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Abstract

Hybrid analytical instrumentation constructed around mass spectrometry
(MS) is becoming the preferred technique for addressing many grand chal-
lenges in science and medicine. From the omics sciences to drug discovery
and synthetic biology, multidimensional separations based on MS provide
the high peak capacity and high measurement throughput necessary to ob-
tain large-scale measurements used to infer systems-level information. In
this article, we describe multidimensional MS configurations as technolo-
gies that are big data drivers and review some new and emerging strategies
for mining information from large-scale datasets. We discuss the informa-
tion content that can be obtained from individual dimensions, as well as the
unique information that can be derived by comparing different levels of data.
Finally, we summarize some emerging data visualization strategies that seek
to make highly dimensional datasets both accessible and comprehensible.
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INTRODUCTION

All grand challenges in which mass spectrometry (MS) plays a role are characterized by the big data
paradigm (Table 1). Proteomics seeks to detect and measure all proteins found in an organism (1),
which based on several recent drafts numbers between 16,000 and 19,000 for basic human proteins
(2–4) but could be as high as several million once protein variants and modifications are taken
into account (5). The inclusion of spatially resolved protein information from imaging studies will
increase this number even further (6). The human metabolome is represented by many diverse
classes of small-molecule metabolites, of which over 40,000 have been annotated with support from
MS techniques (7–9), but estimates place the possible number of human metabolites as high as
180,000 for lipids alone (10). Another grand challenge, systems biology, seeks to form connections
between all the various classes of biomolecules in both space and time toward the comprehensive
diagnosis of disease states (11), and MS is at the forefront of integrated omics approaches that will
help realize this vision (12–14). Drug discovery initiatives aim to find the proverbial needles in
haystacks in a molecular landscape of over 1060 possible chemical structures (15, 16), which is a
haystack containing a novemdecillion straws of hay, or about 40 orders of magnitude greater than
the number of grains of sand on Earth. To address this formidable challenge, researchers turn
to high-throughput screening using MS-based assays that are capable of screening up to 100,000
compounds a day from combinatorial small-molecule libraries (17, 18). Genomics, which is driven
by massively paralleled DNA sequencers (19), is currently feeling the burden of big data, with 2 to
40 million terabytes of genomic data projected to be generated in the next 10 years, representing
100 million to 2 billion complete human genomes sequenced. According to a recent report, this
volume of genomics data will surpass that of YouTube, Twitter, and the future Square Kilometre
Array by 2025 (20).

The above examples underscore only one aspect of big data: big numbers. But big data chal-
lenges are much more complex than dealing with large-scale datasets. The three Vs are often
invoked to identify a big data challenge: (a) a large volume of data, (b) being generated at high
velocity, (c) and characterized by a variety of different subsets of data (21). Lusher et al. (22, p. 861)
define a big data challenge more broadly in terms of “whether the [researchers are] able to extract
the relevant information from their rapidly growing data resources”. Thus, the definition of big
data is relative to the field in which the data are generated. A relevant example is the massive data
generated in the field of astronomy, datasets on the order of petabytes (1,000 terabytes), which

Table 1 Grand challenges addressed by MS-based research

Grand challenge Description Scope of data volume

Systems biology Map the interconnectivity of all biomolecules in space
and time

>100,000 discrete biomolecules, over 109 possible
binary connections

Omics sciences Genomics >20,000 human genes

Proteomics Approximately 20,000 base human proteins;
106 possible protein variants

Metabolomics
Lipidomics
Glycomics

>40,000 annotated human metabolites; >200,000
possible metabolites

Drug discovery Find chemicals with desirable pharmacological
properties

>1060 possible drug targets; 1011 virtual drug-like
chemical structures mapped

Synthetic biology Engineer and chemically characterize surrogate
biosystems for translational research

Elements of all of the above plus xenometabolites
and temporal sampling on the order of seconds
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Cloud computing:
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computationally
intensive work across a
distributed network of
computers

are efficiently handled due to decoupling data storage with data analysis, bridged through cloud
computing (23). Another example is CERN’s Large Hadron Collider data analysis network, which
is built upon a massively distributed system architecture (24). MS as a field is beginning to embrace
the concept of a decentralized computing infrastructure, but it is not there yet.

In this review, we trace the challenges of big data in analytical chemistry from its origins in the
enumeration of chemical isomers to the (arguably) current locus in the field of multidimensional
analysis based on MS. The need for multidimensional analysis is rationalized based on the prob-
lem of enumerating small molecules (25), and beyond high dimensionality and enhanced peak
capacities, the correlation between discrete dimensions of data is presented to illustrate the rich
information content afforded by scaling to higher dimensions. Finally, we provide an overview of
some recent and creative visualization strategies that provide comprehensible access to higher-
order dimensional information in a low-dimensional format.

THE FOUNDATION OF BIG DATA IN CHEMICAL RESEARCH

Generating Chemical Knowledge

In many of his works, the futurist Buckminster Fuller argued that human knowledge was increasing
at an unprecedented rate in human history, and this provided unique opportunities in the areas of
science, engineering, and design. Fuller (26) supported his argument by plotting a timeline of the
discovery of the chemical elements (Figure 1a) and noted that knowledge was essentially increasing
exponentially over time. In light of new data, the discovery of chemical elements has occurred at
a relatively fixed rate for the past 50 years, reflecting the difficulty in creating stable nuclei of the
superheavy elements. Knowledge stems from myriad sources and is more aptly illustrated from
discoveries made in the absence of limitations. An updated observation of knowledge doubling
in the chemical sciences can be seen in Figure 1b, which plots over time the indexing of new
chemical substances in the Chemical Abstracts Service (CAS) Registry. As chemical space is vast,
the number of unique chemical registry numbers is increasing near exponentially since the CAS
Registry system was first introduced in 1965, reaching 100 million substances at the year of
this publication (27), and 200 million substances are expected to be indexed within the next five
years. The open-access repository, PubChem (28), is growing even faster, with over 150 million
chemical substances indexed since its introduction in 2004 (29). Over 60 million of these have
been validated as unique chemical compounds (30). These and other efforts (31–34) to catalog all
chemical compounds discovered represent our known chemical universe (35), which according
to one estimate represents less than 1 in 1050 possible molecular structures for small organic
compounds alone (36). To put this number in context, 1 in 1050 is a greater disparity of scale than
the height of a person compared to the diameter of the observable universe, or 1 in 1026 m (37).

Although enumeration of all possible molecular structures is impossible, recent progress toward
enumerating compounds of 17 atoms or less containing C, H, N, O, S, and halogens has resulted
in 166.4 billion virtual drug-like compounds of approximately 350 Da or less (38, 39). Such new
compound discovery and annotation efforts are big data challenges that represent the chemical
sciences in the purest sense, and form the basis for the nascent fields of chemography (40) and
cheminformatics (41, 42). Figure 1c contains a histogram of the number of chemical abstracts
indexed by the CAplus system, which is accessed through SciFinder. As of January 2016, over
45 million chemical abstracts have been indexed (43), which based on current trends is expected to
double within the next decade. This number of publications is on scale with the estimated 50 million
total number of peer-reviewed articles across all disciplines as of 2009 (44), of which a little over half
(approximately 30 million) were represented in CAplus at that time. Extrapolating this observation
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Figure 1
Histograms illustrating the increasing rate of knowledge and innovation relevant to the analytical sciences. These histograms describe
growth numbers for (a) chemical elements discovered; (b) chemical substances registered in the Chemical Abstracts Service (CAS)
Registry system; (c) chemical abstracts indexed in CAplus; (d ) number of transistors in each generation of microprocessor, also known
as Moore’s law; (e) data storage capacity for each generation of consumer disk drive; and ( f ) accessible internet bandwidth for
residential customers.

