1932

Abstract

Human syndromes and mouse mutants that exhibit accelerated but bona fide aging in multiple organs and tissues have been invaluable for the identification of nine denominators of aging: telomere attrition, genome instability, epigenetic alterations, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular communication, loss of proteostasis, cellular senescence and adult stem cell exhaustion. However, whether and how these instigators of aging interrelate or whether they have one root cause is currently largely unknown. Rare human progeroid syndromes and corresponding mouse mutants with resolved genetic defects highlight the dominant importance of genome maintenance for aging. A second class of aging-related disorders reveals a cross connection with metabolism. As genome maintenance and metabolism are closely interconnected, they may constitute the main underlying biology of aging. This review focuses on the role of genome stability in aging, its crosstalk with metabolism, and options for nutritional and/or pharmaceutical interventions that delay age-related pathology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010814-124316
2016-01-06
2025-01-20
The full text of this item is not currently available.

Literature Cited

  1. Jackson SP, Bartek J. 1.  2009. The DNA-damage response in human biology and disease. Nature 461:1071–78 [Google Scholar]
  2. Gems D, Partridge L. 2.  2013. Genetics of longevity in model organisms: debates and paradigm shifts. Annu. Rev. Physiol. 75:621–44 [Google Scholar]
  3. Reversade B, Escande-Beillard N, Dimopoulou A, Fischer B, Chng SC. 3.  et al. 2009. Mutations in PYCR1 cause cutis laxa with progeroid features. Nat. Genet. 41:1016–21 [Google Scholar]
  4. Skidmore DL, Chitayat D, Morgan T, Hinek A, Fischer B. 4.  et al. 2011. Further expansion of the phenotypic spectrum associated with mutations in ALDH18A1, encoding Δ1-pyrroline-5-carboxylate synthase (P5CS). Am. J. Med. Genet. 155A:1848–56 [Google Scholar]
  5. Gardeitchik T, Mohamed M, Fischer B, Lammens M, Lefeber D. 5.  et al. 2014. Clinical and biochemical features guiding the diagnostics in neurometabolic cutis laxa. Eur. J. Hum. Genet. 22:888–95 [Google Scholar]
  6. Sousa SB, Jenkins D, Chanudet E, Tasseva G, Ishida M. 6.  et al. 2014. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome. Nat. Genet. 46:70–76 [Google Scholar]
  7. Faiyaz-Ul-Haque M, Zaidi SH, Al-Ali M, Al-Mureikhi MS, Kennedy S. 7.  et al. 2004. A novel missense mutation in the galactosyltransferase-I (B4GALT7) gene in a family exhibiting facioskeletal anomalies and Ehlers-Danlos syndrome resembling the progeroid type. Am. J. Med. Genet. A 128A:39–45 [Google Scholar]
  8. Malfait F, Kariminejad A, Van Damme T, Gauche C, Syx D. 8.  et al. 2013. Defective initiation of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers-Danlos-syndrome-like connective tissue disorder. Am. J. Hum. Genet. 92:935–45 [Google Scholar]
  9. Thauvin-Robinet C, Auclair M, Duplomb L, Caron-Debarle M, Avila M. 9.  et al. 2013. PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy. Am. J. Hum. Genet. 93:141–49 [Google Scholar]
  10. Vivanco I, Sawyers CL. 10.  2002. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat. Rev. Cancer 2:489–501 [Google Scholar]
  11. Shmookler Reis RJ, Bharill P, Tazearslan C, Ayyadevara S. 11.  2009. Extreme-longevity mutations orchestrate silencing of multiple signaling pathways. Biochim. Biophys. Acta 1790:1075–83 [Google Scholar]
  12. Kloet DE, Burgering BM. 12.  2011. The PKB/FOXO switch in aging and cancer. Biochim. Biophys. Acta 1813:1926–37 [Google Scholar]
