1932

Abstract

Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-022516-022811
2018-02-15
2025-01-10
The full text of this item is not currently available.

Literature Cited

  1. Allen GM. 1.  1939. Bats Cambridge, MA: Harvard Univ. Press [Google Scholar]
  2. Nagel T. 2.  1974. What is it like to be a bat?. Philos. Rev. 83:4435–50 [Google Scholar]
  3. Fenton MB, Grinnell AD, Popper AN, Fay RR. 3. , eds. 2016. Bat Bioacoustics New York: Springer [Google Scholar]
  4. Teeling EC, Dool S, Springer MS. 4.  2012. Phylogenies, fossils and functional genes: the evolution of echolocation in bats. See Reference 29 1–22
  5. Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ. 5.  2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:5709580–84 [Google Scholar]
  6. McCracken GF, Westbrook JK, Brown VA, Eldridge M, Federico P. 6.  et al. 2012. Bats track and exploit changes in insect pest populations. PLOS ONE 7:8e43839 [Google Scholar]
  7. Bumrungsri S, Lang D, Harrower C, Sripaoraya E, Kitpipit K. 7.  et al. 2013. The dawn bat, Eonycterisspelaea Dobson (Chiroptera: Pteropodidae) feeds mainly on pollen of economically important food plants in Thailand. Acta Chiropterologica 15:195–104 [Google Scholar]
  8. Riccucci M, Lanza B. 8.  2014. Bats and insect pest control: a review. Vespertilio 17:161–69 [Google Scholar]
  9. Puig-Montserrat X, Torre I, López-Baucells A, Guerrieri E, Monti MM. 9.  et al. 2015. Pest control service provided by bats in Mediterranean rice paddies: linking agroecosystems structure to ecological functions. Mamm. Biol. 80:3237–45 [Google Scholar]
  10. Boyles JG, Cryan PM, McCracken GF, Kunz TH. 10.  2011. Economic importance of bats in agriculture. Science 332:602541–42 [Google Scholar]
  11. Wang LF, Walker PJ, Poon LL. 11.  2011. Mass extinctions, biodiversity and mitochondrial function: Are bats “special” as reservoirs for emerging viruses?. Curr. Opin. Virol. 1:6649–57 [Google Scholar]
  12. Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P. 12.  et al. 2012. Bats host major mammalian paramyxoviruses. Nat. Commun. 3:796 [Google Scholar]
  13. Brook CE, Dobson AP. 13.  2015. Bats as “special” reservoirs for emerging zoonotic pathogens. Curr. Trends Microbiol. 23:3172–80 [Google Scholar]
  14. Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X. 14.  et al. 2017. Global patterns in coronavirus diversity. Virus Evol 3:1 https://doi.org/10.1093/ve/vex012 [Google Scholar]
  15. O'Shea TJ, Cryan PM, Cunningham AA, Fooks AR, Hayman DT. 15.  et al. 2014. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 20:5741–45 [Google Scholar]
  16. Kacprzyk J, Hughes GM, Palsson-McDermott EM, Quinn SR, Puechmaille SJ. 16.  et al. 2017. A potent anti-inflammatory response in bat macrophages may be linked to extended longevity and viral tolerance. Acta Chiropterologica 19:219–28 [Google Scholar]
  17. Austad SN. 17.  2010. Methusaleh's zoo: how nature provides us with clues for extending human health span. J. Comp. Pathol. 142:S10–S21 [Google Scholar]
  18. Podlutsky AJ, Khritankov AM, Ovodov ND, Austad SN. 18.  2005. A new field record for bat longevity. J. Gerontol. A Biol. Sci. Med. Sci. 60:111366–68 [Google Scholar]
  19. Galambos R. 19.  1942. The avoidance of obstacles by flying bats: Spallanzani's ideas (1794) and later theories. Isis 34:2132–40 [Google Scholar]
  20. Griffin DR. 20.  1958. Listening in the Dark: The Acoustic Orientation of Bats and Men New Haven, CT: Yale Univ. Press [Google Scholar]
  21. Dijkgraaf S. 21.  1960. Spallanzani's unpublished experiments on the sensory basis of object perception in bats. Isis 51:19–20 [Google Scholar]
  22. Pettigrew JD. 22.  1986. Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231:47431304–6 [Google Scholar]
