1932

Abstract

The extensive postglacial mammal losses in the West Indies provide an opportunity to evaluate extinction dynamics, but limited data have hindered our ability to test hypotheses. Here, we analyze the tempo and dynamics of extinction using a novel data set of faunal last-appearance dates and human first-appearance dates, demonstrating widespread overlap between humans and now-extinct native mammals. Humans arrived in four waves (Lithic, Archaic, Ceramic, and European), each associated with increased environmental impact. Large-bodied mammals and several bats were extinct by the Archaic, following protracted extinction dynamics perhaps reflecting habitat loss. Most small-bodied rodents and lipotyphlan insectivores survived the Ceramic, but extensive landscape transformation and the introduction of invasive mammals following European colonization caused further extinctions, leaving a threatened remnant fauna. Both large- and small-bodied nonvolant mammals disappeared, reflecting complex relationships between body size, ecology, and anthropogenic change. Extinct bats were generally larger species, paralleling declines from natural catastrophes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110316-022754
2017-11-02
2025-01-09
The full text of this item is not currently available.

Literature Cited

  1. Alroy J. 2001. A multispecies overkill simulation of the End-Pleistocene megafaunal mass extinction. Science 292:1893 [Google Scholar]
  2. Barnosky AD, Lindsey EL, Villavicencio NA, Bostelmann E, Hadly EA. et al. 2016. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. PNAS 113:856–61 [Google Scholar]
  3. Biknevicius AR, McFarlane DA, MacPhee RDE. 1993. Body size in Amblyrhiza inundata (Rodentia: Caviomorpha), an extinct megafaunal rodent from the Anguilla Bank, West Indies: estimates and implications. Am. Mus. Novit. 3079:1–25 [Google Scholar]
  4. Blanchon P, Shaw J. 1995. Reef drowning during the last deglaciation: evidence for catastrophic sea-level rise and ice-sheet collapse. Geology 23:4–8 [Google Scholar]
  5. Borroto-Páez R. 2009. Invasive mammals in Cuba: an overview. Biol. Invas. 11:2279 [Google Scholar]
  6. Borroto-Páez R, Mancina CA. 2011. Mamíferos en Cuba Vaasa, Finland: Spartacus-Säätiö Soc. Cubana Zool. [Google Scholar]
  7. Borroto-Páez R, Mancina CA. 2017. Biodiversity and conservation of Cuban mammals: past, present, and invasive species. J. Mammal. 98:964–85 [Google Scholar]
  8. Borroto-Páez R, Woods CA, Kilpatrick CW. 2005. Sistemática de las jutías de las Antillas (Rodentia, Capromyidae). Monogr. Soc. Hist. Nat. Balear. 12:33–50 [Google Scholar]
  9. Brace S, Barnes IAN, Powell A, Pearson R, Woolaver LG. et al. 2012. Population history of the Hispaniolan hutia Plagiodontia aedium (Rodentia: Capromyidae): testing the model of ancient differentiation on a geotectonically complex Caribbean island. Mol. Ecol. 21:2239–53 [Google Scholar]
  10. Brace S, Thomas JA, Dalén L, Burger J, MacPhee RDE. et al. 2016. Evolutionary history of the Nesophontidae, the last unplaced recent mammal family. Mol. Biol. Evol. 33:3095–103 [Google Scholar]
  11. Brace S, Turvey ST, Weksler M, Hoogland MLP, Barnes I. 2015. Unexpected evolutionary diversity in a recently extinct Caribbean mammal radiation. Proc. R. Soc. B 282:20142371 [Google Scholar]