  13. Fruman DA, Mauvais-Jarvis F, Pollard DA, Yballe CM, Brazil D. 13.  et al. 2000. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85α. Nat. Genet. 26:379–82 [Google Scholar]
  14. Van Goethem G, Dermaut B, Lofgren A, Martin JJ, Van Broeckhoven C. 14.  2001. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat. Genet. 28:211–12 [Google Scholar]
  15. Jin K. 15.  2010. Modern biological theories of aging. Aging Dis. 1:72–74 [Google Scholar]
  16. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT. 16.  et al. 2004. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–23 [Google Scholar]
  17. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K. 17.  et al. 2005. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–84 [Google Scholar]
  18. Vermulst M, Wanagat J, Kujoth GC, Bielas JH, Rabinovitch PS. 18.  et al. 2008. DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat. Genet. 40:392–94 [Google Scholar]
  19. Weedon MN, Ellard S, Prindle MJ, Caswell R, Lango Allen H. 19.  et al. 2013. An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat. Genet. 45:947–50 [Google Scholar]
  20. Cabanillas R, Cadinanos J, Villameytide JA, Perez M, Longo J. 20.  et al. 2011. Nestor-Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am. J. Med. Genet. 155A:2617–25 [Google Scholar]
  21. Puente XS, Quesada V, Osorio FG, Cabanillas R, Cadinanos J. 21.  et al. 2011. Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am. J. Hum. Genet. 88:650–56 [Google Scholar]
  22. Haraguchi T, Koujin T, Segura-Totten M, Lee KK, Matsuoka Y. 22.  et al. 2001. BAF is required for emerin assembly into the reforming nuclear envelope. J. Cell Sci. 114:4575–85 [Google Scholar]
  23. Zheng R, Ghirlando R, Lee MS, Mizuuchi K, Krause M, Craigie R. 23.  2000. Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. PNAS 97:8997–9002 [Google Scholar]
  24. Wijshake T, Malureanu LA, Baker DJ, Jeganathan KB, van de Sluis B, van Deursen JM. 24.  2012. Reduced life- and healthspan in mice carrying a mono-allelic BubR1 MVA mutation. PLOS Genet. 8:e1003138 [Google Scholar]
  25. Mounkes L, Kozlov S, Burke B, Stewart CL. 25.  2003. The laminopathies: nuclear structure meets disease. Curr. Opin. Genet. Dev. 13:223–30 [Google Scholar]
  26. Mounkes LC, Stewart CL. 26.  2004. Aging and nuclear organization: lamins and progeria. Curr. Opin. Cell Biol. 16:322–27 [Google Scholar]
  27. Agarwal AK, Fryns JP, Auchus RJ, Garg A. 27.  2003. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 12:1995–2001 [Google Scholar]
  28. Barrowman J, Wiley PA, Hudon-Miller SE, Hrycyna CA, Michaelis S. 28.  2012. Human ZMPSTE24 disease mutations: residual proteolytic activity correlates with disease severity. Hum. Mol. Genet. 21:4084–93 [Google Scholar]
  29. Burtner CR, Kennedy BK. 29.  2010. Progeria syndromes and ageing: what is the connection?. Nat. Rev. Mol. Cell Biol. 11:567–78 [Google Scholar]
  30. Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N. 30.  et al. 1999. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147:913–20 [Google Scholar]
  31. Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL. 31.  2003. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423:298–301 [Google Scholar]
  32. Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A, Folgueras AR. 32.  et al. 2005. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437:564–68 [Google Scholar]
  33. Richards SA, Muter J, Ritchie P, Lattanzi G, Hutchison CJ. 33.  2011. The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum. Mol. Genet. 20:3997–4004 [Google Scholar]
  34. Musich PR, Zou Y. 34.  2009. Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A. Aging 1:28–37 [Google Scholar]
