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Abstract

The use of Beneficial Microorganisms for Corals (BMCs) has been pro-
posed recently as a tool for the improvement of coral health, with knowl-
edge in this research topic advancing rapidly. BMCs are defined as consor-
tia of microorganisms that contribute to coral health through mechanisms
that include (a) promoting coral nutrition and growth, (b) mitigating stress
and impacts of toxic compounds, (c) deterring pathogens, and (d) benefiting
early life-stage development. Here, we review the current proposed BMC
approach and outline the studies that have proven its potential to increase
coral resilience to stress. We revisit and expand the list of putative benefi-
cial microorganisms associated with corals and their proposed mechanisms
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Metaorganism: the
defined synergistic and
interdependent
relationship between a
macroscopic host
organism and its
associated
microorganisms; the
concept focuses on the
roles that each species
play on the
functioning of the
biological unit, which
can be beneficial or
detrimental

Holobiont:
a biological unit
comprising a host and
all the macro- and
microorganisms that
live in association with
it

Microbiome: the sum
of microbes in (or in a
specific part of ) an
environment or
associated with an
organism (e.g., the
microbiome of a coral
reef ecosystem, a coral,
or a coral
compartment)

Endosymbiont:
a symbiont that lives
within the body or
cells (intracellularly) of
another organism

that facilitate improved host performance.Further,we discuss the caveats and bottlenecks affecting
the efficacy of BMCs and close by focusing on the next steps to facilitate application at larger scales
that can improve outcomes for corals and reefs globally.

INTRODUCTION

The synergistic and interdependent relationship between a macroscopic host organism and its
associated microorganisms forms a metaorganism, or holobiont (1). In this relationship, the host
and its microbiome act as a biological unit to constitute the resulting phenotype and maintain
the fitness of the metaorganism. Corals depend on a diverse group of symbionts (2), including
endosymbiotic dinoflagellates of the family Symbiodiniaceae, which reside within the gastroder-
mis of most shallow-water coral species (3). These photosynthetic endosymbionts largely supply
the corals’ energy requirements through provision of photosynthates (4). The symbiosis between
corals and their Symbiodiniaceae is the “engine of the reef” (5), facilitating construction of the
coral calcium–carbonate skeleton, which constitutes the three-dimensional landscape of the reef
and thus the complex habitat for thousands of other marine species (5). This delicately balanced
symbiosis is threatened by ocean warming, which can trigger the loss or expulsion of Symbiodini-
aceae cells, also known as bleaching (6), and, when severe, extensive coral mortality (6, 7). Mass
bleaching events driven bymarine heatwaves are themain driver of global reef loss (6), exacerbated
by local impacts such as sewage, overfishing, and disease outbreaks (8, 9).

In addition to the Symbiodiniaceae, corals harbor other groups of microorganisms that in-
habit the wide variety of microhabitats provided by the host mucus, tissues, and skeleton (10–
13) (Figure 1). These microbes include bacteria, viruses (eukaryotic and bacteriophages), mi-
croeukaryotes, and archaea (14, 15), which may be beneficial, neutral, or detrimental to coral
health (16–18). Whereas the association between corals and their Symbiodiniaceae is generally
specific (19), the relationship between corals and their bacteria is potentially more flexible and
may shift in response to changing environmental conditions (5, 18, 20). This flexibility provides
a potential avenue for the metaorganism to acquire new traits through association with novel mi-
crobes or changes in the relative abundance of establishedmicroorganisms (21, 22), a characteristic
exploited in coral-probiotics approaches.

There are currently very few known coral pathogens. Although 28 coral diseases have now
been described affecting a wide variety of corals across the globe, the causative agents of only six
have been described (14, 23). Despite more than 40 years of research in the field, several signifi-
cant knowledge gaps remain concerning disease in corals in general (16, 23). The six known coral
pathogens includeVibrio coralliilyticus, described as themost well-characterized coral pathogen and
associated with coral bleaching and white syndromes (24, 25); Serratia marcescens [cause of white
pox disease; also known as acroporid serratiosis (26)]; Pseudoalteromonas pirati [cause ofMontipora
white syndrome (27)]; Vibrio tubiashii [cause of Porites white patch syndrome (28)]; Vibrio shiloi
[cause of bleaching in the coral Oculina patagonica (29)]; and Thalassotalea loyana [formally Thalas-
somonas loyana and cause of white plague disease (30)]. Nonetheless, even for these well-described
coral pathogens there remain some inconsistencies and conflicting results among various studies,
as coral disease may be the outcome of microbial dysbiosis (31, 32).

Conversely, coral-associated microbes are also vital for metaorganism function and health (10).
Members of the microbiome play roles in energy and nutrient acquisition, reproduction, mitiga-
tion of toxic compounds, and pathogen control (12).The increase in frequency of bleaching events
and emerging coral diseases shows that the disruption of the relationship between the coral host
and its associated microbes is a major cause of reef deterioration (31, 32), contributing to the
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Symbiosis: biological
interaction between
two different
biological entities; the
ecological relationship
of a symbiotic
interaction can be
mutualistic (the two
organisms benefit
from the relationship),
commensalistic (one
organism benefits
while the other neither
benefits nor is
harmed), or parasitic
(one benefits while the
other is harmed)

Shelter, protection, and transfer of nutrients1

Nutrient cycling2

Transfer of photosynthates3

Main organic carbon supplier (by transference of
photosynthates) and DMSP production (that might
play a role in antioxidant activity and in bacterial
population control); UV protection

4

Gene transfer; biological control of microbial
populations, including pathogens and algal blooms

5

Nutrient cycling; might play a role in biomineralization
and other mechanisms that can improve calcification
and growth, pathogen control, DMSP breakdown,
influence in coral larvae settlement and metamorphosis
(e.g., biofilm production, quorum sensing/quenching,
antifouling), reactive oxygen species scavenging
mechanisms, UV protection through pigments and MAA,
coral microbiome modulation

6

Antimicrobial activity; may play a role in
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protection against UV; may be involved in C and N cycles
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Figure 1

Possible relationships among coral symbionts and between corals and their symbionts. Abbreviations: DMSP,
dimethylsulfoniopropionate; MAA, mycosporine-like amino acid.

massive loss of reef ecosystems worldwide. Hence, coral microbiology can be considered for the
development of interventions for reef conservation and restoration purposes. An example of in-
tervention is microbiome manipulation through the use of Beneficial Microorganisms for Corals
(BMCs) (12). Approaches for microbiome manipulation using beneficial native microbes consist
of identifying microorganisms exhibiting putatively beneficial roles for the hosts and increasing
their abundances in the metaorganism, an approach that has already been widely applied in other
scientific fields (33–35). This type of intervention can be used to actively and specifically modulate
the coral microbiome or, alternatively, to restore the microbiome to a natural/undisturbed state
(18) and therefore avoid microbial dysbiosis. BMCs are, in fact, a promising strategy presenting
the potential to protect natural populations of corals in the reef both before (prevention) and after
(bioremediation) environmental impacts occur (12).