  12. Bradshaw CJA, Cooper A, Turney CSM, Brook BW. 2012. Robust estimates of extinction time in the geological record. Quat. Sci. Rev. 33:14–19 [Google Scholar]
  13. Brash AR. 1987. The history of avian extinction and forest conversion on Puerto Rico. Biol. Conserv. 39:97–111 [Google Scholar]
  14. Bronk Ramsey C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–60 [Google Scholar]
  15. Burbidge AA, McKenzie NL. 1989. Patterns in the modern decline of western Australia's vertebrate fauna: causes and conservation implications. Biol. Conserv. 50:143–98 [Google Scholar]
  16. Campbell DG, Lowell KS, Lightbourn ME. 1991. The effect of introduced hutias (Geocapromys ingrahami) on the woody vegetation of Little Wax Cay, Bahamas. Conserv. Biol. 5:536–41 [Google Scholar]
  17. Carder N, Reitz EJ, Crock JG. 2007. Fish communities and populations during the post-Saladoid period (AD 600/800–1500), Anguilla, Lesser Antilles. J. Archaeol. Sci. 34:588–99 [Google Scholar]
  18. Cardillo M, Bromham L. 2001. Body size and risk of extinction in Australian mammals. Conserv. Biol. 15:1435–40 [Google Scholar]
  19. Cardillo M, Mace GM, Gittleman JL, Jones KE, Bielby J, Purvis A. 2008. The predictability of extinction: biological and external correlates of decline in mammals. Proc. R. Soc. B 275:1441 [Google Scholar]
  20. Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP. et al. 2005. Multiple causes of high extinction risk in large mammal species. Science 309:1239–41 [Google Scholar]
  21. Clough GC. 1976. Current status of two endangered Caribbean rodents. Biol. Conserv. 10:43–47 [Google Scholar]
  22. Colles A, Liow LH, Prinzing A. 2009. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12:849–63 [Google Scholar]
  23. Cook ND. 1998. Born to Die: Disease and New World Conquest, 1492–1650 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  24. Cooke SB. 2011. Paleodiet of extinct platyrrhines with emphasis on the Caribbean forms: three-dimensional geometric morphometrics of mandibular second molars. Anat. Rec.: Adv. Integr. Anat. Evol. Biol. 294:2073–91 [Google Scholar]
  25. Cooke SB, Mychajliw AM, Southon J, MacPhee RDE. 2017. The extinction of Xenothrix mcgregori, Jamaica's last monkey. J. Mammal. 98:937–49 [Google Scholar]
  26. Cooke SB, Rosenberger AL, Turvey S. 2011. An extinct monkey from Haiti and the origins of the Greater Antillean primates. PNAS 108:2699–704 [Google Scholar]
  27. Cooper J. 2010. Pre-Columbian archaeology of Cuba: a study of site distribution patterns and radiocarbon chronologies. Island Shores, Distant Pasts: Archaeological and Biological Approaches to the Pre-Columbian Settlement of the Caribbean SM Fitzpatrick, AH Ross 81–107 Tuscaloosa: Univ. Ala. Press [Google Scholar]
  28. Courchamp F, Chapuis J-L, Pascal M. 2003. Mammal invaders on islands: impact, control and control impact. Biol. Rev. 78:347–83 [Google Scholar]
  29. Curet LA. 1998. New formulae for estimating prehistoric populations for lowland South America and the Caribbean. Antiquity 72:359–75 [Google Scholar]
  30. Dávalos LM, Russell AL. 2012. Deglaciation explains bat extinction in the Caribbean. Ecol. Evol. 2:1–7 [Google Scholar]
  31. Dávalos LM, Turvey S. 2012. West Indian mammals: the old, the new, and the recently extinct. Bones, Clones, and Biomes: An Extended History of Recent Neotropical Mammals BD Patterson, LP Acosta 157–202 Chicago: Univ. Chicago Press [Google Scholar]