  35. Liu Y, Wang Y, Rusinol AE, Sinensky MS, Liu J. 35.  et al. 2008. Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A. FASEB J. 22:603–11 [Google Scholar]
  36. Liu B, Wang J, Chan KM, Tjia WM, Deng W. 36.  et al. 2005. Genomic instability in laminopathy-based premature aging. Nat. Med. 11:780–85 [Google Scholar]
  37. Aubert G, Lansdorp PM. 37.  2008. Telomeres and aging. Physiol. Rev. 88:557–79 [Google Scholar]
  38. Lee HW, Blasco MA, Gottlieb GJ, Horner JW 2nd, Greider CW, DePinho RA. 38.  1998. Essential role of mouse telomerase in highly proliferative organs. Nature 392:569–74 [Google Scholar]
  39. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM. 39.  et al. 1997. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34 [Google Scholar]
  40. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ. 40.  et al. 1999. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:701–12 [Google Scholar]
  41. Hockemeyer D, Palm W, Wang RC, Couto SS, de Lange T. 41.  2008. Engineered telomere degradation models dyskeratosis congenita. Genes Dev. 22:1773–85 [Google Scholar]
  42. Veith S, Mangerich A. 42.  2014. RecQ helicases and PARP1 team up in maintaining genome integrity. Ageing Res. Rev. 23:12–28 [Google Scholar]
  43. Lebel M, Leder P. 43.  1998. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. PNAS 95:13097–102 [Google Scholar]
  44. Lombard DB, Beard C, Johnson B, Marciniak RA, Dausman J. 44.  et al. 2000. Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol. Cell. Biol. 20:3286–91 [Google Scholar]
  45. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P. 45.  et al. 2004. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat. Genet. 36:877–82 [Google Scholar]
  46. Goss KH, Risinger MA, Kordich JJ, Sanz MM, Straughen JE. 46.  et al. 2002. Enhanced tumor formation in mice heterozygous for Blm mutation. Science 297:2051–53 [Google Scholar]
  47. Luo G, Santoro IM, McDaniel LD, Nishijima I, Mills M. 47.  et al. 2000. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat. Genet. 26:424–29 [Google Scholar]
  48. Hoki Y, Araki R, Fujimori A, Ohhata T, Koseki H. 48.  et al. 2003. Growth retardation and skin abnormalities of the Recql4-deficient mouse. Hum. Mol. Genet. 12:2293–99 [Google Scholar]
  49. Hoeijmakers JH. 49.  2001. Genome maintenance mechanisms for preventing cancer. Nature 411:366–74 [Google Scholar]
  50. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. 50.  2014. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15:465–81 [Google Scholar]
  51. Hosseini M, Mahfouf W, Serrano-Sanchez M, Raad H, Harfouche G. 51.  et al. 2015. Premature skin aging features rescued by inhibition of NADPH oxidase activity in XPC-deficient mice. J. Investig. Dermatol. 135:41108–18 [Google Scholar]
  52. Bradford PT, Goldstein AM, Tamura D, Khan SG, Ueda T. 52.  et al. 2011. Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterises the role of DNA repair. J. Med. Genet. 48:168–76 [Google Scholar]
  53. Andressoo JO, Hoeijmakers JH, de Waard H. 53.  2005. Nucleotide excision repair and its connection with cancer and ageing. Adv. Exp. Med. Biol. 570:45–83 [Google Scholar]
  54. Hoeijmakers JH. 54.  2009. DNA damage, aging, and cancer. N. Engl. J. Med. 361:1475–85 [Google Scholar]
  55. Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR. 55.  et al. 2006. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444:1038–43 [Google Scholar]
  56. Baple EL, Chambers H, Cross HE, Fawcett H, Nakazawa Y. 56.  et al. 2014. Hypomorphic PCNA mutation underlies a human DNA repair disorder. J. Clin. Investig. 124:3137–46 [Google Scholar]