In this review, we present the premise and promise of the use of BMCs, discussing its original
outline and summarizing the recent results obtained from BMC application in laboratory trials
(see the section titled Coral Microbiome Manipulation Using BMCs).We update the framework
of the selective screening of BMCs (see the section titled Moving Forward), including new puta-
tive beneficial mechanisms and tools to track coral symbionts, based on emerging knowledge of
the processes of microbial community assembly. Finally, we discuss the prospects and next steps
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Probiotics: live
microorganisms that
provide health benefits
when administered to
a host in adequate
amounts

Dysbiosis:
an imbalance in a
metaorganism’s
microbiome resulting
in a disruption of the
symbiotic relationship
between the host and
associated
microorganisms

Microbiome
manipulation:
the introduction/
reintroduction or
removal of microbial
members to a host
microbiome that affect
the structure of the
natural microbiome
(e.g., abundance,
richness)

Beneficial
Microorganisms for
Corals (BMCs):
microbial strains
naturally associated
with corals that benefit
the metaorganism; can
be considered
probiotics for coral,
with health benefits
provided to the coral
host itself or to other
holobiont members

for overcoming limitations to the application of BMCs to corals and reefs (see the section titled
Moving Beyond: Challenges and Potential Solutions). In Current and Future Challenges, we in-
troduce and summarize the main questions addressed in the review.

BMC: STATE OF AFFAIRS

Microbiome manipulation or engineering is an emerging approach to treat diseases and poten-
tially increase the adaptability of host macroorganisms (36). Altering the host microbiome has
proven effective in the treatment of several diseases in humans and wild animals and may there-
fore be an alternative to antibiotics and chemical therapy (37). For example, the administration of
live microorganisms to benefit host health (i.e., probiotics) has been demonstrated for amphibians
(34), bats (38), bees (35), and more recently, corals (39). Specifically, probiotics increased protec-
tion of amphibians against the fungal pathogen Batrachochytrium dendrobatidis (34) and increased
the survival of bats fivefold, even in field trials, in their fight against the devastating white-nose
syndrome, which is also caused by a fungal pathogen (40). All of these probiotics are native strains,
i.e., isolated from the target hosts, and selected considering their putative antagonisms against spe-
cific pathogens (e.g., frogs, bats) or potential to support overall metaorganism health (e.g. corals,
bees, frogs).

The Coral Probiotics Hypothesis (CPH) was initially postulated to explain observations that
coral health varied with changes in the microbial community composition, as well as the resis-
tance to pathogens acquired by certain corals (22). The CPH postulates that alterations in the
abundance of microbial community members could help the coral adapt to new environmental
conditions (22). An extension of this hypothesis was put forward recently, noting that the propen-
sity for change can be denoted as microbiome flexibility, with the important caveat that the ca-
pacity for restructuring of the host-associated microbiome in light of prevailing environmental
change is host specific (18, 21). Hence, the extent to which hosts can adjust their microbiomes
may differ, which is likely to have consequences for environmental adaptation (21). In accordance
with the CPH and microbiome flexibility postulates, and the discussion about the biological con-
trol of coral pathogens (41), the term Beneficial Microorganisms for Corals (BMCs) was coined
to describe specific microorganisms exhibiting functions that have beneficial effects on the coral
metaorganism, as well as a first attempt to define strategies for their application (12). The putative
beneficial functions need to be tested in vitro to develop probiotics with in vivo health benefits,
including coral protection and aid in recovery from diseases and bleaching. This approach, which
is focused not only on the mitigation of a single impact itself but also on the organisms’ overall
health, is based on the premise that a healthier organism will more efficiently cope with any im-
pact. This improvement of the coral’s overall health through the BMC approach can be extended
by adding specific members of the probiotic consortia that can mitigate specific and local impacts.
Alternatively, the use of BMCs can also be combined with other approaches, through so-called
customized medicine for corals (42).

Although the initial survey proposing BMCmechanisms was published relatively recently (12),
the study of coral-associated microbiomes and their mechanisms of interaction has advanced
greatly, and new insights have been gained. Here, we discuss the proof of concept of BMC ef-
ficiency and update the list of microorganisms and their functions that potentially enhance coral
fitness, along with further research priorities.

Coral Microbiome Manipulation Using BMCs

Santos and colleagues (43) proposed to protect corals from the specific environmental impact of
oil via inoculation with probiotic bacteria. They demonstrated the mitigation of the effects of this
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contaminant via its breakdown and the consequent improvement in the health of exposed corals.
Rosado et al. (39), using a holistic probiotic approach, next demonstrated in laboratory trials that
BMCs can increase coral resistance to thermal stress (30°C) and pathogen challenge (V. coralliilyti-
cus). The study used a BMC consortium containing seven bacterial strains belonging to the genera
Halomonas, Cobetia, and Pseudoalteromonas (39). The bacteria were isolated from the coral Pocillo-
pora damicornis and selected according to functions postulated as being beneficial, according to the
original list of BMCmechanisms (see 16),which included several traits, such as antagonism toward
V. coralliilyticus, mitigation of reactive oxygen species (ROS), dimethylsulfoniopropionate (DMSP)
breakdown, and nitrogen cycling. These traits were identified in the BMC candidates through
biochemical and molecular screening and then assembled into a consortium. This approach was
based not on a single impact or contaminant but on the concept of restoring metaorganism ho-
meostasis by actively removing stress factors (e.g., ROS) and reintroducing and facilitating growth
of microbial strains associated with coral health. During the study, P. damicornis nubbins treated
with the BMC consortium showed amodifiedmicrobiome, as well as reduced bleaching compared
with the control groups, demonstrating that addition of the BMC consortium mitigated the signs
of bleaching caused by high temperatures and pathogen challenge (39).