Moore’s law: coined
by Intel founder
Gordon Moore, who
initially observed that
microprocessor
component density
doubled approximately
every two years

to the present suggests that at least 75 million journal articles are currently in existence. In a broader
sense, this trend illustrates dissemination of greater quantities of chemical data into chemical
information, which follows an exponential growth rate. If the canonical goal of the analytical
sciences is to separate, identify, and quantify chemical substances from a variety of sources, then
there is an incredibly vast amount of chemical space left to explore.

Translating Chemical Information

The ability to acquire and analyze large amounts of data is driven by advances in the computer
sciences. Panels d through f of Figure 1 illustrate the so-called digital laws, which describe
(a) exponential scaling of computer processor speeds (Moore’s law; Figure 1d ) (45), (b) increasing
capacity of consumer-grade data storage (Figure 1e) (46), and (c) available bandwidth of residential
broadband internet (Figure 1f ) (47). Collectively, these digital laws represent innovation and,
on a broader level, humanity’s current capacity to process, store, and disseminate information.
From the doubling brackets annotated on each graph, it is apparent that computer processor
speed (related to the number of transistors) now doubles approximately every four to six years,
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LC-MS: liquid
chromatography
coupled to mass
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whereas data storage capacity is doubling every two to three years. These observations infer two
key points for large-scale analytical data mining: (a) Data volume will increase faster than the
informatics tools necessary to interpret the data, and (b) broader data accessibility will provide
new opportunities to handle large analytical datasets. The first is already being realized in many
areas of MS-based research, and the second point is beginning to emerge from two notable
concepts: crowdsourcing and cloud computing.

Crowdsourcing Mass Spectrometry Data

Crowdsourcing describes a division of labor concept in which the combined efforts of a large
group of individuals are applied toward solving a complex problem. Typically, the contributing
individuals are not experts in the problem they are tasked to solve, but rather citizen scientists
who utilize their natural human capabilities to address scientific challenges. Crowdsourcing in
science as a concept is not new. In 1714, the British government issued the Longitude Prize to
anyone who could determine, by relatively simple means, the longitude of a ship at sea, which
fostered advances in cartography and celestial navigation while creating the new science of marine
chronometry (48). Recently, the problem of three-dimensional protein folding has been addressed
by means of a novel online video game, Foldit, whereby players attempt to fold proteins, many
of which have unsolved crystal structures. Foldit is an interactive puzzle game that is built upon
Rosetta folding algorithms (49, 50), allowing online players to move subdomains, as well as shake
and wiggle a protein structure to minimize its energy (51). Foldit players have so far been able
to solve the three-dimensional structure of a retroviral protease (52, 53), as well as improve the
biological activity of a computationally designed enzyme (54). In MS, there have been a few,
although sparse, notable efforts to crowdsource large-scale efforts. Several MS database initiatives
source from user-submitted data, including MassBank, HMDB (Human Metabolome Database),
and mzCloud. Bradley et al. (55) described a gameplay approach similar to Foldit whereby players
of the web-based Spectral Game are asked to match mass spectra to their corresponding molecular
structures. Utilizing citizen scientists, Du et al. (56) described a study whereby property owners
collected soil samples that were screened by liquid chromatography–mass spectrometry (LC-MS)
for potential natural products. These efforts yielded a novel fungal metabolite, maximiscin, which
exhibited antitumor activity in a mouse model (56).

An open call for more crowdsourced data analysis resources in MS-based proteomics has
recently been made (57), which, based on other similar efforts in structural and network biology
(58, 59), will foster more innovation and standardization across the field. Pragmatically speaking, it
makes sense to query large groups of individuals for data analysis, as the capacity of the human brain
surpasses that of conceptualized mathematical algorithms for discerning complex patterns across
datasets, e.g., images (60). We envision the above strategies developed for structural biology and
the nascent efforts now under way to crowdsource data analysis in MS will be critical to inferring
important patterns or information from massive datasets, including those from discrete fields (e.g.,
transcriptomics, proteomics), but ultimately to linking datasets spanning the breadth of systems
biology. Whereas the promise of data-driven discovery has been classically framed in the context
of autonomous algorithms combing through large amounts of data, the human element in such
efforts should not be understated (61).

Cloud Computing in Mass Spectrometry Research

Cloud computing, or specifically the concept of conducting data-intensive computational work
across a distributed network of computers (62), is rapidly being adopted in many MS-based
workflows (63). One example is XCMS Online, which offers cloud-based processing of LC-MS
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metabolomics datasets, from feature extraction to normalization of data dimensions and statisti-
cal analysis of the results, and is capable of handling terabytes of data (64, 65). Another example,
OpenMSI, outsources the US Department of Energy’s National Energy Research Scientific Com-
puting Center (NERSC) supercomputing facility toward processing highly dimensional imaging
MS datasets, which in a single experiment can exceed 50 GB in size (66, 67). One of the earliest
big data initiatives in MS, proteomics, has seen several recent offerings of open-access software
tools for processing tandem MS (MS/MS) data (23, 68–70), and notable among these is the Trans-
Proteomic Pipeline (71), which supports outsourcing of the software to the Amazon Web Services
cloud computing infrastructure (72). These and other efforts to decentralize the computational
resources required to handle MS-based data will help facilitate the development of educational
and research programs where large investments in computer infrastructure are no longer neces-
sary, and will help offset the need for institutions to invest heavily in instrumentation altogether.
Open-source repositories of MS data help make this possible (73, 74). In the near future, it is
conceivable that entire research programs will conduct MS research on digitally streamed data
without direct access to a mass spectrometer.

MULTIDIMENSIONAL METHODS BASED ON MASS SPECTROMETRY

The Genesis of Big Data in Mass Spectrometry

MS is well suited to address big data challenges, as the throughput and information density of
the technique are both extraordinarily high. Figure 2 highlights the peak capacity and the peak
production rate of some MS-based analytical techniques that are used, and have the potential
to be used, in big data initiatives. Peak capacities are commonly reported for condensed-phase
separations such as liquid and gas chromatography (75, 76), but are less common in ion mobility
(IM) and MS research, and so specific considerations are taken to generate these metrics in this
present work. For example, MS calculations for peak capacity are based on methods developed by
Frahm et al. (77) that account for instrument resolving powers and isotope redundancy and utilize
typical rather than optimal parameters for each method (78). For IM, peak capacities are obtained
from measured values of different techniques where available (79–81) or otherwise calculated
from reported resolving powers (82, 83). For IM coupled to MS (IM-MS), there is a correlation
between size and mass, and so IM-MS data in Figure 2 are scaled by a factor of 0.25 (25% unique
space occupancy) to reflect this reduced orthogonality, which is based on experiments conducted
in the authors’ laboratory. The power and potential of multidimensional analytical separations
become evident when comparing both the peak capacities and peak production rates of individual
analytical separation dimensions with those of multidimensional techniques. A cursory look at IM
separations at the top of the scale reveals that the peak capacities are quite low, less than 100 (84),
but IM can produce data at rates exceeding 100 peaks per second (85).