  32. Draper G, Mann P, Lewis JF. 1994. Hispaniola. Caribbean Geology: An Introduction SK Donovan, TA Jackson 129–50 Kingston, Jamaica: Univ. West Indies Publ. Assoc. [Google Scholar]
  33. Fabre P-H, Vilstrup JT, Raghavan M, Der Sarkissian C, Willerslev E. et al. 2014. Rodents of the Caribbean: origin and diversification of hutias unravelled by next-generation museomics. Biol. Lett. 10:7 [Google Scholar]
  34. Faurby S, Svenning J-C. 2016. Resurrection of the island rule: Human-driven extinctions have obscured a basic evolutionary pattern. Am. Nat. 187:812–20 [Google Scholar]
  35. Fisher DO. 2011. Trajectories from extinction: Where are missing mammals rediscovered?. Glob. Ecol. Biogeogr. 20:415–25 [Google Scholar]
  36. Fitzpatrick SM. 2006. A critical approach to 14C dating in the Caribbean: using chronometric hygiene to evaluate chronological control and prehistoric settlement. Latin Am. Antiq. 17:389–418 [Google Scholar]
  37. Fitzpatrick SM. 2015. The Pre-Columbian Caribbean: colonization, population dispersal, and island adaptations. PaleoAmerica 1:305–31 [Google Scholar]
  38. Fleming TH, Murray KL, Carstens BC. 2010. Phylogeography and genetic structure of three evolutionary lineages of West Indian phyllostomid bats. Evolution, Ecology, and Conservation of Island Bats TH Fleming, PA Racey 116–50 Chicago: Univ. Chicago Press [Google Scholar]
  39. Funes Monzote R. 2008. From Rainforest to Cane Field in Cuba: An Environmental History Since 1492 Chapel Hill: Univ. North Carolina Press384 pp. [Google Scholar]
  40. Gillespie R, Brook BW, Baynes A. 2006. Short overlap of humans and megafauna in Pleistocene Australia. Alcheringa: Australas. J. Palaeontol. 30:163–86 [Google Scholar]
  41. Giovas CM, Clark M, Fitzpatrick SM, Stone J. 2013. Intensifying collection and size increase of the tessellated nerite snail (Nerita tessellata) at the Coconut Walk site, Nevis, northern Lesser Antilles, AD 890–1440. J. Archaeol. Sci. 40:4024–38 [Google Scholar]
  42. Giovas CM, Fitzpatrick SM. 2014. Prehistoric migration in the Caribbean: past perspectives, new models and the ideal free distribution of West Indian colonization. World Archaeol 46:569–89 [Google Scholar]
  43. Goldberg A, Mychajliw AM, Hadly EA. 2016. Post-invasion demography of prehistoric humans in South America. Nature 532:232–35 [Google Scholar]
  44. Goodman SM, Jungers WL. 2014. Extinct Madagascar: Picturing the Island's Past Chicago: Univ. Chicago Press [Google Scholar]
  45. Hansford J, Nuñez-Miño JM, Young RP, Brace S, Brocca JL, Turvey ST. 2012. Taxonomy-testing and the ‘Goldilocks Hypothesis’: morphometric analysis of species diversity in living and extinct Hispaniolan hutias. Syst. Biodivers. 10:491–507 [Google Scholar]
  46. Hofman CL, Bright AJ, Hoogland MLP. 2006. Archipelagic resource procurement and mobility in the Northern Lesser Antilles: the view from a 3000-year-old tropical forest campsite on Saba. J. Island Coast. Archaeol. 1:145–64 [Google Scholar]
  47. Holdaway RN, Allentoft ME, Jacomb C, Oskam CL, Beavan NR, Bunce M. 2014. An extremely low-density human population exterminated New Zealand moa. Nat. Commun. 5:5436 [Google Scholar]
  48. Horst GR, Hoagland DB, Kilpatrick CW. 2001. The mongoose in the West Indies: the biogeography and population biology of an introduced species. See Woods & Sergile 2001 409–24