  57. Jaarsma D, van der Pluijm I, van der Horst GT, Hoeijmakers JH. 57.  2013. Cockayne syndrome pathogenesis: lessons from mouse models. Mech. Ageing Dev. 134:180–95 [Google Scholar]
  58. Barnhoorn S, Uittenboogaard LM, Jaarsma D, Vermeij WP, Tresini M. 58.  et al. 2014. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency. PLOS Genet. 10:e1004686 [Google Scholar]
  59. de Boer J, Andressoo JO, de Wit J, Huijmans J, Beems RB. 59.  et al. 2002. Premature aging in mice deficient in DNA repair and transcription. Science 296:1276–79 [Google Scholar]
  60. van der Pluijm I, Garinis GA, Brandt RM, Gorgels TG, Wijnhoven SW. 60.  et al. 2007. Impaired genome maintenance suppresses the growth hormone–insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLOS Biol. 5:e2 [Google Scholar]
  61. Dolle ME, Kuiper RV, Roodbergen M, Robinson J, de Vlugt S. 61.  et al. 2011. Broad segmental progeroid changes in short-lived Ercc1−/Δ7 mice. Pathobiol. Aging Age Relat. Dis. 1:89–97 [Google Scholar]
  62. Vermeij WP, Hoeijmakers JH, Pothof J. 62.  2014. Aging: Not all DNA damage is equal. Curr. Opin. Genet. Dev. 26:124–30 [Google Scholar]
  63. McWhir J, Selfridge J, Harrison DJ, Squires S, Melton DW. 63.  1993. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nat. Genet. 5217–24 [Google Scholar]
  64. Weeda G, Donker I, de Wit J, Morreau H, Janssens R. 64.  et al. 1997. Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr. Biol. 7:427–39 [Google Scholar]
  65. Nunez F, Chipchase MD, Clarke AR, Melton DW. 65.  2000. Nucleotide excision repair gene (ERCC1) deficiency causes G2 arrest in hepatocytes and a reduction in liver binucleation: the role of p53 and p21. FASEB J. 14:1073–82 [Google Scholar]
  66. Hsia KT, Millar MR, King S, Selfridge J, Redhead NJ. 66.  et al. 2003. DNA repair gene Ercc1 is essential for normal spermatogenesis and oogenesis and for functional integrity of germ cell DNA in the mouse. Development 130:369–78 [Google Scholar]
  67. Chipchase MD, O'Neill M, Melton DW. 67.  2003. Characterization of premature liver polyploidy in DNA repair (Ercc1)-deficient mice. Hepatology 38:958–66 [Google Scholar]
  68. Schrader CE, Vardo J, Linehan E, Twarog MZ, Niedernhofer LJ. 68.  et al. 2004. Deletion of the nucleotide excision repair gene Ercc1 reduces immunoglobulin class switching and alters mutations near switch recombination junctions. J. Exp. Med. 200:321–30 [Google Scholar]
  69. Prasher JM, Lalai AS, Heijmans-Antonissen C, Ploemacher RE, Hoeijmakers JH. 69.  et al. 2005. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1−/− mice. EMBO J. 24:861–71 [Google Scholar]
  70. Doig J, Anderson C, Lawrence NJ, Selfridge J, Brownstein DG, Melton DW. 70.  2006. Mice with skin-specific DNA repair gene (Ercc1) inactivation are hypersensitive to ultraviolet irradiation-induced skin cancer and show more rapid actinic progression. Oncogene 25:6229–38 [Google Scholar]
  71. Kirschner K, Singh R, Prost S, Melton DW. 71.  2007. Characterisation of Ercc1 deficiency in the liver and in conditional Ercc1-deficient primary hepatocytes in vitro. DNA Repair 6:304–16 [Google Scholar]
  72. Lawrence NJ, Sacco JJ, Brownstein DG, Gillingwater TH, Melton DW. 72.  2008. A neurological phenotype in mice with DNA repair gene Ercc1 deficiency. DNA Repair 7:281–91 [Google Scholar]
  73. de Waard MC, van der Pluijm I, Zuiderveen Borgesius N, Comley LH, Haasdijk ED. 73.  et al. 2010. Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice. Acta Neuropathol. 120:461–75 [Google Scholar]
  74. Vo N, Seo HY, Robinson A, Sowa G, Bentley D. 74.  et al. 2010. Accelerated aging of intervertebral discs in a mouse model of progeria. J. Orthop. Res. 28:1600–7 [Google Scholar]