The next data-dense separation technique is liquid chromatography, for which peak capacities
exceed 100 for one-dimensional LC and several thousand if two-dimensional LC is utilized (86,
87). The latter is on scale with two-dimensional electrophoresis (88, 89), as well as traditional MS
techniques such as triple quadrupoles and ion trap instrumentation. High-resolution MS tech-
niques exhibit peak capacities approaching 100,000 or greater and are capable of very high peak
production rates ranging from 100,000 peaks per second for Orbitrap MS [Fourier transform MS
(FTMS)] to over 100 million peaks per second for time-of-flight (TOF) MS. Fourier transform ion
cyclotron resonance (FTICR) is capable of peak capacities approaching 1 million. Peak capacities
beyond approximately 1 million are available through MS/MS experiments and/or by coupling
multiple dimensions of separation to MS. For example, IM coupled to TOF MS (IM–TOFMS)

392 May · McLean



Downloaded from www.annualreviews.org.

 Guest (guest)

IP:  3.147.83.37

On: Sun, 30 Jun 2024 14:10:19

AC09CH18-McLean ARI 27 May 2016 12:21

Peak production rate (peaks/sec) 

109 106 103 1 10–3 1 10 102 103 104 105 106 107 108 109 1010 1011 1012

Ion mobility (IM)

Liquid chromatography (LC)

Electrophoresis (E)

MS imaging (MSI)

Mass spectrometry (MS)

Peak capacity (total number of theoretical peaks) 

Asymmetric field IM (FAIMS)Asymmetric field IM (FAIMS)Asymmetric field IM (FAIMS)
Differential field IM (DMS)Differential field IM (DMS)Differential field IM (DMS)

Traveling wave IM (TWIMS)Traveling wave IM (TWIMS)Traveling wave IM (TWIMS)
Drift tube IM (DTIMS)Drift tube IM (DTIMS)Drift tube IM (DTIMS)

Capillary electrophoresis (CE)Capillary electrophoresis (CE)Capillary electrophoresis (CE)
Liquid chromatography (LC)Liquid chromatography (LC)Liquid chromatography (LC)

FAIMS-DTIMSFAIMS-DTIMSFAIMS-DTIMS
DTIMS-IM/IMDTIMS-IM/IMDTIMS-IM/IM

Comprehensive 2D LC (LCxLC)Comprehensive 2D LC (LCxLC)Comprehensive 2D LC (LCxLC)
Ultra high pressure LC (20 kpsi)Ultra high pressure LC (20 kpsi)Ultra high pressure LC (20 kpsi)
Isoelectric focusing (IEF) x CEIsoelectric focusing (IEF) x CEIsoelectric focusing (IEF) x CE

2D gel electrophoresis (2D PAGE)2D gel electrophoresis (2D PAGE)2D gel electrophoresis (2D PAGE)
Triple quadrupole-MS/MSTriple quadrupole-MS/MSTriple quadrupole-MS/MS

FAIMS-ITFAIMS-ITFAIMS-IT
LCxLC (offline)LCxLC (offline)LCxLC (offline)

Time-of-flight MS (TOF)Time-of-flight MS (TOF)Time-of-flight MS (TOF)
LCxLC-IT-MSLCxLC-IT-MSLCxLC-IT-MS

Ion trap (IT)-MS/MSIon trap (IT)-MS/MSIon trap (IT)-MS/MS
Orbitrap MS (FTMS)Orbitrap MS (FTMS)Orbitrap MS (FTMS)

TWIMS-TOFTWIMS-TOFTWIMS-TOF
Q-TOF-MS/MSQ-TOF-MS/MSQ-TOF-MS/MS

DTIMS-TOFDTIMS-TOFDTIMS-TOF
LC-DTIMS-TOFLC-DTIMS-TOFLC-DTIMS-TOF

Ion cyclotron resonance (FTICR)Ion cyclotron resonance (FTICR)Ion cyclotron resonance (FTICR)
FAIMS/DTIMS-TOF-MS/MSFAIMS/DTIMS-TOF-MS/MSFAIMS/DTIMS-TOF-MS/MS

TWIMS-Q-TOF-MS/MSTWIMS-Q-TOF-MS/MSTWIMS-Q-TOF-MS/MS
IT-FTMS-MS/MSIT-FTMS-MS/MSIT-FTMS-MS/MS

DTIMS-Q-TOF-MS/MSDTIMS-Q-TOF-MS/MSDTIMS-Q-TOF-MS/MS
LC-FAIMS-IT-MS/MSLC-FAIMS-IT-MS/MSLC-FAIMS-IT-MS/MS

LCxLC-IT-MS/MSLCxLC-IT-MS/MSLCxLC-IT-MS/MS
LC-IT-FTMS-MS/MSLC-IT-FTMS-MS/MSLC-IT-FTMS-MS/MS

LC-FTICR-MS/MSLC-FTICR-MS/MSLC-FTICR-MS/MS
MS imaging (MSI)-TOFMS imaging (MSI)-TOFMS imaging (MSI)-TOF

MSI-FTMSMSI-FTMSMSI-FTMS
MSI-TWIMS-Q-TOF-MS/MSMSI-TWIMS-Q-TOF-MS/MSMSI-TWIMS-Q-TOF-MS/MS

3D imaging MSI-TOF3D imaging MSI-TOF3D imaging MSI-TOF

Asymmetric field IM (FAIMS)
Differential field IM (DMS)

Traveling wave IM (TWIMS)
Drift tube IM (DTIMS)

Capillary electrophoresis (CE)
Liquid chromatography (LC)

FAIMS-DTIMS
DTIMS-IM/IM

Comprehensive 2D LC (LCxLC)
Ultra high pressure LC (20 kpsi)
Isoelectric focusing (IEF) x CE

2D gel electrophoresis (2D PAGE)
Triple quadrupole-MS/MS

FAIMS-IT
LCxLC (offline)

Time-of-flight MS (TOF)
LCxLC-IT-MS

Ion trap (IT)-MS/MS
Orbitrap MS (FTMS)

TWIMS-TOF
Q-TOF-MS/MS

DTIMS-TOF
LC-DTIMS-TOF

Ion cyclotron resonance (FTICR)
FAIMS/DTIMS-TOF-MS/MS

TWIMS-Q-TOF-MS/MS
IT-FTMS-MS/MS

DTIMS-Q-TOF-MS/MS
LC-FAIMS-IT-MS/MS

LCxLC-IT-MS/MS
LC-IT-FTMS-MS/MS

LC-FTICR-MS/MS
MS imaging (MSI)-TOF

MSI-FTMS
MSI-TWIMS-Q-TOF-MS/MS

3D imaging MSI-TOF

Figure 2
Peak capacities (right) and peak capacity production rates (left) for hybrid multidimensional mass spectrometry and related techniques.
Specific techniques and combinations are selected based on available information in the literature.