  49. IUCN (Int. Union Conserv. Nat.). 2016. The IUCN Red List of Threatened Species http://www.iucnredlist.org/ [Google Scholar]
  50. Jiménez Vázquez O, Condis MM, García Cancio E. 2005. Vertebrados post-glaciales en un residuario fósil de Tyto alba Scopoli (Aves: Tytonidae) en el occidente de Cuba. Rev. Mex. Mastozool. 9:85–112 [Google Scholar]
  51. Johnson CN. 2002. Determinants of loss of mammal species during the Late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proc. R. Soc. B 269:2221 [Google Scholar]
  52. Johnson CN, Bradshaw CJA, Cooper A, Gillespie R, Brook BW. 2013. Rapid megafaunal extinction following human arrival throughout the New World. Quat. Int. 308–9:273–77 [Google Scholar]
  53. Jones KE, Barlow KE, Vaughan N, Rodríguez-Durán A, Gannon MR. 2001. Short-term impacts of extreme environmental disturbance on the bats of Puerto Rico. Anim. Conserv. 4:59–66 [Google Scholar]
  54. Jones KE, Bielby J, Cardillo M, Fritz SA, O'Dell J. et al. 2009. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648 [Google Scholar]
  55. Keegan WF. 1992. The development and extinction of Lucayan Society. Terrae Incogn 24:43–53 [Google Scholar]
  56. Keegan WF. 1994. West Indian archaeology. 1. Overview and foragers. J. Archaeol. Res. 2:255–84 [Google Scholar]
  57. Keegan WF. 1995. Modeling dispersal in the prehistoric West Indies. World Archaeol 26:400–20 [Google Scholar]
  58. Keegan WF. 1996. West Indian archaeology. 2. After Columbus. J. Archaeol. Res. 4:265–94 [Google Scholar]
  59. Keegan WF. 2000. West Indian archaeology. 3. Ceramic age. J. Archaeol. Res. 8:135–67 [Google Scholar]
  60. Keegan WF, Portell RW, Slapcinsky J. 2003. Changes in invertebrate taxa at two pre-Columbian sites in southwestern Jamaica, AD 800–1500. J. Archaeol. Sci. 30:1607–17 [Google Scholar]
  61. Kemp ME, Hadly EA. 2015. Extinction biases in Quaternary Caribbean lizards. Glob. Ecol. Biogeogr. 24:1281–89 [Google Scholar]
  62. Kilpatrick CW, Borroto-Páez R, Woods CA. 2012. Phylogenetic relationships of recent capromyid rodents: a review and analyses of karyological, biochemical, and molecular data. Terrestrial Mammals of the West Indies: Contributions R Borroto-Páez, CA Woods, FE Sergile 51–69 Gainesville: Fla. Mus. Nat. Hist./Wacahoota Press [Google Scholar]
  63. Lalueza-Fox C, Calderón FL, Calafell F, Morera B, Bertranpetit J. 2001. mtDNA from extinct Tainos and the peopling of the Caribbean. Ann. Hum. Genet. 65:137–51 [Google Scholar]
  64. Lewis DS, van Veen R, Wilson BS. 2011. Conservation implications of small Indian mongoose (Herpestes auropunctatus) predation in a hotspot within a hotspot: the Hellshire Hills, Jamaica. Biol. Invas. 13:25–33 [Google Scholar]
  65. Lima-Ribeiro MS, Diniz-Filho JAF. 2013. American megafaunal extinctions and human arrival: improved evaluation using a meta-analytical approach. Quat. Int. 299:38–52 [Google Scholar]
  66. MacPhee RDE. 1984. Quaternary mammal localities and heptaxodontid rodents of Jamaica. Am. Mus. Novit. 2803:1–34 [Google Scholar]
  67. MacPhee RDE. 2005. ‘First’ appearances in the Cenozoic land-mammal record of the Greater Antilles: significance and comparison with South American and Antarctic records. J. Biogeogr. 32:551–64 [Google Scholar]
  68. MacPhee RDE, Flemming C. 2003. A possible heptaxodontine and other caviidan rodents from the Quaternary of Jamaica. Am. Mus. Novit. 3422:1–42 [Google Scholar]
