiv:2208.08323 [hep-ph] 2022.)
  49. 49.
    Burke KM et al. (JET Collab.) Phys. Rev. C 90:014909 2014.)
    [Google Scholar]
  50. 50.
    Cao S et al. (JETSCAPE Collab.) Phys. Rev. C 104:024905 2021.)
    [Google Scholar]
  51. 51.
    Baier R et al. Nucl. Phys. B 484:265 1997.)
    [Google Scholar]
  52. 52.
    Majumder A, Müller B, Wang XN. Phys. Rev. Lett. 99:192301 2007.)
    [Google Scholar]
  53. 53.
    Wu J, Cao S, Li F. arXiv:2208.14297 [nucl-th] 2022.)
  54. 54.
    Casalderrey-Solana J, Shuryak EV, Teaney D. J. Phys. Conf. Ser. 27:22 2005.)
    [Google Scholar]
  55. 55.
    Stoecker H. Nucl. Phys. A 750:121 2005.)
    [Google Scholar]
  56. 56.
    Chaudhuri AK, Heinz U. Phys. Rev. Lett. 97:062301 2006.)
    [Google Scholar]
  57. 57.
    Ruppert J, Müller B. Phys. Lett. B 618:123 2005.)
    [Google Scholar]
  58. 58.
    Gubser SS, Pufu SS, Yarom A. Phys. Rev. Lett. 100:012301 2008.)
    [Google Scholar]
  59. 59.
    Chesler PM, Yaffe LG. Phys. Rev. Lett. 99:152001 2007.)
    [Google Scholar]
  60. 60.
    Neufeld RB. Phys. Rev. C 79:054909 2009.)
    [Google Scholar]
  61. 61.
    Ma GL, Wang XN. Phys. Rev. Lett. 106:162301 2011.)
    [Google Scholar]
  62. 62.
    Betz B et al. Phys. Rev. Lett. 105:222301 2010.)
    [Google Scholar]
  63. 63.
    Tachibana Y, Hirano T. Phys. Rev. C 93:054907 2016.)
    [Google Scholar]
  64. 64.
    Qin GY, Majumder A, Song H, Heinz U. Phys. Rev. Lett. 103:152303 2009.)
    [Google Scholar]
  65. 65.
    Neufeld RB, Müller B. Phys. Rev. Lett. 103:042301 2009.)
    [Google Scholar]
  66. 66.
    Neufeld RB, Vitev I. Phys. Rev. C 86:024905 2012.)
    [Google Scholar]
  67. 67.
    Renk T. Phys. Rev. C 88:044905 2013.)
    [Google Scholar]
  68. 68.
    Khachatryan V et al. (CMS Collab.) J. High Energy Phys. 1611:55 2016.)
    [Google Scholar]
  69. 69.
    Kunnawalkam Elayavalli R, Zapp KC J. High Energy Phys. 1707:141 2017.)
    [Google Scholar]
  70. 70.
    Park C, Jeon S, Gale C. Nucl. Phys. A 982:643 2019.)
    [Google Scholar]
  71. 71.
    Chen W et al. Phys. Lett. B 810:135783 2020.)
    [Google Scholar]
  72. 72.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. Lett. 128:122301 2022.)
    [Google Scholar]
  73. 73.
    Chen W et al. Phys. Rev. Lett. 127:082301 2021.)
    [Google Scholar]
  74. 74.
    Zhang H, Owens JF, Wang E, Wang XN. Phys. Rev. Lett. 103:032302 2009.)
    [Google Scholar]
  75. 75.
    He Y, Pang LG, Wang XN. Phys. Rev. Lett. 125:122301 2020.)
    [Google Scholar]
  76. 76.
    Yang Z et al. arXiv:2206.02393 [nucl-th] 2022.)
  77. 77.
    Luo A et al. Phys. Lett. B 837:137638 2023.)
    [Google Scholar]
  78. 78.
    Sirimanna C et al. arXiv:2211.15553 [hep-ph] 2022.)
  79. 79.
    Romatschke P. Int. J. Mod. Phys. E 19:1 2010.)
    [Google Scholar]
  80. 80.
    Heinz U, Snellings R. Annu. Rev. Nucl. Part. Sci. 63:123 2013.)
    [Google Scholar]
  81. 81.
    Shen C, Yan L. Nucl. Sci. Tech. 31:122 2020.)
    [Google Scholar]
  82. 82.
    Neufeld RB, Müller B, Ruppert J. Phys. Rev. C 78:041901 2008.)