MSI: mass
spectrometry imaging

offers a similar peak capacity as FTICR but can generate approximately one order of magnitude
more peaks, at 10 million peaks per second (85). The addition of LC to MS and IM-MS com-
bined with MS/MS achieves between 1 million and 100 million peaks depending on the specific
configuration, with production rates of 1,000 spectra or more per second (79, 90).

Mass spectrometry imaging (MSI) adds spatial information to the analysis, increasing peak
capacity to over 1 billion peaks, with a production rate of approximately 100,000 peaks per second
(91). A combination of MSI experiments and IM-MS and MS/MS analyses generates over 10 billion
peaks at a rate of approximately 1 million peaks per second (92). Finally, three-dimensional MSI,
which obtains layered spatial information, is capable of very high data density, here illustrated by a
recent example of over half a million MSI pixels coupled to TOF, which generates over 100 billion
peaks at a rate of more than 100,000 peaks per second (93). If IM experiments and/or MS/MS
were included, then a theoretical peak capacity in excess of 1 trillion would be possible with
three-dimensional MSI. This small sampling of possible analytical configurations does not take
into consideration the inclusion of experimental time-points or cohorts, which are a component
of comprehensive biological studies. Conservatively, multidimensional MS data generation is on
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the order of thousands of peaks per second, with capabilities for resolving tens of thousands of
molecular signals in a single experimental sequence.

The Importance of Multidimensional Mass Spectrometry

The fundamental analytical approach to system complexity is to reduce a complex problem into
manageable subsets of data. In analytical chemistry, this involves elucidating the chemical structure
of an analyte from an initially unknown sample or, conversely, characterizing a complex sample by
descriptors of its molecular constituents. For MS, a conventional approach to molecular identifi-
cation is to use the mass measurement to reduce several million possible molecular formulas to a
few thousand or less toward initial characterization (94). Other orthogonal pieces of information
are then used in a complementary fashion to assign a structural identity to the unknown analyte.
This challenge is often understated, and so it is instructive to revisit the challenge of structural
elucidation by MS using a relevant example.

Figure 3 illustrates an example of molecular identification using an MS-centric approach.
For molecules less than 2,000 Da, there are over 8 billion possible molecular formulas that can
be assigned to an unknown analyte (95). Typically, an initial sample fractionation step such as

HO OHN N

HO OH
Unique molecular identification

Molecular formula ......................................C20H22N2O4

Mass measurement 

Analyte in complex sample

•  Online separations prior to MS
•  Offline sample purification

61M+ compounds (PubChem)

10k isomeric structures

8B+ statistically possible molecular formulas

200k molecules
44k molecules
11k molecules
10k molecules

•  Fragmentation data (MS/MS) 
•  Other orthogonal information 

•  Collision cross section 
•  Retention time 
•  Spatial/temporal location 
•  Optical spectroscopy 
•  NMR 

▶  Constituents and
molecular complexity  

▶  Molecular size/shape 
▶  Chemical properties 
▶  Contextual properties 

•  Unit resolution (~3k ppm).................... 354 ± 1 Da
•   100 ppm ................................................... 354.16 ± 0.03 Da
•   10 ppm ................................................... 354.158 ± 0.003 Da
•   1 ppm ................................................... 354.1579 ± 0.0003 Da
•  Heuristic filtering

1

Figure 3
An example of the molecular characterization workflow using multidimensional mass spectrometry. From top to bottom: Over 8 billion
possible molecular formulas between 0 and 2,000 Da exist. Obtaining the mass measurement allows database searching, which is
illustrated by the over 61 million compounds indexed in PubChem as of January 2016. Subsequent levels of mass accuracy reduce the
number of possible molecular formulas from over 200,000 (unit resolution) to approximately 10,000 at 1 ppm mass accuracy for the
example mass of 354 Da. Using higher mass accuracy and/or a heuristic filtering approach obtains a unique molecular formula, which
still represents several thousand isomeric compounds. Obtaining a unique molecular identity requires additional measurement
dimensions, such as MS/MS, LC, IM, and perhaps measurements from other analytical techniques (e.g., optical spectroscopy, NMR).
Abbreviations: IM, ion mobility; LC, liquid chromatography; MS/MS, tandem mass spectrometry; NMR, nuclear magnetic resonance;
ppm, parts per million.
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chromatography is utilized to reduce complexity but also to avoid ion suppression effects, which
are inherent in all MS ion sources (96). The latter motivation is important because it is often
stated that post-ionization separations such as IM can offset the need for condensed-phase sep-
arations (electrophoresis or chromatography), but such strategies cannot address limitations of
the ion source itself. Once a mass measurement is obtained, the number of possible structures
can be reduced significantly. In this example, a mass of 354 Da at unit resolution represents over
200,000 possible chemical structures indexed in PubChem, which contains over 60 million veri-
fied compounds as of 2016. At 100 ppm (354.16 ± 0.03 Da) the number of structures reduces to
approximately 44,000, and at 10 ppm (354.158 ± 0.003 Da) there are just over 11,000 indexed
structures. With a combination of high mass accuracy (approximately 1 ppm) and invoking filtering
rules based on isotope pattern matching and probable structures (95), a molecular formula can be
assigned to the analyte with high confidence. Marshall and colleagues (97) have demonstrated that
a mass accuracy on the order of 0.1 mDa (0.2 ppm at 500 Da) is necessary to unambiguously assign
a molecular formula based on mass measurement alone, and this level of high mass accuracy has
been demonstrated for FTICR (98) and Orbitrap MS (99). Whereas these examples demonstrate
that it is tractable to assign a unique molecular formula based on the mass measurement alone, the
molecular formula is not a specific descriptor of the analyte. For example, Figure 3 demonstrates
that there are still over 10,000 possible isomeric structures in PubChem for this particular chem-
ical formula (C20H22N2O4). To translate molecular formula information to a unique chemical
structure, other orthogonal pieces of information, such as MS/MS data, must be utilized.

To place this example in the context of big data, Figure 4 illustrates the support and limita-
tions that large-scale databases can provide for MS-based characterizations. The current scope
of the PubChem Compound Database for molecules between 0 and 1,000 Da is projected in the
histogram in Figure 4a. Two previous surveys of the database are also shown (95, 100), which
provide a sense of the volume of data that is currently being generated. Smaller molecules are
being added at a faster rate, which has shifted the distribution of compounds represented since
the 2007 survey. The survey conducted in this study reveals a bimodal distribution at low mass,
which we interpret as reflecting the greater effort being made in comprehensive annotation of the
smaller molecules. Over time, we anticipate that the distribution will normalize and shift back to
higher mass, where more possible isomeric structures reside in chemical space. The dotted line
in Figure 4a depicts the theoretically possible unique molecular formulas based on valence rules
(95). At low mass, the number of possible isomeric structures for each molecular formula decreases
significantly, but regardless, a very large number of isomeric structures less than approximately
400 Da are represented in the PubChem database. For example, valence and chemical stability
rules suggest that the number of possible molecular formulas at approximately 250 Da for an or-
ganic molecule (C, H, N, and O) is on the order of 5,000, but empirically over 200,000 validated
chemical structures are in this mass range. Even at this tractable mass range, the challenge of
assigning a unique structure to an analyte is still quite formidable.