  69. MacPhee RDE, Flemming C, Lunde DP. 1999. “Last occurrence” of the Antillean insectivoran Nesophontes: new radiometric dates and their interpretation. Am. Mus. Novit. 3261:1–19 [Google Scholar]
  70. MacPhee RDE, Iturralde-Vinent MA, Vazquez OJ. 2007. Prehistoric sloth extinctions in Cuba: implications of a new “last” appearance date. Caribb. J. Sci. 43:94–98 [Google Scholar]
  71. MacPhee RDE, White J-L, Woods C-A. 2000. New megalonychid sloths (Phyllophaga, Xenarthra) from the Quaternary of Hispaniola. Am. Mus. Novit. 3303:1–32 [Google Scholar]
  72. Martin PS. 1984. Catastrophic extinctions and late Pleistocene blitzkrieg: two radiocarbon tests. Extinctions MH Nitecki 163–89 Chicago: Univ. Chicago Press [Google Scholar]
  73. McAfee RK. 2011. Feeding mechanics and dietary implications in the fossil sloth Neocnus (Mammalia: Xenarthra: Megalonychidae) from Haiti. J. Morphol. 272:1204–16 [Google Scholar]
  74. McFarlane DA, MacPhee RDE, Ford DC. 1998. Body size variability and a Sangamonian extinction model for Amblyrhiza, a West Indian megafaunal rodent. Quat. Res. 50:80–89 [Google Scholar]
  75. McNab BK. 2001. Functional adaptations to island life in the West Indies. See Woods & Sergile 2001 55–62
  76. Miller G. 1929. Mammals eaten by Indians, owls and Spaniards in the coast region of the Dominican Republic. Smithson. Misc. Collect. 66:1–6 [Google Scholar]
  77. Moore C. 1991. Cabaret: Lithic workshop sites in Haiti. Proceedings of the 13th Congress of the International Association for Caribbean Archaeology J Haviser, EN Ayubi 92–104 Willemstad, Curaçao: Archaeol.-Anthropol. Inst. Neth. Antill. [Google Scholar]
  78. Moreno-Estrada A, Gravel S, Zakharia F, McCauley JL, Byrnes JK. et al. 2013. Reconstructing the population genetic history of the Caribbean. PLOS Genet 9:e1003925 [Google Scholar]
  79. Morgan GS. 2001. Patterns of extinction in West Indian bats. See Woods & Sergile 2001 369–407
  80. Morgan GS, Woods CA. 1986. Extinction and the zoogeography of West Indian land mammals. Biol. J. Linn. Soc. 28:167–203 [Google Scholar]
  81. Muscarella RA, Murray KL, Ortt D, Russell AL, Fleming TH. 2011. Exploring demographic, physical, and historical explanations for the genetic structure of two lineages of Greater Antillean bats. PLOS ONE 6:e17704 [Google Scholar]
  82. Newsom LA, Wing ES. 2004. On Land and Sea: Native American Uses of Biological Resources in the West Indies Tuscaloosa: Univ. Ala. Press323 pp. [Google Scholar]
  83. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN. et al. 2001. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–38 [Google Scholar]
  84. Ortiz Aguilú JJ, Rivera Meléndez J, Principe Jácome A, Meléndez Maiz M, Lavergne Colberg M. 1991. Intensive agriculture in pre-Columbian West Indies: the case for terraces Presented at 14th Congress of the International Association for Caribbean Archaeology 278–85 Barbados Museum and Historical Society, Barbados [Google Scholar]
  85. Ottenwalder JA. 1999. Observations on the habitat and ecology of the Hispaniolan solenodon (Solenodon paradoxus) in the Dominican Republic. Ecol. Illes Monogr. Soc. Hist. Nat. Balear. 66:123–68 [Google Scholar]
  86. Pavan AC, Marroig G. 2016. Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Mol. Phylogenet. Evol. 103:184–98 [Google Scholar]