  75. Goss JR, Stolz DB, Robinson AR, Zhang M, Arbujas N. 75.  et al. 2011. Premature aging-related peripheral neuropathy in a mouse model of progeria. Mech. Ageing Dev. 132:437–42 [Google Scholar]
  76. Borgesius NZ, de Waard MC, van der Pluijm I, Omrani A, Zondag GC. 76.  et al. 2011. Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair. J. Neurosci. 31:12543–53 [Google Scholar]
  77. Gregg SQ, Gutierrez V, Robinson AR, Woodell T, Nakao A. 77.  et al. 2012. A mouse model of accelerated liver aging caused by a defect in DNA repair. Hepatology 55:609–21 [Google Scholar]
  78. Spoor M, Nagtegaal AP, Ridwan Y, Borgesius NZ, van Alphen B. 78.  et al. 2012. Accelerated loss of hearing and vision in the DNA-repair deficient Ercc1Δ/− mouse. Mech. Ageing Dev. 133:59–67 [Google Scholar]
  79. Kamileri I, Karakasilioti I, Sideri A, Kosteas T, Tatarakis A. 79.  et al. 2012. Defective transcription initiation causes postnatal growth failure in a mouse model of nucleotide excision repair (NER) progeria. PNAS 109:2995–3000 [Google Scholar]
  80. Verhagen-Oldenampsen JH, Haanstra JR, van Strien PM, Valkhof M, Touw IP, von Lindern M. 80.  2012. Loss of Ercc1 results in a time- and dose-dependent reduction of proliferating early hematopoietic progenitors. Anemia 2012:783068 [Google Scholar]
  81. Durik M, Kavousi M, van der Pluijm I, Isaacs A, Cheng C. 81.  et al. 2012. Nucleotide excision DNA repair is associated with age-related vascular dysfunction. Circulation 126:468–78 [Google Scholar]
  82. Cho JS, Kook SH, Robinson AR, Niedernhofer LJ, Lee BC. 82.  2013. Cell autonomous and nonautonomous mechanisms drive hematopoietic stem/progenitor cell loss in the absence of DNA repair. Stem Cells 31:511–25 [Google Scholar]
  83. Chen Q, Liu K, Robinson AR, Clauson CL, Blair HC. 83.  et al. 2013. DNA damage drives accelerated bone aging via an NF-κB-dependent mechanism. J. Bone Miner. Res. 28:1214–28 [Google Scholar]
  84. Roh DS, Du Y, Gabriele ML, Robinson AR, Niedernhofer LJ, Funderburgh JL. 84.  2013. Age-related dystrophic changes in corneal endothelium from DNA repair-deficient mice. Aging Cell 12:1122–31 [Google Scholar]
  85. Karakasilioti I, Kamileri I, Chatzinikolaou G, Kosteas T, Vergadi E. 85.  et al. 2013. DNA damage triggers a chronic autoinflammatory response, leading to fat depletion in NER progeria. Cell Metab. 18:403–15 [Google Scholar]
  86. Raj DD, Jaarsma D, Holtman IR, Olah M, Ferreira FM. 86.  et al. 2014. Priming of microglia in a DNA-repair deficient model of accelerated aging. Neurobiol. Aging 35:2147–60 [Google Scholar]
  87. Schumacher B, van der Pluijm I, Moorhouse MJ, Kosteas T, Robinson AR. 87.  et al. 2008. Delayed and accelerated aging share common longevity assurance mechanisms. PLOS Genet. 4:e1000161 [Google Scholar]
  88. Nevedomskaya E, Meissner A, Goraler S, de Waard M, Ridwan Y. 88.  et al. 2010. Metabolic profiling of accelerated aging ERCC1d/− mice. J. Proteome Res. 9:3680–87 [Google Scholar]
  89. Vegh MJ, de Waard MC, van der Pluijm I, Ridwan Y, Sassen MJ. 89.  et al. 2012. Synaptic proteome changes in a DNA repair deficient ercc1 mouse model of accelerated aging. J. Proteome Res. 11:1855–67 [Google Scholar]
  90. de Graaf EL, Vermeij WP, de Waard MC, Rijksen Y, van der Pluijm I. 90.  et al. 2013. Spatio-temporal analysis of molecular determinants of neuronal degeneration in the aging mouse cerebellum. Mol. Cell Proteomics 12:1350–62 [Google Scholar]
  91. Schermer B, Bartels V, Frommolt P, Habermann B, Braun F. 91.  et al. 2013. Transcriptional profiling reveals progeroid Ercc1−/Δ mice as a model system for glomerular aging. BMC Genomics 14:559 [Google Scholar]