Morgans et al. (44) recently tested the application of Symbiodiniaceae as a probiotic to corals
subjected to experimental bleaching; they observed significant differences in bleaching recovery
and mortality when Acropora millepora fragments were inoculated with Durusdinium trenchii and
Cladocopium goreaui. Inoculation with C. goreaui resulted in significantly less bleaching than seen
in control fragments and fragments inoculated with D. trenchii subjected to heat stress, though
the inoculated Symbiodiniaceae strains were not detected in the coral tissues by ITS2 amplicon
sequencing at the end of the experiment. This led the authors to suggest that these probiotics may
not establish symbiosis with the corals, but instead indirectly supplement heterotrophic nutrition.
However, the higher resilience to heat stress provided by C. goreaui compared with controls and
D. trenchii–inoculated corals suggests that unless the corals had different feeding profiles for the
two Symbiodiniaceae strains, addition of C. goreaui may provide some yet-unidentified benefit to
the host.

Microbial manipulation seems to be particularly promising in early life-history stages, when
environmentalmicroorganisms are often recruited as part ofmicrobiome establishment and devel-
opment. Damjanovic et al. (45) explored this concept recently by inoculating and tracking specific
microorganisms associated with larvae of different coral species. The authors showed that it is fea-
sible to change the microbiome of corals in early life stages by inoculating recruits with a bacterial
consortium prepared in the laboratory.

Together, these attempts indicate the potential of inoculation with specific microorganisms or
consortia thereof to manipulate the microbiome in different stages of coral development to im-
prove holobiont health and resilience. Still, probiotic experiments have used microorganisms with
potentially beneficial traits countering specific stress conditions, but their roles in promoting the
long-term establishment of a more resistant metaorganism remain unclear.The exact mechanisms
that underlie the observed effects have also not yet been elucidated and remain a research priority.
Identifying the mechanisms for a metaorganism’s recovery, and facilitating the growth of a more
resilient microbiome, will help determine the next steps for implementing probiotics in damaged
coral reefs.

Finally, understanding how natural variations and environmental factors affect coral-associated
microbes is a key step to successfully applying BMCs to reef ecosystems. It is known that micro-
biomes naturally vary depending on factors such as coral species (46) and geographic locations
(13, 18, 46). Elucidating how these factors will affect the beneficial strains (re)introduced to the
coral colonies is going to be crucial to determine whether the microbial strains will succeed in

www.annualreviews.org • Coral Probiotics 269



Downloaded from www.AnnualReviews.org

 Guest (guest)

IP:  3.15.25.183

On: Sun, 30 Jun 2024 09:24:26

colonizing the corals and promote benefits to their health. This way, although all these previ-
ously mentioned studies succeeded in introducing BMC strains to the coral holobiont, long-term
experiments are still necessary to investigate how stable BMC–coral associations are (or are not).

Moving Forward

Studies of the symbiotic relationships within coral metaorganisms have highlighted additional
mechanisms that should be investigated for BMC-type applications. Here, we present an updated
perspective on the use of BMCs, including new mechanisms to be explored and strategies to scale
up their application. The microbial functions proposed as beneficial for corals fall into four gen-
eral categories: promoting coral nutrition and growth,mitigating stress and impacts of toxic com-
pounds, providing pathogen control, and benefiting early life-stage development (Table 1).

Nutrition and growth.Corals acquire essentialmacro- andmicronutrients from the environment
(heterotrophy) or from translocated compounds provided by their symbiotic algae or microorgan-
isms (4). In shallow-water corals, the translocation of photosynthetic products by the associated
microalgae can satisfy up to 90%of their energy demands (4), in addition to having direct effects on
coral homeostasis. Additional symbionts containing photosynthesis-related genes are also found in
the coralmicrobiome.Chromerids, also known as corallicolids (47, 48), have been found to be asso-
ciated with corals. These microbes are the closest free-living relatives to the Apicomplexa, a group
of obligate intracellular parasites that includes causative agents of diseases in humans and livestock.
Most apicomplexans have been shown to harbor a nonphotosynthetic plastid, called an apicoplast
(49). However, the coral-associated corallicolid species Chromera velia and Vitrella brassicaformis
contain chlorophyll-biosynthesis genes (48), and these organisms are the second most abundant
coral-associated microeukaryotes, comprising approximately 2% of retrieved 18S ribosomal RNA
gene sequence reads in surveys of 38 coral species (48). The capacity of these symbionts to per-
form photosynthesis is debated, with speculation that corallicolids are evolutionary intermediates
transitioning fromphototrophy to parasitism, and further work is needed to understand their func-
tion in corals (46, 48, 50). Carbon may be supplied to the coral holobiont through other metabolic
pathways. For example, Robbins et al. (51) undertook deep sequencing of the Porites lutea holo-
biont and identified carbon-fixationmetabolic pathways in nonphototrophic Alphaproteobacteria,
Nitrospirota, and Thaumarchaeota. In addition, a bacterial strain isolated from corals has been
reported to host a bacteriochlorophyll gene, suggesting the potential ability for chlorophyll
biosynthesis and subsequent carbon fixation through photosynthesis (52). The extent to which
these other microbiome community members contribute to the total fixed carbon pool of the
coral holobiont must be tested empirically.

Microbial partners likely provide other essential nutrients to corals. Both Symbiodiniaceae and
coral cells lack the ability to synthesize certain vitamins, including vitamin B12 (cobalamin), which
is important for many functions, such as amino acid synthesis. In corals, the concomitant high con-
centrations of cobalamin and bacterial cells in the gastric-cavity fluid (53) provide evidence that
symbionts are delivering this essential compound to both coral cells and their dinoflagellate sym-
bionts (54). Recent studies have shown that some coral symbionts possess genes for the production
of vitamin B12, biotin, thiamin, and riboflavin (51, 52). For example, Robbins et al. (51) identified
23 of 52 metagenome-assembled genomes derived from P. lutea that encode genes for the biosyn-
thesis of biotin and thiamine, 41 for riboflavin, and 3 for cobalamin, further indicating that these
microbes potentially underpin the holobiont function.