  23. Teeling EC, Jones G, Rossiter SJ. 23.  2016. Phylogeny, genes, and hearing: implications for the evolution of echolocation in bats. Bat Bioacoustics MB Fenton, AD Grinnell, AN Popper, RR Fay 25–54 New York: Springer [Google Scholar]
  24. Wang Z, Zhu T, Xue H, Fang N, Zhang J. 24.  et al. 2017. Prenatal development supports a single origin of laryngeal echolocation in bats. Nat. Ecol. Evol. 1:0021 [Google Scholar]
  25. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA. 25.  et al. 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409:6820614–18 [Google Scholar]
  26. Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA. 26.  et al. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334:6055521–24 [Google Scholar]
  27. Tsagkogeorga G, Parker J, Stupka E, Cotton JA, Rossiter SJ. 27.  2013. Phylogenomic analyses elucidate the evolutionary relationships of bats. Curr. Biol. 23:222262–67 [Google Scholar]
  28. Eiting TP, Gunnell GF. 28.  2009. Global completeness of the bat fossil record. J. Mamm. Evol. 16:3151–73 [Google Scholar]
  29. Gunnell GF, Simmons NB. 29. , eds. 2012. Evolutionary History of Bats: Fossils, Molecules and Morphology Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  30. Zhao H, Rossiter SJ, Teeling EC, Li C, Cotton JA. 30.  et al. 2009. The evolution of color vision in nocturnal mammals. PNAS 106:228980–85 [Google Scholar]
  31. Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ. 31.  et al. 2010. Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 20:11–9 [Google Scholar]
  32. Shapiro MD, Kronenberg Z, Li C, Domyan ET, Pan H. 32.  et al. 2013. Genomic diversity and evolution of the head crest in the rock pigeon. Science 339:61231063–67 [Google Scholar]
  33. Jarvis ED. 33.  2016. Perspectives from the avian phylogenomics project: questions that can be answered with sequencing all genomes of a vertebrate class. Annu. Rev. Anim. Biosci. 4:45–59 [Google Scholar]
  34. Burk-Herrick A, Scally M, Amrine-Madsen H, Stanhope MJ, Springer MS. 34.  2006. Natural selection and mammalian BRCA1 sequences: elucidating functionally important sites relevant to breast cancer susceptibility in humans. Mamm. Genome 17:3257–70 [Google Scholar]
  35. Haussler D, O'Brien SJ, Ryder OA, Barker FK, Clamp M. 35.  et al. 2009. Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J. Hered. 100:6659–74 [Google Scholar]
  36. De Magalhães JP. 36.  2014. The scientific quest for lasting youth: prospects for curing aging. Rejuvenation Res 17:5458–67 [Google Scholar]
  37. Morens DM, Fauci AS. 37.  2013. Emerging infectious diseases: threats to human health and global stability. PLOS Pathog 9:7e1003467 [Google Scholar]
  38. Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH. 38.  et al. 2012. Approaching a state shift in Earth's biosphere. Nature 486:740152–58 [Google Scholar]
  39. Holmes DJ, Kristan DM. 39.  2008. Comparative and alternative approaches and novel animal models for aging research. Age 30:2–363–73 [Google Scholar]
  40. Munshi-South J, Wilkinson GS. 40.  2010. Bats and birds: exceptional longevity despite high metabolic rates. Ageing Res. Rev. 9:112–19 [Google Scholar]
  41. Austad SN, Fischer KE. 41.  1991. Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J. Gerontol. 46:2B47–B53 [Google Scholar]
  42. Williams G. 42.  1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411 [Google Scholar]
  43. Healy K, Guillerme T, Finlay S, Kane A, Kelly SB. 43.  et al. 2014. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. Lond. B Biol. Sci. 281:178420140298 [Google Scholar]
  44. Huang Z, Gallot A, Lao NT, Puechmaille SJ, Foley NM. 44.  et al. 2016. A nonlethal sampling method to obtain, generate and assemble whole blood transcriptomes from small, wild mammals. Mol. Ecol. Resour. 16:1150–62 [Google Scholar]