  87. Pregill GK, Olson SL. 1981. Zoogeography of West Indian vertebrates in relation to Pleistocene climatic cycles. Annu. Rev. Ecol. Syst. 12:75–98 [Google Scholar]
  88. Rick TC, Kirch PV, Erlandson JM, Fitzpatrick SM. 2013. Archeology, deep history, and the human transformation of island ecosystems. Anthropocene 4:33–45 [Google Scholar]
  89. Rivera-Collazo IC. 2015. Por el camino verde: long-term tropical socioecosystem dynamics and the Anthropocene as seen from Puerto Rico. Holocene 25:1604–11 [Google Scholar]
  90. Roca AL, Kahila Bar-Gal G, Eizirik E, Helgen KM, Maria R. et al. 2004. Mesozoic origin for West Indian insectivores. Nature 429:649–51 [Google Scholar]
  91. Rudel TK, Perez-Lugo M, Zichal H. 2000. When fields revert to forest: development and spontaneous reforestation in post-war Puerto Rico. Prof. Geogr. 52:386–97 [Google Scholar]
  92. Saltré F, Brook BW, Rodríguez-Rey M, Cooper A, Johnson CN. et al. 2015. Uncertainties in dating constrain model choice for inferring extinction time from fossil records. Quat. Sci. Rev. 112:128–37 [Google Scholar]
  93. Snyder NFR, Wiley JW, Kepler CB. 1987. The Parrots of Luquillo: Natural History and Conservation of the Puerto Rican Parrot Los Angeles: Western Foundation of Vertebrate Zoology [Google Scholar]
  94. Soto-Centeno JA, O'Brien M, Simmons NB. 2015. The importance of Late Quaternary climate change and Karst on distributions of Caribbean mormoopid bats. Am. Mus. Novit. 3847:1–32 [Google Scholar]
  95. Soto-Centeno JA, Steadman DW. 2015. Fossils reject climate change as the cause of extinction of Caribbean bats. Sci. Rep. 5:1–7 [Google Scholar]
  96. Steadman DW, Hilgartner WB. 1999. A new species of extinct barn owl (Aves: Tyto) from Barbuda, Lesser Antilles. Smithson. Contrib. Paleobiol. 89:75–83 [Google Scholar]
  97. Steadman DW, Martin PS, MacPhee RDE, Jull AJT, McDonald HG. et al. 2005. Asynchronous extinction of late Quaternary sloths on continents and islands. PNAS 102:11763–68 [Google Scholar]
  98. Steadman DW, Pregill GK, Olson SL. 1984. Fossil vertebrates from Antigua, Lesser Antilles: evidence for late Holocene human-caused extinctions in the West Indies. PNAS 81:4448–51 [Google Scholar]
  99. Stoetzel E, Royer A, Cochard D, Lenoble A. 2016. Late Quaternary changes in bat palaeobiodiversity and palaeobiogeography under climatic and anthropogenic pressure: new insights from Marie-Galante, Lesser Antilles. Quat. Sci. Rev. 143:150–74 [Google Scholar]
  100. Stuart AJ. 2015. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50:338–63 [Google Scholar]
  101. Suárez W. 2005. Taxonomic status of the Cuban vampire bat (Chiroptera: Phyllostomidae: Desmodontinae: Desmodus). Caribb. J. Sci. 41:761–67 [Google Scholar]
  102. Suárez W, Díaz-Franco S. 2003. A new fossil bat (Chiroptera: Phyllostomidae) from a Quaternary cave deposit in Cuba. Caribb. J. Sci. 39:371–77 [Google Scholar]
  103. Szekely P, Korem Y, Moran U, Mayo A, Alon U. 2015. The mass-longevity triangle: Pareto optimality and the geometry of life-history trait space. PLOS Comput. Biol. 11:e1004524 [Google Scholar]
  104. Tallman M, Cooke SB. 2016. New endemic platyrrhine humerus from Haiti and the evolution of the Greater Antillean platyrrhines. J. Hum. Evol. 91:144–66 [Google Scholar]
  105. Tejedor A, Silva-Taboada G, Rodriguez Hernandez D. 2004. Discovery of extant Natalus major (Chiroptera: Natalidae) in Cuba. Mamm. Biol. 69:153 [Google Scholar]