The inset in Figure 4a shows the distribution of molecules within a 10 Da mass window, and
at this level of zoom the so-called forbidden zones resulting from quantized mass spacing are
clearly visible (101). Thus, although MS has a very high peak capacity, much of the possible signal
clusters within narrow regions of mass space to an extent that is specific to the atomic composition
originating from the mass defect [properly, the mass excess (77)]. In this 10 Da window, there are
over half a million verified chemical structures.

Figure 4b illustrates three panels of increasing levels of zoom in which the histogram resolu-
tions are scaled to different mass accuracies. A 1 Da mass window at 100 ppm focuses on a single
cluster of molecular structures within the database, containing over 200,000 structures. Higher
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Figure 4
An illustration of the amount of information density present at different levels of mass measurement accuracy, using the validated
entries in the PubChem Compound Database. (a) The distribution of molecules between 0 and 1,000 Da in the PubChem Compound
Database, as surveyed in this review and in two previous surveys from 2007 and 2011. As new compounds are discovered and archived,
the distribution has shifted to lower mass, with most entries currently centered between 100 and 600 Da. The dotted line illustrates
theoretical molecular formulas determined from chemical stability rules, indicating that most of these entries are isomers. The inset
zooms in on a 10 Da window, in which over half a million compounds are represented. (b) At increasing levels of mass accuracy, the
number of possible molecular formulas can be reduced to a few thousand, but in one extreme case shown at 1 ppm, one formula is
represented by over 10,000 isomers in the database. Mass spectrometry can significantly reduce complexity, but it cannot fully address
molecular characterization without other dimensions of information.

mass bin resolution (10 ppm) brings this number of structures down to approximately 48,000,
and at 1 ppm mass accuracy, the number of structures can be reduced to approximately 10,000,
here represented by five possible molecular formulas or less for each 1 ppm resolution bin. For
most molecular formulas in this range, only tens to hundreds of structures are represented, but
highlighted is the dramatic case described above in which one molecular formula (C20H22N2O4)
represents over 10,000 isomeric structures indexed in the PubChem Compound Database.

Integrating additional separation dimensions with MS is thus necessary to address sample
complexity. Although many combinations of condensed- and gas-phase separations have been
demonstrated to work well with MS, there are inherent technological limitations imposed for
specific combinations. For example, seamless coupling of LC to MS requires a continuous liquid
stream ion source operated at ambient pressure, such as electrospray or atmospheric pressure
chemical ionization (102). On the other hand, MSI is conventionally coupled to MS by means of
a pulsed ion beam or laser source to provide high-speed, discrete ionization of spatial locations
on the sample (103, 104). Developments in MSI-MS using liquid sampling probes, which reduce
sample pretreatment at a cost of throughput and spatial resolution, are now beginning to emerge
(105, 106). IM-MS requires transferring ions across disparate pressure regions and analyses in an
efficient manner, and this challenge has been addressed through electrodynamic ion optics and the
nesting of analytical timescales (83, 107, 108). Despite some limitations, numerous combinations
of separations have been adapted to MS, each of which provides a unique level of information
when combined.
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COMPARISON OF ORTHOGONAL SEPARATION DIMENSIONS

Mass Defect Analysis

The accurate mass measurement provides a highly specific measurement of an intrinsic property
of the analyte, the exact mass, but as noted above, the mass measurement alone does not provide
specific information beyond the chemical composition. Several MS studies have exploited the
additional information that can be gained from derivative comparisons (i.e., change in mass) using
the single dimension of MS analysis, namely through the correlation of the small mass shift from
nominal mass owing to the mass defect. Mass defect refers to the change in the nominal mass
due to the binding energy of nucleons, which manifests as the decimal mass measurement in
high-resolution MS data (109). Because this mass shift reflects the chemical composition of the
analyte, an orthogonal comparison between the nominal mass and the mass defect groups the
measurements into chemical class families, which provides a convenient means of locating related
chemical species in a complex MS spectrum. MS measurements are based on the International
Union of Pure and Applied Chemistry (IUPAC) mass scale, which normalizes the measurement
to carbon-12 (12C = 12 Da), but mass defect analysis commonly utilizes a rescaled mass axis to
help identify small mass differences relative to a reference mass that is more representative of the
molecule of interest.

Two mass defect scales that have been utilized are the Kendrick scale and the averagine scale.
The Kendrick scale normalizes the mass axis to CH2, which is 14 Da (110), and has found
widespread utility in analyzing the chemical constituents in petroleum (111, 112), as well as in
MS analysis of lipids (113). Figure 5 depicts a Kendrick mass defect plot, which aligns families
of compounds into easily discernible groups, as is shown for the separation of constituents con-
tained in crude oil (111). The averagine scale is normalized to the averagine subunit, which is a
theoretical amino acid based on the statistically weighted occurrence of amino acids in the Protein
Information Resource (PIR) protein database as of 1995 (C4.9384H7.7583N1.3577O1.4773S0.0417) (114,
115). The averagine mass scale has been used in MS proteomics to aid in peptide identification
(116), although axis rescaling is not necessary, and peptide mass defect analysis has been carried
out using the conventional IUPAC scale (117). Of note is an effort to theoretically enumerate
all possible tryptic peptides of 3.5 kDa or less to support mass defect–based identifications (118,
119), among other initiatives. Mass defect analysis is commonly used in drug metabolism stud-
ies, where it is desirable to search out exogenous metabolites that possess chemical compositions
related to the drug species of interest (120–122). Mass defect analysis is also particularly effec-
tive at identifying surfactant and halogenated compound contaminants in complex samples (123,
124).

Ion Mobility and Mobility-Mass Correlations

IM has emerged in recent years as a mature analytical technique capable of rapid separations that
seamlessly integrate into a variety of MS instrument platforms (83). The benefit of the separation
is through increasing the peak capacity of the analysis as well as providing an additional level of
discrimination by filtering out desirable signals from complex matrices. IM also provides com-
plementary information to MS in the form of structural information by means of the gas-phase
collision cross section (CCS), which is now a relatively routine parameter determined from a va-
riety of IM experiments. In contrast to that from MS, however, the structural information from
IM is a less-specific descriptor of the analyte than of the mass, as the CCS is an orientationally
average shape parameter that reduces the three-dimensional structure to a two-dimensional area
(125). CCS is also an extrinsic property that depends on the specific parameters of the experiment,
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Figure 5
A Kendrick mass defect plot of crude oil. The plot projects the nominal (integer) Kendrick mass on the x-axis
and the difference between nominal and exact Kendrick mass on the y-axis. In this way, chemically similar
compounds align horizontally, and chemical class families group into distinct regions on the plot. Here,
odd-mass species (e.g., carbon-13) are projected to validate the assignments made for the primary even-mass
species in the original work. The numbers below each class header at right correspond to the number of
degrees of unsaturation within each chemical family. Reprinted with permission from Reference 111.
Copyright 2001 American Chemical Society.

and so CCS values are reported with statistics (standard deviation and number of observations) to
gauge the relative specificity of the measurement. Despite these limitations, CCS databases have
facilitated molecular identification by providing an additional parameter for characterization (126,
127). Aided by computational methods (128), the CCS can also be used to infer more detailed
structural information regarding the analyte (129–131).