  45. Huang Z, Jebb D, Teeling EC. 45.  2016. Blood miRNomes and transcriptomes reveal novel longevity mechanisms in the long-lived bat. Myotis myotis. BMC Genom. 17:1906 [Google Scholar]
  46. Salminen A, Kaarniranta K, Kauppinen A. 46.  2012. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging 4:3166–75 [Google Scholar]
  47. Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA. 47.  et al. 2013. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339:6118456–60 [Google Scholar]
  48. Franceschi C, Campisi J. 48.  2014. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69:Suppl. 1S4–S9 [Google Scholar]
  49. Puechmaille SJ, Frick WF, Kunz TH, Racey PA, Voigt CC. 49.  et al. 2011a. White-nose syndrome: Is this emerging disease a threat to European bats?. Trends Ecol. Evol. 26:11570–76 [Google Scholar]
  50. Leopardi S, Blake D, Puechmaille SJ. 50.  2015. White-nose syndrome fungus introduced from Europe to North America. Curr. Biol. 25:6R217–R219 [Google Scholar]
  51. Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS. 51.  et al. 2010. An emerging disease causes regional population collapse of a common North American bat species. Science 329:5992679–82 [Google Scholar]
  52. Puechmaille SJ, Wibbelt G, Korn V, Fuller H, Forget F. 52.  et al. 2011b. Pan-European distribution of white-nose syndrome fungus (Geomyces destructans) not associated with mass mortality. PLOS ONE 6:4e19167 [Google Scholar]
  53. Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B. 53.  et al. 2017. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. mBio 8:2e00373–17 [Google Scholar]
  54. Chen L, Liu B, Yang J, Jin Q. 54.  2014. DBatVir: The Database of Bat-Associated Viruses http://www.mgc.ac.cn/DBatVir/ [Google Scholar]
  55. Menachery VD, Yount BL Jr, Debbink K, Agnihothram S, Gralinski LE. 55.  et al. 2015. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21:1508–13 [Google Scholar]
  56. Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL. 56.  et al. 2017. Host and viral traits predict zoonotic spillover from mammals. Nature 546:646–50 [Google Scholar]
  57. Taylor DJ, Dittmar K, Ballinger MJ, Bruenn JA. 57.  2011. Evolutionary maintenance of filovirus-like genes in bat genomes. BMC Evol. Biol. 11:1336 [Google Scholar]
  58. Maine JJ, Boyles JG. 58.  2015. Bats initiate vital agroecological interactions in corn. PNAS 112:4012438–43 [Google Scholar]
  59. Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH. 59.  2011. Ecosystem services provided by bats. Ann. N.Y. Acad. Sci. 1223:11–38 [Google Scholar]
  60. Maas B, Clough Y, Tscharntke T. 60.  2013. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol. Lett. 16:121480–87 [Google Scholar]
  61. Vincenot CE, Florens FV, Kingston T. 61.  2017. Can we protect island flying foxes?. Science 355:63321368–70 [Google Scholar]
  62. Liu Y, Rossiter SJ, Han X, Cotton JA, Zhang S. 62.  2010. Cetaceans on a molecular fast track to ultrasonic hearing. Curr. Biol. 20:201834–39 [Google Scholar]
  63. Liu Y, Cotton JA, Shen B, Han X, Rossiter SJ. 63.  et al. 2010. Convergent sequence evolution between echolocating bats and dolphins. Curr. Biol. 20:2R53–R54 [Google Scholar]
  64. Li Y, Liu Z, Shi P, Zhang J. 64.  2010. The hearing gene Prestin unites echolocating bats and whales. Curr. Biol. 20:2R55–R56 [Google Scholar]
  65. Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P. 65.  et al. 2013. Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502:7470228–31 [Google Scholar]
  66. Hayden S, Bekaert M, Goodbla A, Murphy WJ, Dávalos LM. 66.  et al. 2014. A cluster of olfactory receptor genes linked to frugivory in bats. Mol. Biol. Evol. 31:4917–27 [Google Scholar]
  67. Hughes GM, Boston EM, Finarelli JA, Murphy WJ, Higgins DG. 67.  et al. 2017. The birth and death of olfaction: the role of olfactory receptor evolution in mammalian niche specialization. Mol. Biol. Evol. Manuscript in review [Google Scholar]