Several host-associated bacteria have also been shown to sequester and produce important
micronutrients and trace metals, such as iron (55). Experiments exposing corals to low iron
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Table 1 Proposed beneficial characteristics and their mechanisms

Proposed beneficial characteristic
(BMC characteristic) Beneficial mechanism

Examples of references supporting
the putative beneficial mechanism

Nutrition and growth
Photosynthesis Input of organic compounds to the

holobiont, photosynthetic facilitation of
calcification

Burriesci et al. (151) Davy et al. (152),
Tremblay et al. (153)

Nitrogen fixation Input of fixed nitrogen to the holobiont Olson et al. (154), Lema et al. (155)
Organic nitrogen and carbon cycling
and regulation

Control of organic compound distribution Kimes et al. (156)

Breakdown of DMSP Increase carbon and sulfur availability to
coral-associated microbes

Raina et al. (95), Vanwonterghem et al.
(157)

Production of siderophores Increase bioavailability of iron to
Symbiodiniaceae

Lawson et al. (67)

Cobalamin synthesis Input of cobalamin as a micronutrient for
Symbiodiniaceae

Matthews et al. (69)

Production of urease enzyme Urea hydrolysis may enhance coral
calcification by stimulating precipitation
of CaCO3 and by supplying inorganic
carbon for the calcification reaction

Biscéré et al. (60)

Mechanisms affecting the protection of
skeletogenic cells

Enhance the survival of skeletogenic cell
types

Domart-Coulon et al. (63)

Mitigation of toxic compounds or stress
Production of antioxidant molecules
and mechanisms (e.g., catalases,
superoxide dismutase, glutathione,
ascorbate peroxidase, and
monodehydroascorbate reductase)

Minimize the concentration of reactive
oxygen species

Lesser (78), Diaz et al. (79)

Production of mycosporine-like amino
acids and carotenoids

Protect coral tissue against ultraviolet
radiation

Dunlap & Shick (85), Osman et al. (89)

Synthesis and exportation of compatible
solutes (e.g., betaines, floridoside,
DMSP)

Increase coral thermotolerance or tolerance
of reactive oxygen species,
photoprotection

Ochsenkühn et al. (80), Ngugi et al.
(82), Yost et al. (90)

Breakdown of toxic compounds, such as
oil hydrocarbons

Mitigation of toxic contaminants in seawater
that are in direct contact with the mucus
layer

Santos et al. (43)

Early life development
Production of signals for larval
settlement

Contribute to larval settlement modulation
or regulation

Webster et al. (158), Heyward & Negri
(159), Shikuma et al. (160)

Production of biofilm Facilitate larvae settlement Sneed et al. (119)
Quorum quenching, inhibition or
breakdown of QS molecules

Disrupt cell–cell signaling of beneficial
microbes for other species competing for
space

Modolon et al. (103)

Pathogen control
Production of antibiotics Biological control of pathogens Ritchie (92), Kvennefors et al. (93)
Production of DMSP Control of bacterial populations on the coral

surface
Raina et al. (95)

(Continued)
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Table 1 (Continued)

Proposed beneficial characteristic
(BMC characteristic) Beneficial mechanism

Examples of references supporting
the putative beneficial mechanism

Quorum quenching, inhibition or
breakdown of QS molecules∗

Disrupt cell–cell signaling of pathogens,
potentially inhibiting virulence
mechanisms

Teplitski & Ritchie (41), Sharp &
Ritchie (98), Tait et al. (99), Zimmer
et al. (100), Certner & Vollmer
(101), Zhou et al. (102)

Top-down control of coral pathogens
(e.g., bacterivory and phage control)

Selective foraging may shape bacterial
communities in corals and control
pathogen populations

Welsh et al. (107, 110), Pernthaler
(108)

Breakdown of DMSP Remove chemoattractant for potential
pathogens

Garren et al. (97)

Abbreviations: BMC, Beneficial Microorganisms for Corals; DMSP, dimethylsulfoniopropionate; QS, quorum sensing.

availability increased their vulnerability to thermal stress (56). Reich et al. (55) observed that low
iron concentrations caused changes in the concentrations of other trace metals (e.g., zinc, copper,
cobalt, manganese, nickel, molybdenum, and vanadium) within corals. Symbiodiniaceae require
relatively high concentrations of iron for cell division and growth, though different clades re-
spond differently to iron limitation, which may influence their response to environmental stresses.
Certain bacterial strains produce siderophores to take up iron from the environment, form-
ing complexes that can reenter the cells via specific receptors (57). The potential production of
siderophores by these bacterial symbionts should therefore be considered a putative BMC mech-
anism, as it may be a source of bioavailable iron in the coral metaorganism, because this element
is usually insoluble in seawater (54).

Exploring the processes associated with calcification is another key area of research. Calcifi-
cation is the process through which corals and other calcifying organisms precipitate aragonitic
calcium carbonate (CaCO3) to build their skeletons (58). Light indirectly enhances calcification
(59) through the increase of Symbiodiniaceae photosynthesis rates. Indeed, the concomitant diver-
sification of Symbiodiniaceae and radiation of reef-building corals (3) strongly support this photo-
synthetic facilitation of calcification hypothesis. Even though calcification processes in corals have
been studied extensively, the mechanisms involved in the enhancement of CaCO3 deposition are
not well understood. The equation summarizing the calcification process is Ca2+ + HCO3

− ↔
CaCO3 + H+, which means that any process that increases Ca2+ and HCO3

− and/or removes
H+ locally will favor the formation of CaCO3 and consequent skeleton mineralization (60). One
enzyme that has the potential to contribute indirectly to the calcification process is urease. Urease
catalyzes the nickel-dependent hydrolysis of urea, producing ammonia and CO2,whichmay direct
the calcification equation toward product formation. The influence of urease on the calcification
of scleractinian corals was suggested almost 45 years ago,when urease activity was detected in coral
tissues with and without Symbiodiniaceae (61). Recent experimental evidence supports this hy-
pothesis, with corals exposed to nickel- and urea-enriched environments showing higher rates of
urea uptake and hydrolysis,which coincidedwith a significant enhancement of long-term calcifica-
tion rates, as measured by differences in coral buoyant weight and estimations using the alkalinity
anomaly technique in Acropora muricata and P. damicornis corals (60). Even though the factors that
significantly affect urease production at the calcification site remain unclear, some coral-associated
bacteria can hydrolyze urea (62).Hence, enrichment of microorganisms with urease activity at the
site of calcification may promote skeletal growth and mitigate effects such as ocean acidification.

Other microbial processes may also influence the structural integrity of the coral skeleton.
For example, a peculiar interaction between symbionts residing in the coral skeleton has been
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reported, in which P. damicornis was able to associate with an inoculated fungal strain belonging
to the genus Cryptococcus and which seemed to promote the survival of skeletogenic cell types
(63). Although the authors suggest that this effect was not necessarily beneficial, but a way to
compensate for the erosion caused by the fungus, we suggest that this microbial-mediated mech-
anism of supporting and recovering the coral skeleton should be investigated further in other
microbial groups. Endolithic microorganisms are prevalent in the coral skeletons, structured by
defined light, pH, and nutrient and oxygen boundaries and characterized by microalgal (Osteobium
spp.), fungal, and heterotrophic bacterial communities (64). These endoliths play a role in reef
erosion by dissolving calcium carbonate and weakening coral skeletons (64), though some studies
have also indicated a potential for nutrient cycling and metabolite transfer, which may underpin
the health of the overlying coral tissues. For example, Fine & Loya (65) reported increases in
photoassimilates transferred from endoliths to bleached coral tissues, highlighting the potential
of this alternative energy source to support corals through thermal stress events. Finding ways
to promote the growth of endolithic communities that support coral energy demands during
periods of stress is another area of research that should be explored.