Combined Ion Mobility–Mass Spectrometry and Mass Defect Analysis

Although IM alone provides some level of specificity in the measurement, additional information is
gained when it is combined with MS. At a fundamental level, IM-MS separates analytes by size and
mass, which collectively describe the relative gas-phase densities of different structural populations
(132, 133). These mobility-mass correlations are useful for discerning related structural families
toward chemical-class-specific filtering (134, 135) and characterization schemes (136). As noted
above, class information can also be inferred from analysis using the mass defect originating from
the MS measurement. A recent study conducted in the authors’ laboratory for lipids is depicted
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Figure 6
A multidimensional analysis of five lipid classes (two sphingolipids and three glycerophospholipids) using data obtained from an IM-MS
experiment. (a) The raw IM-MS spectrum is projected as a heat map, with m/z on the x-axis, IM drift time on the y-axis, and signal
intensity on the color mapping scale. (b) Feature extraction of singly charged ions is performed, resulting in a mass versus collision cross
section conformational space plot. (c) The accurate mass measurement (approximately 5 ppm in this work) can also be subjected to a
mass defect scaling, resulting in a mass versus mass defect plot. (d ) Both the IM-MS conformational space map and the mass defect plot
reveal groupings of data based on their respective lipid class, with sphingolipids separated from phospholipids. Abbreviations: IM, ion
mobility; MS, mass spectrometry; m/z, mass-to-charge ratio; ppm, parts per million.

in Figure 6, which compares mass defect analysis to IM-MS correlations for five classes of lipids
(137). Raw IM-MS data are visualized in a heat map projection (Figure 6a), which projects the
mass-to-charge ratio (m/z) (x-axis) versus the IM drift time (y-axis) while retaining the third
dimension of signal intensity as a color map. In this particular example, a tricolor gradient is
used to differentiate the islands of high signal abundance for polar lipids and a series of alkyl
ammonium salts introduced as internal calibrants that form distinct class-specific trends in the
raw data (136). Spectral features are then extracted, in this case for singly charged analytes, and
drift times are converted to CCS (Figure 6b). Using the accurate mass measurement, the data
can also be projected as mass versus mass defect (Figure 6c), which reveals chemical relationships
in the extracted ion signals. Here, the inorganic ammonium salts are easily differentiated from
the lipids, and two lipid subclasses, sphingolipids and glycerophospholipids, can be differentiated
from each other using either the IM-MS projection (Figure 6b) or the MS–mass defect projection
(Figure 6c). This differentiation of lipid subclasses is observed in a distribution analysis of both
dimensions of separation (Figure 6d ), illustrating that similar chemical class information can be
obtained from both IM-MS and high-accuracy MS. Thus, IM-MS provides an additional level of
information that goes beyond the sum of its parts.
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NOVEL STRATEGIES FOR VISUALIZING BIG DATA

As the rate and volume of data increase, visualizing important information derived from the data
becomes increasingly challenging. Because of the fundamental limitations of human perception,
large-scale data cannot be adequately comprehended unless they are reduced to lower-dimensional
projections. Successful data visualization strategies thus simplify the level of data complexity and
also incorporate familiar and intuitive visual cues that help infer connections between higher
dimensions or otherwise provide access to the unseen higher dimensions. We briefly review a few
recent and noteworthy means of visualizing large datasets.

Cloud Plots

A contemporary metabolomics experiment incorporating MS analysis typically detects on the or-
der of several thousand metabolites, representing a diverse array of chemical classes (138–140).
Because of limited time and information, the majority of these detected metabolites are charac-
terized only by a few nonspecific descriptors originating from the multidimensional experiment,
such as retention time, signal intensity, and molecular mass (141). As such, it is highly desirable
to find underlying relationships between discrete metabolites that can be directly correlated to
the experimental measurements. Recently, Patti et al. (142) describe a novel visualization format
known as a cloud plot, where detected metabolites are projected as bubbles onto a plot of retention
time versus m/z.

A cloud plot of metabolite data from a sepsis study is depicted in Figure 7, where the verti-
cal m/z scaling represents a positive or negative fold-change for each metabolite, and the size of
each bubble represents the fold-change of the corresponding metabolite. In this way, the cloud
plot projects five dimensions of information simultaneously: retention time (x-axis), m/z (y-axis),
directional fold-change of signal intensity (positive or negative y-axis projection), magnitude of
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Figure 7
A cloud plot of LC-MS metabolomics data obtained from a mouse sepsis model. In a cloud plot, the LC
retention time is projected on the x-axis, the positive/negative fold-change m/z is plotted on the y-axis, and
individual spectral features are plotted as bubbles, with size indicating the magnitude of the fold-change and
color shading indicating the statistical significance. Outlined bubbles indicate positive database matches for
that particular feature. Also shown are the superimposed LC chromatogram and LC gradient (orange), which
provide hydrophobic and hydrophilic information regarding the analytes. In this way, the cloud plot projects
a large number of measurement dimensions onto an intuitive graphic that provides ready access to each level
of information. Reprinted with permission from Reference 142. Copyright 2013 American Chemical
Society. Abbreviations: LC, liquid chromatography; MS, mass spectrometry; m/z, mass-to-charge ratio.
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fold-change (bubble size), and the corresponding p-value from a statistical t-test (bubble color
shading). The LC chromatogram and gradient method are also superimposed on the plot, pro-
viding additional information regarding the separation method and, by association, the relative
chemical hydrophobicity of each detected metabolite. In this particular example, 29,920 extracted
spectral features (unique retention time and m/z) are distilled down to the 487 most significant
metabolites ( p-value ≤ 1.0 × 10−4, fold-change ≥ 3), which are then projected onto the cloud
plot, providing a means of directly accessing only the most relevant signals originating from the
experiment. The cloud plot is an interactive graphic implemented in XCMS Online such that
clicking on each individual metabolite bubble reveals detailed information such as the putative
metabolite assignment from a METLIN metabolite database query (143). Although developed
specifically for metabolomics data, the underlying concept of cloud plots as an intuitive and inter-
active visualization tool has broad relevance in all multidimensional MS initiatives.

Self-Organizing Maps

The majority of MS-based metabolite data have been interpreted through the use of comparative,
multivariate statistics that performs binary comparisons of dimensionally transformed data to
find underlying relationships between detected signals. Of these, principal component analysis
(PCA) is the most widely utilized in metabolomics. PCA enables the visualization of clusters of
related signals in the data but does not provide direct, quantitative information regarding analyte
similarity, as the data have been mathematically transformed prior to conducting comparisons
(144). One complementary approach to identifying relationships between detected signals in large
datasets is to cluster similar signals using a self-organizing map (SOM). SOMs have found use
in untargeted MS-based metabolomics research, where biological relationships are inferred from
the clustered metabolites (145, 146). Although an SOM originating from a single metabolomics
experiment can provide insight into the metabolites expressed in one experimental context, the
information content is greatly increased when differential analysis is utilized. SOM differential
analysis allows numerous comparisons between SOMs originating from discrete samples and/or
time-points of the experiment. Another benefit of the SOM approach is the ability to decrypt
specific nodes on the map to extract primary feature information, such as retention time and m/z
(147, 148).