  68. Zhao H, Xu D, Zhang S, Zhang J. 68.  2010. Widespread losses of vomeronasal signal transduction in bats. Mol. Biol. Evol. 28:17–12 [Google Scholar]
  69. Hayden S, Teeling EC. 69.  2014. The molecular biology of vertebrate olfaction. Anat. Rec. 297:112216–26 [Google Scholar]
  70. Yohe LR, Abubakar R, Giordano C, Dumont E, Sears KE. 70.  et al. 2017. Trpc2 pseudogenization dynamics in bats reveal ancestral vomeronasal signaling, then pervasive loss. Evolution 71:4923–35 [Google Scholar]
  71. Kirwan JD, Bekaert M, Commins JM, Davies KT, Rossiter SJ. 71.  et al. 2013. A phylomedicine approach to understanding the evolution of auditory sensory perception and disease in mammals. Evol. Appl. 6:3412–22 [Google Scholar]
  72. Davies KT, Maryanto I, Rossiter SJ. 72.  2013. Evolutionary origins of ultrasonic hearing and laryngeal echolocation in bats inferred from morphological analyses of the inner ear. Front. Zool. 10:12 [Google Scholar]
  73. Cremers FP, Collin RW. 73.  2009. Promises and challenges of genetic therapy for blindness. Lancet 374:97011569–70 [Google Scholar]
  74. 74. World Health Organ. 2014. Visual impairment and blindness Fact Sheet 282 World Health Organ Geneva: http://www.who.int/mediacentre/factsheets/fs282/en/ [Google Scholar]
  75. 75. World Health Organ. 2017. Deafness and hearing loss Fact Sheet World Health Organ. Geneva: http://www.who.int/mediacentre/factsheets/fs300/en/ [Google Scholar]
  76. Kingston T, Rossiter SJ. 76.  2004. Harmonic-hopping in Wallacea's bats. Nature 429:6992654–57 [Google Scholar]
  77. Puechmaille SJ, Gouilh MA, Piyapan P, Yokubol M, Mie KM. 77.  et al. 2011. The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat. Nat. Commun. 2:573 [Google Scholar]
  78. Puechmaille SJ, Borissov IM, Zsebok S, Allegrini B, Hizem M. 78.  et al. 2014. Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi. . PLOS ONE 9:7e103452 [Google Scholar]
  79. Janik VM, Slater PJ. 79.  1997. Vocal learning in mammals. Adv. Study. Behav. 26:59–100 [Google Scholar]
  80. Doupe AJ, Kuhl PK. 80.  1999. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22:1567–631 [Google Scholar]
  81. Petkov CI, Jarvis E. 81.  2012. Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Front. Evol. Neurosci. 4:12 [Google Scholar]
  82. Knörnschild M. 82.  2014. Vocal production learning in bats. Curr. Opin. Neurobiol. 28:80–85 [Google Scholar]
  83. Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R. 83.  et al. 2014. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346:62151256846 [Google Scholar]
  84. Lovell PV, Wirthlin M, Wilhelm L, Minx P, Lazar NH. 84.  et al. 2014. Conserved syntenic clusters of protein coding genes are missing in birds. Genome Biol 15:12565 [Google Scholar]
  85. Whitney O, Pfenning AR, Howard JT, Blatti CA, Liu F. 85.  et al. 2014. Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science 346:62151256780 [Google Scholar]
  86. Vernes SC. 85a.  2017. What bats have to say about speech and language. Psychon. Bull. Rev. 24:111–17 [Google Scholar]
  87. Law J, Boyle J, Harris F, Harkness A, Nye C. 86.  2000. Prevalence and natural history of primary speech and language delay: findings from a systematic review of the literature. Int. J. Lang. Commun. Disord. 35:165–88 [Google Scholar]
  88. Booker BM, Friedrich T, Mason MK, VanderMeer JE, Zhao J. 87.  et al. 2016. Bat accelerated regions identify a bat forelimb specific enhancer in the HoxD locus. PLOS Genet 12:3e1005738 [Google Scholar]
  89. Kinsella E, Dora N, Mellis D, Lettice L, Deveney P. 88.  et al. 2016. Use of a conditional Ubr5 mutant allele to investigate the role of an N-end rule ubiquitin-protein ligase in hedgehog signalling and embryonic limb development. PLOS ONE 11:6e0157079 [Google Scholar]