  106. Turvey ST. 2009. Holocene mammal extinctions. Holocene Extinctions ST Turvey 41–61 Oxford, UK: Oxford Univ. Press [Google Scholar]
  107. Turvey ST, Brace S, Weksler M. 2012. A new species of recently extinct rice rat (Megalomys) from Barbados. Mamm. Biol. Z. Säugetierkunde 77:404–13 [Google Scholar]
  108. Turvey ST, Fritz SA. 2011. The ghosts of mammals past: biological and geographical patterns of global mammalian extinction across the Holocene. Philos. Trans. R. Soc. B 366:2564–76 [Google Scholar]
  109. Turvey ST, Kennerley RJ, Nuñez-Miño JM, Young RP. 2017. The last survivors: current status and conservation of the non-volant land mammals of the insular Caribbean. J. Mammal. 98:918–36 [Google Scholar]
  110. Turvey ST, Oliver J, Narganes Storde Y, Rye P. 2007. Late Holocene extinction of Puerto Rican native land mammals. Biol. Lett. 3:193–96 [Google Scholar]
  111. Turvey ST, Peters S, Brace S, Young RP, Crumpton N. et al. 2016. Independent evolutionary histories in allopatric populations of a threatened Caribbean land mammal. Divers. Distrib. 22:589–602 [Google Scholar]
  112. Turvey ST, Weksler M, Morris EL, Nokkert M. 2010. Taxonomy, phylogeny, and diversity of the extinct Lesser Antillean rice rats (Sigmodontinae: Oryzomyini), with description of a new genus and species. Zool. J. Linn. Soc. 160:748–72 [Google Scholar]
  113. Upham NS, Borroto-Páez R. 2017. Molecular phylogeography of endangered Cuban hutias within the Caribbean radiation of capromyid rodents. J. Mammal. 98:950–63 [Google Scholar]
  114. Valente L, Etienne RS, Dávalos LM. 2017. Recent extinctions disturb path to equilibrium diversity in Caribbean bats. Nat. Ecol. Evol. 1:0026 [Google Scholar]
  115. Veloz Maggiolo M. 1991. Panorama Histórico del Caribe Precolombino Santo Domingo: Edición del Banco Central de la República Dominicana [Google Scholar]
  116. Venter O, Sanderson EW, Magrach A, Allan JR, Beher J. et al. 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7:12558 [Google Scholar]
  117. Watts D. 1987. The West Indies: Patterns of Development, Culture and Environmental Change Since 1492 Cambridge, UK: Cambridge Univ. Press644 pp. [Google Scholar]
  118. White JL. 1993. Indicators of locomotor habits in xenarthrans: evidence for locomotor heterogeneity among fossil sloths. J. Vertebr. Paleontol. 13:230–42 [Google Scholar]
  119. Wilson EO. 2005. Environment: early ant plagues in the New World. Nature 433:32–32 [Google Scholar]
  120. Wing S, Wing E. 2001. Prehistoric fisheries in the Caribbean. Coral Reefs 20:1–8 [Google Scholar]
  121. Woods CA, Sergile FE. 2001. Biogeography of the West Indies: Patterns and Perspectives Boca Raton, FL: CRC Press [Google Scholar]
  122. Woods CE, Ottenwalder JA. 1992. The Natural History of Southern Haiti Gainesville: Florida Museum of Natural History [Google Scholar]
  123. Wyatt KB, Campos PF, Gilbert MTP, Kolokotronis S-O, Hynes WH. et al. 2008. Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease. PLOS ONE 3:e3602 [Google Scholar]
  124. Zuo W, Smith FA, Charnov EL. 2013. A life-history approach to the Late Pleistocene megafaunal extinction. Am. Nat. 182:524–31 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110316-022754
Loading
/content/journals/10.1146/annurev-ecolsys-110316-022754
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error