A recent example of using SOMs to systems-level mapping of molecules for an organ-on-
chip human liver bioreactor exposed to acetaminophen (APAP) is shown in Figure 8 (149). This
particular synthetic organ consists of a network of hollow fibers around which are seeded with
cultured cells harvested from a human cadaver liver. Cell culture media is perfused through the
hollow fibers, and time-points from the waste stream are analyzed by IM-MS, which provides a
comprehensive analysis of the metabolites secreted from the cells. In this example, two sets of
SOMs are created, representing positive (Figure 8a) and negative (Figure 8b) fold-change of
detected features. Following exposure to APAP, several regions of the map change in intensity,
representing a fold-change for a group of metabolite features. Groups of nodes can be decrypted at
any time to obtain primary information that can be utilized for molecular identification (Figure 8c).
In this case, the upregulation of APAP-bound glucuronic acid is observed in addition to the
dysregulation of bile acid, the latter of which is a classic marker for liver stress.

These few examples underscore the importance of effective data visualization strategies for
MS-based data intensive experiments. Whereas big data holds the promise of new discoveries, the
reality of achieving these discoveries is contingent upon our ability to effectively navigate and find
connections between multiple dimensions of information.
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Figure 8
Time-course monitoring of a lab-on-a-chip liver bioreactor’s exposure to APAP using SOMs, from data obtained by LC-IM-MS. Each
SOM organizes detected features based on similarities in signal intensity, and sets of SOMs are differentially analyzed to determine
signals that are (a) increased in abundance and (b) decreased in abundance as a function of time. (c) A single SOM from any point in
time can be decrypted to extract the primary measurement information across all dimensions, which can be used for molecular
identification. In this case, several metabolites related to liver stress are upregulated and downregulated in response to APAP exposure,
and these signatures for metabolic stress persist even 24 hours following exposure. Reprinted with permission from Reference 149.
Copyright 2016 American Association for Clinical Chemistry. Abbreviations: APAP, acetaminophen; IM, ion mobility; LC, liquid
chromatography; MS, mass spectrometry; SOM, self-organizing map.
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CONCLUSION

MS is a rapidly evolving field that now encompasses myriad allied analytical techniques and dis-
ciplines. The current state of the art in hybrid MS instrumentation generates data that are dense
with information and can be obtained much faster than they can be interpreted. This is the big
data challenge, and it can be considered the breadth and scope of analytical space, which includes
the information from each separation dimension, the number of total separation dimensions, and
the derived information from comparing dimensions to one another, all placed within the con-
text of a spatial and temporal location. In this context, one may argue that, similar to chemical
space, analytical space is both immense and vastly unexplored, providing unique opportunities for
future innovation and discovery. We can speculate many things about the future of MS-based
analytical sciences, but one prediction we are certain about is given the continuing integration of
high-resolution instrumentation into hybrid architectures, the field of MS will retain a place at
the forefront of big data.

SUMMARY POINTS

1. Multidimensional MS generates large volumes of data at a high rate, representing dif-
ferent measurement dimensions, which makes it a big data driver.

2. On the basis of exponential growth trends in the chemical and computer sciences, the
data generated by MS-based analytical techniques are projected to increase significantly
in the next few years.

3. The increase in multidimensional MS data generation will be driven by technological ad-
vances, as higher-resolving-power instruments are developed and integrated into hybrid
analytical architectures, as is the current trend in the field.

4. Looking to other areas of science where big data is generated, such as astronomy and
particle physics, it is recommended that the field of MS embrace distributed computing
and open-source initiatives.

5. Multidimensional MS data are highly information dense, with information generated
from the primary data dimensions as well as gained from conducting binary or higher-
order comparisons between data dimensions.

6. Creative means of visualizing highly dimensional datasets in an intuitive and compre-
hensible manner are necessary to deal with multidimensional MS datasets and address
the limitations of human perception.

7. The size of analytical space representing the scope of information that can be gained
from multidimensional analysis techniques is vast and largely unexplored.
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9. Junot C, Fenaille F, Colsch B, Bécher F. 2014. High resolution mass spectrometry based techniques at

the crossroads of metabolic pathways. Mass Spectrom. Rev. 33:471–500
10. Yetukuri L, Ekroos K, Vidal-Puig A, Oresic M. 2008. Informatics and computational strategies for the

study of lipids. Mol. BioSyst. 4:121–27
11. Hood L, Heath JR, Phelps ME, Lin B. 2004. Systems biology and new technologies enable predictive

and preventative medicine. Science 306:640–43
12. Nicholson JK, Wilson ID. 2003. Understanding ‘global’ systems biology: metabonomics and the con-

tinuum of metabolism. Nat. Rev. Drug Discov. 2:668–76
13. Feng X, Liu X, Luo Q, Liu B-F. 2008. Mass spectrometry in systems biology: an overview. Mass Spectrom.

Rev. 27:635–60
14. Graessel A, Hauck SM, von Toerne C, Kloppmann E, Goldberg T, et al. 2015. A combined omics ap-

proach to generate the surface atlas of human naive CD4+ T cells during early T-cell receptor activation.
Mol. Cell. Proteomics 14:2085–102

15. Bohacek RS, McMartin C, Guida WC. 1996. The art and practice of structure-based drug design: a
molecular modeling perspective. Med. Res. Rev. 16:3–50

16. Peironcely JE, Reijmers T, Coulier L, Bender A, Hankemeier T. 2011. Understanding and classifying
metabolite space and metabolite-likeness. PLOS ONE 6:e28966

17. Gurard-Levin ZA, Scholle MD, Eisenberg AH, Mrksich M. 2011. High-throughput screening of small
molecule libraries using SAMDI mass spectrometry. ACS Comb. Sci. 13:347–50

18. de Rond T, Danielewicz M, Northen T. 2015. High throughput screening of enzyme activity with mass
spectrometry imaging. Curr. Opin. Biotechnol. 31:1–9

19. Mardis ER. 2008. The impact of next-generation sequencing technology on genetics. Trends Genet.
24:133–41

404 May · McLean



Downloaded from www.annualreviews.org.