  90. Eckalbar WL, Schlebusch SA, Mason MK, Gill Z, Parker AV. 89.  et al. 2016. Transcriptomic and epigenomic characterization of the developing bat wing. Nat. Genet. 48:5528 [Google Scholar]
  91. Kapusta A, Suh A, Feschotte C. 90.  2017. Dynamics of genome size evolution in birds and mammals. PNAS 114:8E1460–E69 [Google Scholar]
  92. Kapusta A, Suh A. 91.  2017. Evolution of bird genomes—a transposon's‐eye view. Ann. N. Y. Acad. Sci. 1389:1164–85 [Google Scholar]
  93. Hughes AL, Hughes MK. 92.  1995. Small genomes for better flyers. Nature 377:6548391 [Google Scholar]
  94. Ray DA, Feschotte C, Pagan HJ, Smith JD, Pritham EJ. 93.  et al. 2008. Multiple waves of recent DNA transposon activity in the bat. Myotis lucifugus. Genome Res. 18:717–28 [Google Scholar]
  95. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC. 94.  et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:6822860–921 [Google Scholar]
  96. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS. 95.  et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:7057376–80 [Google Scholar]
  97. Glenn TC. 96.  2011. Field guide to next‐generation DNA sequencers. Mol. Ecol. Resour. 11:5759–69 [Google Scholar]
  98. Manley LJ, Ma D, Levine SS. 97.  2016. Monitoring error rates in Illumina sequencing. J. Biomol. Tech. 27:4125–28 [Google Scholar]
  99. Lee H, Gurtowski J, Yoo S, Nattestad M, Marcus S. 98.  et al. 2016. Third-generation sequencing and the future of genomics. bioRxiv048603 [Google Scholar]
  100. Heather JM, Chain B. 99.  2016. The sequence of sequencers: the history of sequencing DNA. Genomics 107:11–8 [Google Scholar]
  101. Rhoads A, Au KF. 100.  2015. PacBio sequencing and its application. Genom. Proteom. Bioinforma. 13:5278–89 [Google Scholar]
  102. Gordon D, Huddleston J, Chaisson MJ, Hill CM, Kronenberg ZN. 101.  et al. 2016. Long-read sequence assembly of the gorilla genome. Science 352:6281aae0344 [Google Scholar]
  103. Shi L, Guo Y, Dong C, Huddleston J, Yang H. 102.  et al. 2016. Long-read sequencing and de novo assembly of a Chinese genome. Nat. Commun. 7:12065 [Google Scholar]
  104. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 103.  2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–36 [Google Scholar]
  105. Salmela L, Rivals E. 104.  2014. LoRDEC: accurate and efficient long read error correction. Bioinformatics 30:243506–14 [Google Scholar]
  106. Deshpande V, Fung EDK, Pham S, Bafna V. 105.  2013. Cerulean: a hybrid assembly using high throughput short and long reads. Algorithms in Bioinformatics 8126 A Darling, J Stoye 349–63 Berlin: Springer [Google Scholar]
  107. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G. 106.  et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol 30:693–700 [Google Scholar]
  108. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ. 107.  et al. 2011. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478:7370476–82 [Google Scholar]
  109. Simmons NB. 108.  2005. Order Chiroptera. Mammal Species of the World: A Taxonomic and Geographic Reference DE Wilson, DM Reeder 312–529 Baltimore, MD: Johns Hopkins Univ. Press, 3rd ed.. [Google Scholar]
  110. Tsang SM, Cirranello AL, Bates PJ, Simmons NB. 109.  2016. The roles of taxonomy and systematics in bat conservation. Bats in the Anthropocene: Conservation of Bats in a Changing World CC Voight, T Kingston 503–38 New York: Springer Int, 1st ed.. [Google Scholar]
  111. Mayr E. 110.  1942. Systematics and the Origin of Species New York: Columbia Univ. Press [Google Scholar]
  112. Hoffmann FG, Owen JG, Baker RJ. 111.  2003. mtDNA perspective of chromosomal diversification and hybridization in Peters’ tent-making bat (Uroderma bilobatum: Phyllostomidae). Mol. Ecol. 12:112981–93 [Google Scholar]