Numerous microbial-mediated mechanisms can potentially support not only the coral host
but also Symbiodiniaceae growth and metabolism, and BMCs should target both. Even though
Symbiodiniaceae–bacteria interactions have begun to be studied only recently, it was previously
suggested that free-living bacteria can support Symbiodiniaceae nutrition and survival (66, 67).
The reported co-occurrence of bacteria and Symbiodiniaceae taxa (68) in coral holobiont com-
partments reinforces the hypothesis that these interactions can be specific and conserved. These
observations have led some authors to suggest that Symbiodiniaceae may have an innate depen-
dence on specific bacteria for exchange of nutritional resources, forming an intimate relationship
that may promote optimum metabolic fitness of the coral metaorganism (69). This is further sup-
ported by the description of aragonitic spherulites that are formed by free-living Symbiodiniaceae
in association with bacterial communities (70) and thus form a dinoflagellate–bacterial calcifying
community. This aspect remains unexplored with regard to its BMC potential.

Mitigation of toxic compounds and stress.Corals are constantly under threat of exposure to
toxic compounds, including those produced directly by anthropogenic activity, such as sewage pol-
lution and oil spills (71, 72), and those produced by the coral metaorganism itself during episodes
of stress (73). A wide range of microorganisms can use toxic xenobiotics as substrates (62, 74) or to
break down toxic metabolic products (62, 75). It is therefore clear that coral-associated microor-
ganisms have the potential to mitigate coral stress in different environmental conditions.

ROS produced by corals and their endosymbiotic algae under high temperatures seem to be
capable of inducing coral bleaching (73). Consequently, the production of antioxidant molecules
and microbial antioxidant activity may be a beneficial function to protect heat-stressed corals (12,
76), and this function includes enzymes such as catalase, peroxidase, glutathione reductase, and su-
peroxide dismutase, which are found in many organisms (77). Although the mechanisms through
which these microbial enzymes actually protect corals against oxidative stress remain to be ascer-
tained, an exogenous addition of ROS scavengers has been shown to decrease the extent of coral
bleaching (78), and corals (or their associated microbes) seem to be able to control superoxides in
their immediate surroundings (79). Similarly, an increase of floridoside, a metabolite that coun-
ters ROS, as a consequence of elevated salinity levels has been demonstrated to effectively lower
bleaching susceptibility (76, 80, 81). The osmolytes floridoside and betaine, which are also pro-
duced by coral symbionts, may act as ROS scavengers and photoprotectors, respectively (80, 82),
putatively contributing to coral thermal tolerance. The production of compatible solutes com-
monly used for osmotic protection by coral-associated microorganisms is especially interesting in
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the context of heat stress, owing to similarities between ROS-producing mechanisms in photoau-
totrophic organisms under stressful salinity and heat conditions (80, 83).

In addition to enzymatic defenses against oxidative stress, the damage from ROS can also
be controlled in photosynthetic organisms through the use of photoprotective compounds (84).
These compounds could mitigate the damage done to the photosystems of coral-associated algae
and consequently reduce ROS production. Mycosporine-like amino acids have been identified in
taxonomically diverse coral species and have been dubbed “natural sunscreens” owing to their
capacity to absorb UV radiation, whereas others are better known for their antioxidant activities
(85). They have also been detected in marine heterotrophic bacteria, cyanobacteria, and microal-
gae (85), and coral symbionts can produce these molecules (86). Carotenoids are another group of
molecules with well-documented antioxidant and photoprotective properties in photoautotrophs
(87), including Symbiodiniaceae algae (88). Coral-associated bacteria such as Erythrobacter spp.
have been found to contain large amounts of carotenoids and have been proposed to mitigate heat
stress–related production of ROS in the coral metaorganism (89).

Other solutes have also been associated with themitigation of heat and oxidative stress in corals.
DMSP, for example, is an osmolyte found in many species of marine algae, including members of
the Symbiodiniaceae (51, 90). DMSP and its breakdown products [dimethylsulfide (DMS), acry-
late, dimethyl sulfoxide, and methanesulfinic acid] have been found to scavenge different types
of ROS in marine algae (91). The changes in DMSP levels in corals owing to copper exposure
may be linked to the antioxidant function of the solute (90). DMSP produced by coral-associated
algae may therefore benefit corals because of its antioxidant role. However, an excess of DMSP
can also trigger (or be involved in) dysbiotic processes, as discussed in more detail below. The ac-
tivities of coral-associated microorganisms can also mitigate stress from contaminants generated
by human activity, such as oil (43), through breakdown of these compounds within corals or in the
surrounding environment in direct contact with the metaorganism.

Pathogen control.Microorganisms found in corals can produce antimicrobial compounds,which
can be important for structuring coral microbial communities and are potentially beneficial to host
health (92, 93). Competition between pathogens and symbiotic microorganisms occurs in corals
(93, 94), and selection of microorganisms antagonistic to known coral pathogens can be useful
in applying BMCs to corals at risk of diseases. Some examples of possible roles and relationships
between corals and their symbionts are summarized in Figure 1 and Table 1 and were discussed
by Peixoto et al. (12). Rosado et al. (39) showed that a probiotic consortium tested in aquarium
experiments successfully protected coral nubbins against infection by the pathogenV. coralliilyticus,
and different mechanisms inherent to native microorganisms have been suggested to promote the
biological control of this pathogenic organism.

Production of DMSP by coral endosymbiotic algae can structure coral-associated microbial
communities by supporting bacteria that can metabolize DMSP, DMS, and acrylic acid (95). This
metabolic potential includes bacteria from the genus Roseobacter; many of these bacteria possess
antimicrobial properties (e.g., production of thiotropocin) that may aid the corals in resisting
pathogens (96). Breakdown of DMSP can therefore be viewed as a possible BMC characteristic.
Further, differences in pH found between the coral mucus (∼7.7) and the surrounding seawa-
ter (∼8.3) have been hypothesized to result from the presence of high concentrations of DMSP
breakdown products (DMS and acrylate), which might also prevent initial colonization by poten-
tial pathogens (95). Furthermore,DMSP has been discovered to drive chemotaxis and chemokine-
sis in the coral pathogen V. coralliilyticus, and attraction of this pathogen to P. damicornis has been
demonstrated, with a stronger chemical cue directing the bacteria to heat-stressed corals (97).
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DMS, however, has been shown to provoke only a very weak chemotaxis in V. coralliilyticus (97),
and the other products of DMSP breakdown have not yet been explored in relation to chemotaxis.