 Guest (guest)

IP:  3.147.83.37

On: Sun, 30 Jun 2024 14:10:19

AC09CH18-McLean ARI 27 May 2016 12:21

20. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, et al. 2015. Big data: astronomical or genomical?
PLOS Biol. 13:e1002195

21. Laney D. 2001. 3D data management: controlling data volume, velocity, and variety. File 949. Application
Delivery Strategies. Stamford, CT: META Group

22. Lusher SJ, McGuire R, van Schaik RC, Nicholson CD, de Vlieg J. 2014. Data-driven medicinal chemistry
in the era of big data. Drug Discov. Today 19:859–68

23. Askenazi M, Webber JT, Marto JA. 2011. mzServer: web-based programmatic access for mass spectrom-
etry data analysis. Mol. Cell. Proteomics 10:M110.003988

24. Bird I. 2011. Computing for the Large Hadron Collider. Annu. Rev. Nuclear Part. Sci. 61:99–118
25. Reymond J-L, Ruddigkeit L, Blum L, van Deursen R. 2012. The enumeration of chemical space. Wiley

Interdiscip. Rev. Comp. Mol. Sci. 2:717–33
26. Fuller RB, Marks RW. 1973. The Dymaxion World of Buckminster Fuller. Garden City, NY: Anchor

Press/Doubleday
27. Wang L. 2015. Chemical Abstract Service marks multiple milestones. Chemical and Engineering News.

July 1. American Chemical Society
28. Bolton EE, Wang Y, Thiessen PA, Bryant SH. 2008. Chapter 12 - PubChem: integrated platform of

small molecules and biological activities. Annu. Rep. Comput. Chem. 4:217–41
29. PubChem Substance Database. https://pubchem.ncbi.nlm.nih.gov. Accessed September 28, 2015
30. PubChem Compound Database. https://pubchem.ncbi.nlm.nih.gov. Accessed September 28, 2015
31. Pence HE, Williams A. 2010. ChemSpider: an online chemical information resource. J. Chem. Educ.

87:1123–24
32. NIST Chemistry WebBook. 2015. NIST Standard Reference Database Number 69, eds. PJ Linstrom,

WG Mallard. http://webbook.nist.gov./ Accessed September 28, 2015
33. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, et al. 2014. The ChEMBL bioactivity database:

an update. Nucleic Acids Res. 42:D1083–90
34. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, et al. 2014. DrugBank 4.0: shedding new light on

drug metabolism. Nucleic Acids Res. 42:D1091–97
35. Lipinski C, Hopkins A. 2004. Navigating chemical space for biology and medicine. Nature 432:855–61
36. Virshup AM, Contreras-Garcı́a J, Wipf P, Yang W, Beratan DN. 2013. Stochastic voyages into uncharted

chemical space produce a representative library of all possible drug-like compounds. J. Am. Chem. Soc.
135:7296–303

37. Bars I, Terning J. 2010. Extra Dimensions in Space and Time. New York: Springer-Verlag
38. Ruddigkeit L, Blum LC, Reymond J-L. 2013. Visualization and virtual screening of the Chemical Uni-

verse Database GDB-17. J. Chem. Inf. Model. 53:56–65
39. Reymond J-L. 2015. The Chemical Space Project. Acc. Chem. Res. 48:722–30
40. Oprea TI, Gottfries J. 2001. Chemography: the art of navigating in chemical space. J. Comb. Chem.

3:157–66
41. Engel T. 2006. Basic overview of chemoinformatics. J. Chem. Inform. Model. 46:2267–77
42. Varnek A, Baskin II. 2011. Chemoinformatics as a theoretical chemistry discipline. Mol. Inform. 30:20–32
43. Scifinder. 2015. Columbus, OH: Chem. Abstr. Serv. https://scifinder.cas.org/. Accessed September

28, 2015
44. Jinha AE. 2010. Article 50 million: an estimate of the number of scholarly articles in existence. Learned

Publ. 23:258–63
45. Powell JR. 2008. The quantum limit to Moore’s law. Proc. IEEE 96:1247–48
46. Walter C. 2005. Kryder’s law. Sci. Am. 293:32–22
47. Eldering CA, Sylla ML, Eisenach JA. 1999. Is there a Moore’s law for bandwidth? Commun. Mag. IEEE

37:117–21
48. Sobel D. 2010. Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His

Time. London: Bloomsbury
49. Misura KMS, Chivian D, Rohl CA, Kim DE, Baker D. 2006. Physically realistic homology models built

with Rosetta can be more accurate than their templates. PNAS 103:5361–66
50. Kaufmann KW, Lemmon GH, DeLuca SL, Sheehan JH, Meiler J. 2010. Practically useful: what the

Rosetta protein modeling suite can do for you. Biochemistry 49:2987–98

www.annualreviews.org • Advanced Multidimensional Separations 405

http://webbook.nist.gov./
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://scifinder.cas.org/


Downloaded from www.annualreviews.org.

 Guest (guest)

IP:  3.147.83.37

On: Sun, 30 Jun 2024 14:10:19

AC09CH18-McLean ARI 27 May 2016 12:21

51. Khatib F, Cooper S, Tyka MD, Xu K, Makedon I, et al. 2011. Algorithm discovery by protein folding
game players. PNAS 108:18949–53

52. Khatib F, DiMaio F, Cooper S, Kazmierczyk M, Gilski M, et al. 2011. Crystal structure of a monomeric
retroviral protease solved by protein folding game players. Nat. Struct. Mol. Biol. 18:1175–77

53. Gilski M, Kazmierczyk M, Krzywda S, Zabranska H, Cooper S, et al. 2011. High-resolution structure
of a retroviral protease folded as a monomer. Acta Crystallogr. D 67:907–14

54. Eiben CB, Siegel JB, Bale JB, Cooper S, Khatib F, et al. 2012. Increased diels-alderase activity through
backbone remodeling guided by Foldit players. Nat. Biotechnol. 30:190–92

55. Bradley JC, Lancashire R, Lang A, Williams A. 2009. The Spectral Game: leveraging Open Data and
crowdsourcing for education. J. Cheminform. 1:9

56. Du L, Robles AJ, King JB, Powell DR, Miller AN, et al. 2014. Crowdsourcing natural products discovery
to access uncharted dimensions of fungal metabolite diversity. Angew. Chem. Int. Ed. 53:804–9

57. Martin SF, Falkenberg H, Dyrlund TF, Khoudoli GA, Mageean CJ, Linding R. 2013. PROTEINCHAL-
LENGE: crowd sourcing in proteomics analysis and software development. J. Proteomics 88:41–46

58. Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. 2014. Critical assessment of methods
of protein structure prediction (CASP)—round x. Proteins Struct. Funct. Bioinform. 82:1–6

59. Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, et al. 2012. Wisdom of crowds for robust gene
network inference. Nat. Methods 9:796–804

60. Bishop CM. 2006. Pattern Recognition and Machine Learning. New York: Springer
61. Smalheiser NR. 2002. Informatics and hypothesis-driven research. EMBO Rep. 3:702–2
62. Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Ullah Khan S. 2015. The rise of “big data” on

cloud computing: review and open research issues. Inf. Syst. 47:98–115
63. Chen T, Zhao J, Ma J, Zhu Y. 2015. Web resources for mass spectrometry-based proteomics. Genom.

Proteom. Bioinform. 13:36–39
64. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. 2012. XCMS online: a web-based platform to process

untargeted metabolomic data. Anal. Chem. 84:5035–39
65. Rinehart D, Johnson CH, Nguyen T, Ivanisevic J, Benton HP, et al. 2014. Metabolomic data streaming

for biology-dependent data acquisition. Nat. Biotechnol. 32:524–27
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