  113. Afonso E, Goydadin A-C, Giraudoux P, Farny G. 112.  2017. Investigating hybridization between the two sibling bat species Myotis myotis and M. blythii from guano in a natural mixed maternity colony. PLOS ONE 12:2e0170534 [Google Scholar]
  114. Bachanek J, Postawa T. 113.  2010. Morphological evidence for hybridization in the sister species Myotis myotis and Myotis oxygnathus (Chiroptera: Vespertilionidae) in the Carpathian Basin. Acta Chiropterologica 12:2439–48 [Google Scholar]
  115. Berthier P, Excoffier L, Ruedi M. 114.  2006. Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii. . Proc. R. Soc. B Biol. Sci. 273:3101–9 [Google Scholar]
  116. Koubínová D, Irwin N, Hulva P, Koubek P, Zima J. 115.  2013. Hidden diversity in Senegalese bats and associated findings in the systematics of the family Vespertilionidae. Front. Zool. 10:48 [Google Scholar]
  117. Baker BJ, Bradley RD. 116.  2006. Speciation in mammals and genetic species concept. J. Mammology 87:4643–62 [Google Scholar]
  118. Mayer F, von Helversen O. 117.  2001. Cryptic diversity in European bats. Proc. R. Soc. B Biol. Sci. 268:1825–32 [Google Scholar]
  119. Kacprzyk J, Teeling EC, Kelleher C, Volleth M. 118.  2016. Wing membrane biopsies for bat cytogenetics: finding of 2n=54 in Irish Rhinolophus hipposideros (Rhinolophidae, Chiroptera, Mammalia) supports two geographically separated chromosomal variants in Europe. Cytogenet. Genome. Res. 148:4279–83 [Google Scholar]
  120. Eid J, Fehr A, Gray J, Luong K, Lyle J. 119.  et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:5910133–38 [Google Scholar]
  121. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S. 120.  et al. 2009. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4:4265–70 [Google Scholar]
  122. Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT. 121.  et al. 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13:121050–54 [Google Scholar]
  123. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH. 122.  et al. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. bioRxiv071282 [Google Scholar]
  124. Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M. 123.  et al. 2015. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517:7536608–11 [Google Scholar]
  125. Bishara A, Liu Y, Weng Z, Kashef-Haghighi D, Newburger DE. 124.  et al. 2015. Read clouds uncover variation in complex regions of the human genome. Genome Res 25:101570–80 [Google Scholar]
  126. Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. 125.  2017. Direct determination of diploid genome sequences. Genome Res 27:5757–67 [Google Scholar]
  127. Adey A, Kitzman JO, Burton JN, Daza R, Kumar A. 126.  et al. 2014. In vitro, long-range sequence information for de novo genome assembly via transposase contiguity. Genome Res 24:122041–49 [Google Scholar]
  128. Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T. 127.  et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:5950289–93 [Google Scholar]
  129. Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M. 128.  et al. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:633392–95 [Google Scholar]
  130. Koepfli KP, Paten B, O'Brien SJ. 129.  2015. The Genome 10K Project: a way forward. Annu. Rev. Anim. Biosci. 3:157–111 [Google Scholar]
  131. Schwenk K, Padilla DK, Bakken GS, Full RJ. 130.  2009. Grand challenges in organismal biology. Integr. Comp. Biol. 49:17–14 [Google Scholar]
  132. Zhang G, Li C, Li Q, Li B, Larkin DM. 131.  et al. 2014. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:62151311–20 [Google Scholar]
  133. Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P. 132.  et al. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:62151320–31 [Google Scholar]