Quorum sensing (QS) cell–cell signaling enables bacteria to communicate with one another
via autoinducers and to control the expression of characteristics associated with antibiotic produc-
tion, biofilm formation, and pathogenesis (98). This type of communication has been suggested
to be used in pathogenic and mutualistic interactions within coral-associated microbial commu-
nities (98), and study of QS in corals has revealed that it may participate in different coral dis-
eases. Among the autoinducer substances known to participate in QS are the acyl-homoserine
lactones (AHLs), which are produced by different coral-associated vibrios, including the coral
pathogens V. coralliilyticus, V. shiloi, and Vibrio harveyi (99). AHL signaling has been related to coral
diseases and is linked to the structuring of bacterial communities and disease progression inDiplo-
ria strigosa corals infected with black-band disease (100). In Acropora cervicornis, the addition of
exogenous AHLs produced symptoms similar to those of white-band disease and, in conjunction
with a healthy coral homogenate, was able to act as a disease-causing agent (101). Aquarium ex-
periments with P. damicornis also found evidence for a relationship between AHL regulation and
coral-bleaching progression, because corals treated with exogenous AHLs and AHL-producing
bacteria were more susceptible to bleaching and displayed more significant changes in their bac-
terial community compositions than control groups treated with the same substances with the
addition of a QS inhibitor (102). This suggests that the inhibition of QS or the breakdown of
QS autoinducers such as AHLs may be a potential BMC characteristic that protects corals from
pathogens and bleaching (12, 98, 103).

Top-down control of coral pathogens may also benefit the host. This biological control can be
performed by viruses capable of infecting disease-causing agents or by natural predators. Phages
associated with the coral mucus layer have been posited to provide a first line of immunity against
bacterial pathogenesis and are also suggested to regulate coral-associated microbial communities
(104). The use of phage therapy as a method to control coral diseases has been increasingly dis-
cussed in recent years, and the positive aspects of this method of biological control, such as target
specificity, replication, and safety, have been highlighted previously (41, 105). Treatments using
phages able to infect the coral pathogens V. coralliilyticus and Thalassomonas loyana (105, 106) could
ameliorate disease symptoms or stop disease transmission in aquarium experiments, and manipu-
lation of bacteriophages can be regarded as a potentially useful tool against coral disease.

Pathogen predators are also a self-replicating potential solution for coral infections, capable
of mediating microbial communities associated with the host (107). Bacterivory by microeukary-
otes and predatory bacteria is postulated to regulate microbial communities in different aquatic
ecosystems via selective foraging (108, 109). In corals, studies of microbial predation found that
the bacteria Halobacteriovorax could prey on the coral pathogens V. coralliilyticus and V. harveyi in
plaque assays (110). Furthermore, inoculation of Halobacteriovorax in aquarium experiments pre-
vented the increase of V. coralliilyticus in corals and stabilized the rest of the host’s microbiome,
also preventing blooming of opportunistic bacteria in stressful temperatures (107). These studies
highlight the importance of predatory bacteria for the structuring of coral microbiomes and also
demonstrate the potential to manipulate pathogen predators to protect against disease.

Early life development. Sexual reproduction in coral results in a swimming larva or planula that
acquires microbial communities either horizontally from the environment (111) or inherited ver-
tically from the parental gametes (112). Apprill et al. (113) investigated the bacterial colonization
of planulae derived from the spawning species Pocillopora meandrina and observed internalized
bacteria after 79 h, indicating likely horizontal transfer. These bacteria were affiliated with the
Roseobacter clade,many members of which possess antimicrobial traits, which may benefit the early
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coral life stages by excluding pathogens. Investigation of the broadcast-spawning coral Acropora
tenuis also showed a lack of internalized bacteria in the offspring, though mucus surrounding these
early life stages was colonized by members of Rhodobacteraceae, Alteromonadaceae, and Oceanospiril-
laceae (45). In contrast, the brooding coral Porites astreoides was demonstrated to vertically transmit
members of the Roseobacter clade to their planulae, and these associates were maintained in settled
juveniles (114). Similarly, Damjanovic et al. (115) found that larvae and recruits of the brooding
coral Pocillopora acuta inherited not only Symbiodiniaceae cells from the parents but also bacteria
from the family Rhodobacteraceae and the genus Endozoicomonas (both phylum Proteobacteria). Ceh
et al. (116) investigated the seawater surrounding broadcast and brooding coral species after re-
lease of their gametes and planulae, found increases of members of Alteromonas and Roseobacter,
and suggested that this increase may aid in transfer of beneficial microorganisms to the offspring.
Diazotrophs have also been reported associated with the early life stage of A. millepora corals,
potentially supporting nitrogen demand in developmental stages prior to the uptake and estab-
lishment of Symbiodiniaceae populations (117). The early life stages of corals are influenced by
their symbionts; for example, the nutrition provided by Symbiodiniaceae is essential to the suc-
cess of newly settled recruits. However, the influence of other members of the microbiome, such
as the apicomplexan-like C. velia and bacterial and archaeal communities, on the biology of early
life stages is still unclear.

Bacterial surface biofilms have been found to facilitate the settlement of some coral larvae.
For example, a Pseudoalteromonas strain (a genus that includes members able to produce a biofilm)
was isolated from crustose coralline algae (CCA) and shown to induce metamorphosis of coral
larvae of the genus Acropora (118, 119). Sneed et al. (119) also found that a strain of Pseudoal-
teromonas isolated from marine biofilms induced metamorphosis of P. astreoides, Orbicella franksi,
and Acropora palmata larvae; they attributed this effect to the derived bacterial compound tetra-
bromopyrrole. However, it is unlikely that tetrabromopyrrole is the only compound produced
by strains of Pseudoalteromonas able to induce metamorphosis. Pseudoalteromonas luteoviolacea, for
example, produces ordered arrays of phage tail–like metamorphosis-associated contractile struc-
tures that induce metamorphosis in larvae of the tubeworm Hydroides elegans (120). Though sev-
eral reports have corroborated the importance of biofilm-forming microbes for coral settlement,
metamorphosis, and recruitment, the signaling steps that underpin these processes remain elu-
sive. Many Pseudoalteromonas and other biofilm-forming species have also been found to live in
association with adult corals (39), suggesting that adult corals act as a reservoir of biofilm-forming
microbial species, which are constantly exchanged with the reef environment to support coral re-
cruitment.Non-biofilm-forming bacteria that support the growth of biofilm-forming strains have
been shown to increase settlement of other marine invertebrate species (121). The processes that
promote coral settlement are complex, though the roles of microbial biofilms, chemical cues, and
cell–cell communication require further investigation and may be part of the BMC framework.