    [Google Scholar]
  83. 83.
    Yan L, Jeon S, Gale C. Phys. Rev. C 97:034914 2018.)
    [Google Scholar]
  84. 84.
    Floerchinger S, Zapp KC. Eur. Phys. J. C 74:3189 2014.)
    [Google Scholar]
  85. 85.
    Tachibana Y, Hirano T. Phys. Rev. C 90:021902 2014.)
    [Google Scholar]
  86. 86.
    Tachibana Y, Shen C, Majumder A. Phys. Rev. C 106:L021902 2022.)
    [Google Scholar]
  87. 87.
    Du L, Heinz U. Phys. Rev. C 106:034903 2022.)
    [Google Scholar]
  88. 88.
    Wang XN, Zhu Y. Phys. Rev. Lett. 111:062301 2013.)
    [Google Scholar]
  89. 89.
    Cao S, Luo T, Qin GY, Wang XN. Phys. Rev. C 94:014909 2016.)
    [Google Scholar]
  90. 90.
    Guo XF, Wang XN. Phys. Rev. Lett. 85:3591 2000.)
    [Google Scholar]
  91. 91.
    Majumder A. Phys. Rev. D 85:014023 2012.)
    [Google Scholar]
  92. 92.
    He Y, Luo T, Wang XN, Zhu Y. Phys. Rev. C 91:054908 2015.)
    [Google Scholar]
  93. 93.
    Schenke B, Gale C, Jeon S. Phys. Rev. C 80:054913 2009.)
    [Google Scholar]
  94. 94.
    Zapp KC, Stachel J, Wiedemann UA. J. High Energy Phys. 1107:118 2011.)
    [Google Scholar]
  95. 95.
    Zapp KC, Krauss F, Wiedemann UA. J. High Energy Phys. 1303:80 2013.)
    [Google Scholar]
  96. 96.
    Zapp KC. Eur. Phys. J. C 74:2762 2014.)
    [Google Scholar]
  97. 97.
    Casalderrey-Solana J et al. J. High Energy Phys. 1703:135 2017.)
    [Google Scholar]
  98. 98.
    Chesler PM, Rajagopal K. Phys. Rev. D 90:025033 2014.)
    [Google Scholar]
  99. 99.
    Gao Z et al. Phys. Rev. C 97:044903 2018.)
    [Google Scholar]
  100. 100.
    Bouras I, Betz B, Xu Z, Greiner C. Phys. Rev. C 90:024904 2014.)
    [Google Scholar]
  101. 101.
    Pablos D, Singh M, Jeon S, Gale C. Phys. Rev. C 106:034901 2022.)
    [Google Scholar]
  102. 102.
    Schenke B, Jeon S, Gale C. Phys. Rev. C 82:014903 2010.)
    [Google Scholar]
  103. 103.
    Iancu E, Wu B J. High Energy Phys. 1510:155 2015.)
    [Google Scholar]
  104. 104.
    Schlichting S, Soudi I. J. High Energy Phys. 2107:77 2021.)
    [Google Scholar]
  105. 105.
    Mehtar-Tani Y, Schlichting S, Soudi I. arXiv:2209.10569 [hep-ph] 2022.)
  106. 106.
    Aziz MA, Gavin S. Phys. Rev. C 70:034905 2004.)
    [Google Scholar]
  107. 107.
    Xie M, Ke W, Zhang H, Wang XN. arXiv:2206.01340 [hep-ph] 2022.)
  108. 108.
    He Y et al. Phys. Rev. C 99:054911 2019.)
    [Google Scholar]
  109. 109.
    He Y et al. Phys. Rev. C 106:044904 2022.)
    [Google Scholar]
  110. 110.
    Aaboud M et al. (ATLAS Collab.) Phys. Lett. B 790:108 2019.)
    [Google Scholar]
  111. 111.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 2105:284 2021.)
    [Google Scholar]
  112. 112.
    Cao S et al. Nucl. Part. Phys. Proc. 289–290:217 2017.)
    [Google Scholar]
  113. 113.
    Chatrchyan S et al. (CMS Collab.) Phys. Rev. C 90:024908 2014.)
    [Google Scholar]
  114. 114.
    Aaboud M et al. (ATLAS Collab.) Eur. Phys. J. C 77:379 2017.)
    [Google Scholar]
  115. 115.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. Lett. 121:242301 2018.)
    [Google Scholar]
  116. 116.
    Aaboud M et al. (ATLAS Collab.) Phys. Rev. Lett. 123:042001 2019.)