  134. Misof B, Liu S, Meusemann K, Peters RS, Donath A. 133.  et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:6210763–67 [Google Scholar]
  135. Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E. 134.  et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. PNAS 111:45E4859–68 [Google Scholar]
  136. Foley NM, Springer MS, Teeling EC. 135.  2016. Mammal madness: Is the mammal tree of life not yet resolved?. Philos. Trans. R. Soc. B 371:169920150140 [Google Scholar]
  137. Dool SE, Puechmaille SJ, Foley NM, Allegrini B, Bastian A. 136.  et al. 2016. Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: lessons from horseshoe bats (Rhinolophidae: Chiroptera). Mol. Phylogenet. Evol. 97:196–212 [Google Scholar]
  138. Hahn MW, Nakhleh L. 137.  2016. Irrational exuberance for resolved species trees. Evolution 70:17–17 [Google Scholar]
  139. Platt RN, Faircloth BC, Sullivan KAM, Kieran TJ, Glenn TC. 138.  et al. 2017. Conflicting evolutionary histories of the mitochondrial and nuclear genomes in New World Myotis bats. Syst. Biol. In press [Google Scholar]
  140. Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C. 139.  2016a. Reticulation, divergence, and the phylogeography-phylogenetics continuum. PNAS 113:298025–32 [Google Scholar]
  141. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP. 140.  et al. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–73 [Google Scholar]
  142. Li H, Durbin R. 141.  2011. Inference of human population history from individual whole-genome sequences. Nature 475:7357493–96 [Google Scholar]
  143. Schiffels S, Durbin R. 142.  2014. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46:8919–25 [Google Scholar]
  144. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U. 143.  et al. 2010. A draft sequence of the Neandertal genome. Science 328:5979710–22 [Google Scholar]
  145. Gopalakrishnan S, Castruita JAS, Sinding MHS, Kuderna LF, Räikkönen J. 144.  et al. 2017. The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics. BMC Genom 18:1495 [Google Scholar]
  146. Ruedi M, Stadelmann B, Gager Y, Douzery EJ, Francis CM. 145.  et al. 2013. Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera). Mol. Phylogenet. Evol. 69:3437–49 [Google Scholar]
  147. Moore JH, Asselbergs FW, Williams SM. 146.  2010. Bioinformatics challenges for genome-wide association studies. Bioinformatics 26:4445–55 [Google Scholar]
  148. Hsu PD, Lander ES, Zhang F. 147.  2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:61262–78 [Google Scholar]
  149. White SA, Fisher SE, Geschwind DH, Scharff C, Holy TE. 148.  2006. Singing mice, songbirds, and more: models for FOXP2 function and dysfunction in human speech and language. J. Neurosci. 26:10376–79 [Google Scholar]
  150. Haesler S, Rochefort C, Georgi B, Licznerski P, Osten P. 149.  et al. 2007. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLOS Biol 5:12e321 [Google Scholar]
  151. Schulz SB, Haesler S, Scharff C, Rochefort C. 150.  2010. Knockdown of FoxP2 alters spine density in Area X of the zebra finch. Genes Brain Behav 9:7732–40 [Google Scholar]
  152. Scharff C, Petri J. 151.  2011. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366:15742124–40 [Google Scholar]
  153. Wohlgemuth S, Adam I, Scharff C. 152.  2014. FoxP2 in songbirds. Curr. Opin. Neurobiol. 28:86–93 [Google Scholar]
  154. Adam I, Mendoza E, Kobalz U, Wohlgemuth S, Scharff C. 153.  2016. FoxP2 directly regulates the reelin receptor VLDLR developmentally and by singing. Mol. Cell. Neurosci. 74:96–105 [Google Scholar]
  155. Furey TS. 154.  2012. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet. 13:12840–52 [Google Scholar]
  156. Kouzine F, Levens D, Baranello L. 155.  2014. DNA topology and transcription. Nucleus 5:3195–202 [Google Scholar]