  92. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. 92.  2013. The hallmarks of aging. Cell 153:1194–217 [Google Scholar]
  93. Lindahl T. 93.  1993. Instability and decay of the primary structure of DNA. Nature 362:709–15 [Google Scholar]
  94. Swenberg JA, Lu K, Moeller BC, Gao L, Upton PB. 94.  et al. 2011. Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicol. Sci. 120:Suppl. 1S130–45 [Google Scholar]
  95. Dolle ME, Snyder WK, Gossen JA, Lohman PH, Vijg J. 95.  2000. Distinct spectra of somatic mutations accumulated with age in mouse heart and small intestine. PNAS 97:8403–8 [Google Scholar]
  96. Polo SE. 96.  2015. Reshaping chromatin after DNA damage: the choreography of histone proteins. J. Mol. Biol. 427:3626–36 [Google Scholar]
  97. Aydin OZ, Vermeulen W, Lans H. 97.  2014. ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle 13:3016–25 [Google Scholar]
  98. Jeggo PA, Downs JA. 98.  2014. Roles of chromatin remodellers in DNA double strand break repair. Exp. Cell Res. 329:69–77 [Google Scholar]
  99. Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA. 99.  2010. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141:970–81 [Google Scholar]
  100. Rang FJ, Boonstra J. 100.  2014. Causes and consequences of age-related changes in DNA methylation: a role for ROS?. Biology 3:403–25 [Google Scholar]
  101. Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA. 101.  et al. 2006. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441:1011–14 [Google Scholar]
  102. Rossiello F, Herbig U, Longhese MP, Fumagalli M, d'Adda di Fagagna F. 102.  2014. Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr. Opin. Genet. Dev. 26:89–95 [Google Scholar]
  103. Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP. 103.  et al. 2009. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11:973–79 [Google Scholar]
  104. Garinis GA, Uittenboogaard LM, Stachelscheid H, Fousteri M, van Ijcken W. 104.  et al. 2009. Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity. Nat. Cell Biol. 11:604–15 [Google Scholar]
  105. Derks KW, Hoeijmakers JH, Pothof J. 105.  2014. The DNA damage response: the omics era and its impact. DNA Repair 19:214–20 [Google Scholar]
  106. Scheibye-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T. 106.  et al. 2014. A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab. 20:840–55 [Google Scholar]
  107. Signer RA, Morrison SJ. 107.  2013. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12:152–65 [Google Scholar]
  108. Wang J, Sun Q, Morita Y, Jiang H, Gross A. 108.  et al. 2012. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 148:1001–14 [Google Scholar]
  109. Yahata T, Takanashi T, Muguruma Y, Ibrahim AA, Matsuzawa H. 109.  et al. 2011. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118:2941–50 [Google Scholar]
  110. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. 110.  2007. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:725–29 [Google Scholar]
  111. Campisi J. 111.  2001. From cells to organisms: can we learn about aging from cells in culture?. Exp. Gerontol. 36:607–18 [Google Scholar]
  112. Naylor RM, Baker DJ, van Deursen JM. 112.  2013. Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin. Pharmacol. Ther. 93:105–16 [Google Scholar]
  113. Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. 113.  2014. Senescence and apoptosis: dueling or complementary cell fates?. EMBO Rep. 15:1139–53 [Google Scholar]