The four categories of beneficial mechanisms—coral nutrition and growth,mitigation of stress
and toxic compounds, pathogen control, and early life development—can act synergistically to
benefit corals. For example, microbial nitrogen fixation serves as a nitrogen input for the metaor-
ganism, alongside heterotrophy, and is an important source of nutrients for both corals and Sym-
biodiniaceae (122, 123). The activity of microbial enzymes that participate in other phases of
nitrogen cycling can help to control its distribution in the metaorganism, limiting nitrogen en-
try into the Symbiodiniaceae and controlling pathogens and the symbiosis between algae and
corals (122, 123). In parallel, corals living in waters with excess dissolved inorganic nitrogen have
shown greater susceptibility to thermal stress (124), indicating the potential importance of mi-
croorganisms that cycle this element for protection against bleaching (mitigation of stress or toxic
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compounds). Nutritional balance within the coral holobiont is important, as both an excess and
a limitation of essential nutrients can destabilize the delicate symbiosis and ultimately harm the
metaorganism.

Identifying Putative BMC Molecular Markers

A wide range of coral-associated and free-living marine bacteria possess putative beneficial traits.
This raises the question of how to discriminate a symbiont from opportunistic organisms found
associated with coral, in particular, compounded by the notion that the metaorganism assemblage
by default is fluid, i.e., dynamic across space and time [sensu Jaspers et al. (125)]. The molecular
signatures of symbionts might be helpful in screening. For example, in insects, symbionts can be
sequestered in bacteria-bearing host cells, called bacteriocytes, which in some species cluster to-
gether to form a bacteriome (126). Similar clusters, termed coral-associated microbial aggregates
(CAMAs), are observed in corals (13, 127). In insects, antimicrobial peptides, such as coleoptericin-
A fromweevils, also selectively target endosymbionts within the bacteriocytes and inhibit their cell
division (128). If the synthesis of coleoptericin-A is blocked, the bacteria escape from the bacte-
riocytes and spread into surrounding tissues, which is detrimental to the host. In this example, it
seems that the coevolution of host and symbiont has enabled the immune system to facilitate the
endosymbiotic relationship. In corals, we still do not know if the CAMAs are beneficial or detri-
mental to the coral metaorganisms, though many are dominated by Endozoicomonas-affiliated taxa
(13). How the coral regulates the composition and abundance of these CAMAs needs investiga-
tion, with a view to determining whether they can be modulated to benefit host health.

Bacterial symbionts of corals have recently been found to be enriched in genes encoding for
eukaryotic-like proteins (ELPs), compared with planktonic bacteria (51).ELPs often contain char-
acteristic repeat domains, such as the ankyrin repeat (ANK) or the WD40-repeat, which are in-
volved in mediating protein–protein interactions (51, 129). These proteins and domains, as the
name suggests, are frequently found in eukaryotes but are also increasingly found and recognized
in bacteria and archaea, in particular those with a pathogenic or symbiotic lifestyle (130). ELPs
can modulate cellular processes in their host; recent work has shown that ANK-type ELPs found
in sponge symbionts can interfere with the phagocytosis of eukaryotic cells (131, 132). This likely
helps symbionts to escape phagocytosis in filter-feeding sponges or allows bacteria to persist intra-
cellularly (e.g., in bacteriocytes), similarly to what has been shown for ANK proteins secreted by
Legionella pneumophila, which allow for intracellular persistence in macrophages (133, 134). Genes
for ANK and WD40-type proteins were present and often abundant in all major bacterial sym-
biont clades found in the coral P. lutea (51), indicating that these genes may be generally important
for mediating symbiotic interactions with corals. We therefore suggest that ELPs could be used
as molecular markers to distinguish a BMC candidate from allochthonous bacteria.

Moving Beyond: Challenges and Potential Solutions

BMC studies performed to date have relied upon delivery of free cells into the water column or
onto coral nubbins held in small-scale laboratory trials or aquaria systems (39, 43, 45). In these
smaller systems, free cells may become trapped in coral mucus and possibly transferred to other
compartments directly via ingestion of suspended cells or the mucus-entrapped BMCs, although
this still needs to be documented directly. The current lack of strategies to effectively scale up
the application of BMCs from laboratory trials to the field is a crucial bottleneck to be addressed.
Nonetheless, we believe that comparisons to the successful development and deployment of mi-
croorganisms in other aquatic systems can offer invaluable insights that can be tested and extrap-
olated to coral reefs.
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In practice, delivery of microorganisms in aquatic systems is a major challenge, owing to direct
dilution and water currents, as well as interactions with a wide range of naturally occurring micro-
and macroorganisms. In aquaria and aquaculture tanks with limited water volume and controlled
flow, the dilution issue can be resolved; however, in open aquatic systems such as oceans, innovative
strategies need to be developed. One of the approaches that might be adopted to address this
problem is immobilization of the cells.

Immobilization of microbial cells to enhance delivery efficiency is used in several indus-
tries, such as wine production (135), biofuel production (136), and pollutant/waste remediation
(137, 138). Immobilization of cells offers numerous advantages, including maintenance of their
metabolic activity owing to better-controlled chemical conditions and physical protection. Also,
slow release of cells from a solid support can reduce the need for constant reinoculation. Addition-
ally, immobilized cells will disperse less widely compared with free-living cells, thereby effectively
reducing potential issues concerning escaped microorganisms affecting or interacting with non-
target organisms (139).

The selection of a carrier is a crucial step in immobilization strategies.Desirable characteristics
include low cost, nontoxicity, high carrying capacity, permeability to growth substrates, and ease
of preparation and handling (140). In the case of BMCs, it should be possible to break down
the carrier naturally or to regenerate it. Microorganisms can be immobilized in carriers made
from three types of material: inorganic, organic, or a composite of both (137). Organic carriers
include naturally occurring products (e.g., coconut husk, chitin, alginate, agar, and guar gum)
and synthetic polymers (e.g., polypropylene, polyurethane, and acrylamide). Inorganic carriers
include charcoal, clay, silica, ceramics, and celite, among others (141).Whereas inorganic carriers
are usually more resistant, less costly, and easier to handle and reuse, organic carriers are more
adaptable and typically biocompatible and therefore safer for other organisms (142). Composite
carriers, which combine the advantages of both organic and inorganic carriers, provide some level
of compromise between these respective (dis)advantages and include substances such as polyvinyl
alcohol, sodium alginate, and polyvinyl alcohol–guar gum (137).