  157. Scacheri CA, Scacheri PC. 156.  2015. Mutations in the non-coding genome. Curr. Opin. Pediatr. 27:6659–64 [Google Scholar]
  158. Platt RN, Vandewege MW, Kern C, Schmidt CJ, Hoffmann FG. 157.  et al. 2014. Large numbers of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats. Mol. Biol. Evol. 31:61536–45 [Google Scholar]
  159. Baker RJ, Bininda-Emonds OR, Mantilla-Meluk H, Porter CA, Van Den Bussche RA. 158.  2012. Molecular timescale of diversification of feeding strategy and morphology in New World leaf-nosed bats (Phyllostomidae): a phylogenetic perspective. See Reference 29 385–409
  160. Dumont ER, Dávalos LM, Goldberg A, Santana SE, Rex K. 159.  et al. 2012. Morphological innovation, diversification and invasion of a new adaptive zone. Proc. R. Soc. Lond. B Biol. Sci. 279:1797–805 [Google Scholar]
  161. Rojas D, Warsi OM, Dávalos LM. 160.  2016. Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant neotropical diversity. Syst. Biol. 65:3432–48 [Google Scholar]
  162. Foote AD, Liu Y, Thomas GW, Vinař T, Alföldi J. 161.  et al. 2015. Convergent evolution of the genomes of marine mammals. Nat. Genet. 47:3272–75 [Google Scholar]
  163. Zhou Q, Zhang J, Bachtrog D, An N, Huang Q. 162.  et al. 2014. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346:62151246338 [Google Scholar]
  164. 163. ENCODE Proj. Consort. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:741457–74 [Google Scholar]
  165. Chi KR. 164.  2016. The dark side of the human genome. Nature 538:7624275–77 [Google Scholar]
  166. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID. 165.  et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:71665–80 [Google Scholar]
  167. Seki R, Li C, Fang Q, Hayashi S, Egawa S. 166.  et al. 2017. Functional roles of Aves class-specific cis-regulatory elements on macroevolution of bird-specific features. Nat. Commun. 8:14229 [Google Scholar]
  168. Pennisi E. 167.  2017. Sequencing all life captivates biologists. Science 355:632889–95 [Google Scholar]
  169. Dong D, Lei M, Hua P, Pan YH, Mu S. 168.  et al. 2016. The genomes of two bat species with long constant frequency echolocation calls. Mol. Biol. Evol. 34:20–34 [Google Scholar]
  170. Seim I, Fang X, Xiong Z, Lobanov AV, Huang Z. 169.  et al. 2013. Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii. Nat. Commun. 4:2212 [Google Scholar]
  171. Halpin K, Young PL, Field HE, Mackenzie JS. 170.  2000. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J. Gen. Virol. 81:1927–32 [Google Scholar]
  172. Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J. 171.  et al. 2011. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am. J. Trop. Med. Hyg. 85:946–51 [Google Scholar]
  173. Weir LD, Annand JE, Reid AP, Broder CC. 172.  2014. Recent observations on Australian bat lyssavirus tropism and viral entry. Viruses 6:909–26 [Google Scholar]
  174. Eggerbauer E, Pfaff F, Finke S, Höper D, Beer M. 173.  et al. 2017. Comparative analysis of European bat lyssavirus 1 pathogenicity in the mouse model. PLOS Negl. Trop. Dis. 11:e0005668 [Google Scholar]
  175. Towner JS, Pourrut X, Albariño CG, Nkogue CN, Bird BH. 174.  et al. 2007. Marburg virus infection detected in a common African bat. PLOS ONE 2:e764 [Google Scholar]
  176. Ge X-Y, Li J-L, Yang X-L, Chmura AA, Zhu G. 175.  et al. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503:535–38 [Google Scholar]
  177. Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR. 176.  et al. 2013. Close relative of human middle east respiratory syndrome coronavirus in bat, South Africa. Emerg. Infect. Dis. J. 19:1697 [Google Scholar]
/content/journals/10.1146/annurev-animal-022516-022811
Loading
/content/journals/10.1146/annurev-animal-022516-022811
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error