  114. Maccormick RE. 114.  2006. Possible acceleration of aging by adjuvant chemotherapy: a cause of early onset frailty?. Med. Hypotheses 67:212–15 [Google Scholar]
  115. Stolk L, Perry JR, Chasman DI, He C, Mangino M. 115.  et al. 2012. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nat. Genet. 44:260–68 [Google Scholar]
  116. Titus S, Li F, Stobezki R, Akula K, Unsal E. 116.  et al. 2013. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci. Transl. Med. 5:172ra21 [Google Scholar]
  117. Speakman JR, Mitchell SE. 117.  2011. Caloric restriction. Mol. Aspects Med. 32:159–221 [Google Scholar]
  118. Garcia AM, Busuttil RA, Calder RB, Dolle ME, Diaz V. 118.  et al. 2008. Effect of Ames dwarfism and caloric restriction on spontaneous DNA mutation frequency in different mouse tissues. Mech. Ageing Dev. 129:528–33 [Google Scholar]
  119. Kenyon CJ. 119.  2010. The genetics of ageing. Nature 464:504–12 [Google Scholar]
  120. Piper MD, Bartke A. 120.  2008. Diet and aging. Cell Metab. 8:99–104 [Google Scholar]
  121. Fayard E, Xue G, Parcellier A, Bozulic L, Hemmings BA. 121.  2010. Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway. Curr. Top. Microbiol. Immunol. 346:31–56 [Google Scholar]
  122. Stronach EA, Chen M, Maginn EN, Agarwal R, Mills GB. 122.  et al. 2011. DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia 13:1069–80 [Google Scholar]
  123. Toulany M, Schickfluss TA, Fattah KR, Lee KJ, Chen BP. 123.  et al. 2011. Function of erbB receptors and DNA-PKcs on phosphorylation of cytoplasmic and nuclear Akt at S473 induced by erbB1 ligand and ionizing radiation. Radiother. Oncol. 101:140–46 [Google Scholar]
  124. Fraser M, Harding SM, Zhao H, Coackley C, Durocher D, Bristow RG. 124.  2011. MRE11 promotes AKT phosphorylation in direct response to DNA double-strand breaks. Cell Cycle 10:2218–32 [Google Scholar]
  125. Boehme KA, Kulikov R, Blattner C. 125.  2008. p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK. PNAS 105:7785–90 [Google Scholar]
  126. Viniegra JG, Martinez N, Modirassari P, Hernandez Losa J, Parada Cobo C. 126.  et al. 2005. Full activation of PKB/Akt in response to insulin or ionizing radiation is mediated through ATM. J. Biol. Chem. 280:4029–36 [Google Scholar]
  127. Xu N, Lao Y, Zhang Y, Gillespie DA. 127.  2012. Akt: a double-edged sword in cell proliferation and genome stability. J. Oncol. 2012:951724 [Google Scholar]
  128. Poyurovsky MV, Prives C. 128.  2010. P53 and aging: a fresh look at an old paradigm. Aging 2:380–82 [Google Scholar]
  129. Burgering BM, Medema RH. 129.  2003. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J. Leukoc. Biol. 73:689–701 [Google Scholar]
  130. Yamaza H, Komatsu T, Wakita S, Kijogi C, Park S. 130.  et al. 2010. FoxO1 is involved in the antineoplastic effect of calorie restriction. Aging Cell 9:372–82 [Google Scholar]
  131. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr. 131.  et al. 2002. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296:530–34 [Google Scholar]
  132. Tilstra JS, Robinson AR, Wang J, Gregg SQ, Clauson CL. 132.  et al. 2012. NF-κB inhibition delays DNA damage-induced senescence and aging in mice. J. Clin. Investig. 122:2601–12 [Google Scholar]
  133. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG. 133.  et al. 2011. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–36 [Google Scholar]
  134. Lavasani M, Robinson AR, Lu A, Song M, Feduska JM. 134.  et al. 2012. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nat. Commun. 3:608 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010814-124316
Loading
/content/journals/10.1146/annurev-pharmtox-010814-124316
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error