    [Google Scholar]
  117. 117.
    Tachibana Y et al. (JETSCAPE Collab.) PoS HardProbes2018 099 2018.)
    [Google Scholar]
  118. 118.
    Dasgupta M, Fregoso A, Marzani S, Salam GP. J. High Energy Phys. 1309:29 2013.)
    [Google Scholar]
  119. 119.
    Frye C, Larkoski AJ, Schwartz MD, Yan K. J. High Energy Phys. 1607:64 2016.)
    [Google Scholar]
  120. 120.
    Sirunyan AM et al. (CMS Collab.) Phys. Rev. Lett. 120:142302 2018.)
    [Google Scholar]
  121. 121.
    Kauder K. (STAR Collab.) Nucl. Part. Phys. Proc. 289–290:137 2017.)
    [Google Scholar]
  122. 122.
    Chien YT, Vitev I. Phys. Rev. Lett. 119:112301 2017.)
    [Google Scholar]
  123. 123.
    Mehtar-Tani Y, Tywoniuk K J. High Energy Phys. 1704:125 2017.)
    [Google Scholar]
  124. 124.
    Chang NB, Cao S, Qin GY. Phys. Lett. B 781:423 2018.)
    [Google Scholar]
  125. 125.
    Li HT, Vitev I. Phys. Lett. B 793:259 2019.)
    [Google Scholar]
  126. 126.
    Caucal P, Iancu E, Soyez G. J. High Energy Phys. 1910:273 2019.)
    [Google Scholar]
  127. 127.
    Milhano G, Wiedemann UA, Zapp KC. Phys. Lett. B 779:409 2018.)
    [Google Scholar]
  128. 128.
    Andrews HA et al. J. Phys. G 47:065102 2020.)
    [Google Scholar]
  129. 129.
    Acharya S et al. (ALICE Collab.) Phys. Lett. B 776:249 2018.)
    [Google Scholar]
  130. 130.
    Casalderrey-Solana J, Milhano G, Pablos D, Rajagopal K J. High Energy Phys. 2001:44 2020.)
    [Google Scholar]
  131. 131.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 1810:161 2018.)
    [Google Scholar]
  132. 132.
    Luo T. PoS HardProbes2018 036 2019.)
    [Google Scholar]
  133. 133.
    Lokhtin IP, Alkin AA, Snigirev AM. Eur. Phys. J. C 75:452 2015.)
    [Google Scholar]
  134. 134.
    Perez-Ramos R, Renk T Phys. Rev. D 90:014018 2014.)
    [Google Scholar]
  135. 135.
    Chien YT, Vitev I. J. High Energy Phys. 1605:23 2016.)
    [Google Scholar]
  136. 136.
    Mehtar-Tani Y, Tywoniuk K. Phys. Lett. B 744:284 2015.)
    [Google Scholar]
  137. 137.
    Adamczyk L et al. (STAR Collab.) Phys. Lett. B 760:689 2016.)
    [Google Scholar]
  138. 138.
    Luo A et al. Eur. Phys. J. C 82:156 2022.)
    [Google Scholar]
  139. 139.
    Lin ZW et al. Phys. Rev. C 72:064901 2005.)
    [Google Scholar]
  140. 140.
    Zhang B, Chen LW, Ko CM. Phys. Rev. C 72:024906 2005.)
    [Google Scholar]
  141. 141.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 2105:116 2021.)
    [Google Scholar]
  142. 142.
    Sirunyan AM et al. (CMS Collab.) J. High Energy Phys. 1805:6 2018.)
    [Google Scholar]
  143. 143.
    Yang Z et al. Phys. Rev. Lett. 130:052301 2023.)
    [Google Scholar]
  144. 144.
    Chen W et al. Nucl. Phys. A 1005:121934 2021.)
    [Google Scholar]
  145. 145.
    Fries RJ, Muller B, Nonaka C, Bass SA. Phys. Rev. Lett. 90:202303 2003.)
    [Google Scholar]
  146. 146.
    Molnar D, Voloshin SA. Phys. Rev. Lett. 91:092301 2003.)
    [Google Scholar]
  147. 147.
    Greco V, Ko CM, Levai P. Phys. Rev. Lett. 90:202302 2003.)
    [Google Scholar]
  148. 148.
    Hwa RC, Yang CB. Phys. Rev. C 70:024905 2004.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-112822-031317
Loading
/content/journals/10.1146/annurev-nucl-112822-031317
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error