Cells can attach strongly or loosely to the carrier’s surfaces or internal pores via mechanisms
such as adsorption, entrapment, and encapsulation. The mechanisms that microorganisms use to
attach to surfaces are well studied (143) and can thus be used to select suitable surfaces. Entrap-
ment, where cells are trapped within a support matrix, has the advantage that cells are confined
inside a solid matrix, which provides resistance to physical, chemical, or biological impacts. This
method also allows the entrapment of high densities of cells that can be released slowly and contin-
uously. The matrix most often used for entrapment immobilization is the polymer alginate (137).
Microencapsulation of living cells is a type of entrapment in which the cells are enclosed by a
semipermeable membrane (137). The main advantage of microencapsulation systems is that the
entrapment fluid can offer optimal conditions for cell function.

Another option is bioencapsulation, where living carriers, such as the live feed organisms
Artemia spp., rotifers, or copepods, are used to successfully deliver nutrients, immune stimulants,
and probiotics to several aquatic organisms (144, 145). Live feeds have high palatability and di-
gestibility and can stimulate a natural feeding response in animals (146). Nevertheless, for many
established aquaculture finfish species, coating of formulated feeds with probiotics is the most
common delivery strategy, as they offer precise control of nutritional components and ease of
preparation and application (146, 147).

Application of BMCs in aquaculture facilities and the field has been proposed to produce
healthy and resilient coral larvae, juveniles, or adults for reef-restoration purposes. Adapting the
immobilization methods discussed above (or developing novel ones) for use with coral probiotics
not only is possible (Figure 2) but is a gap that urgently needs to be filled. Among the carrier
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Figure 2

Examples of delivery strategies to be explored for the deployment of Beneficial Microorganisms for Corals (BMCs) in the field and
examples of their applications in aquatic systems.

materials discussed above, biocompatible polymers and live feed organisms seem to possess the
required characteristics to deliver coral probiotics both in aquaria and in the field. The develop-
ment of customized carriers that specifically attach to coral structures is desirable for successful
application on the reef, but this would require detailed understanding of the chemical composition
and biological characteristics of such structures. Aquaria-based experiments will be helpful during
initial development and testing of delivery strategies appropriate for different coral species and life
stages. Application in aquaria and aquaculture facilities is inherently easier than field application,
given that water volumes and flow rates can be controlled, the costs and logistical requirements for
repeat applications are lower, and there is no risk of delivery to nontarget organisms. A transition
to field applications will likely have to occur via controlled testing in large mesocosm systems that
aim to replicate processes on coral reefs.

CONCLUSIONS

The manipulation of coral microbiomes through the administration of BMCs, i.e., coral-specific
probiotics specifically selected for corals, has emerged recently as a promising tool to harness and
explore coral–microbiome relationships and, ultimately, to ameliorate impacts on corals and reefs.
Importantly, the new knowledge being generated in the field of coral probiotics can be further
extrapolated to support the development of probiotics for other threatened wildlife. The ability
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to manipulate/tailor the microbiome will allow us to explore the location of symbionts within the
host, as well as the mechanisms of symbiotic interaction that can help to elucidate key questions
in coral biology, such as the importance of partner fidelity and the transmission of symbionts (19).
The recent advancements in aquarium methods and facilities that allow research laboratories to
predictably spawn scleractinian corals (148) will greatly facilitate studies of microbial uptake and
establishment in early life stages of corals. The use of fluorescence in situ hybridization and ad-
vanced imaging approaches linked with stable isotope labeling techniques may facilitate the un-
derstanding of BMC interactions within the host (149). An alternative approach to be explored
is the use of fluorescently labeled bacterial cells or fluorescent latex beads (150) to visualize and
track the uptake and establishment of BMCs delivered to early and late life stages. This approach
has the advantage of enabling visualization in live specimens with intact mucus layers, so that live
bacteria can be directly enumerated based on their fluorescent signal complementing agar plating
and microscopy observations. Because of the genetic manipulation involved, such approaches are
not field deployable and should be restricted to experiments studying underlying BMC mech-
anisms or optimizing delivery strategies. Solutions to the above can, in turn, provide novel or
complement existing tools to improve BMC uptake and stability. In a nutshell, the ability to
successfully manipulate host–microbial associations also requires an intricate knowledge of the
processes that govern these interactions. Therefore, the field has a component of knowledge gen-
eration and knowledge application. Regarding the application of BMCs in reefs, delivery of free
cells is probably unrealistic, and an optimized immobilization approach will be required. Possi-
ble delivery strategies include the deployment of slow-release devices and targeted underwater or
surface release of BMCs immobilized in feed items (live feeds, feed aggregates or pellets, encap-
sulated feeds), adsorbed to a solid carrier or entrapped in a supporting matrix. Discussion of such
strategies should involve an environmental risk assessment with local government and commu-
nity involvement and should also consider the costs versus benefits of applying these measures to
protect coral reefs. Finally, an understanding and admission that many, if not all, reef ecosystems
have already changed in response to local and global impacts needs to be taken to heart and the
goal of any restoration measure clearly stated from the onset.

CURRENT AND FUTURE CHALLENGES

Challenge 1: Understanding the role of individual microbial symbionts in coral metaorganism
fitness.

� What functions do microorganisms perform to underpin coral health, how are these func-
tions contributed (e.g., through provision of essential nutrients, metabolites, proteins, vita-
mins, trace metals or antioxidants), and what are the quantitative effects?

� How does environmental stress impact these symbiotic relationships, and what are the con-
sequences for the coral metaorganism?

� Which microbial taxa are essential for metaorganism functioning, and which are function-
ally redundant?

� Why is understanding the responses of coral microbiomes to natural variation, such as
among coral species, geographic locations, and time, a critical step to develop successful
coral probiotics approaches?

Challenge 2: Identifying, tracking, and testing beneficial characteristics of coral-associated mi-
croorganisms.

� What are the known and putative beneficial characteristics of these coral-associated mi-
crobes? What are the main groups (taxonomic and functional) of beneficial microbes asso-
ciated with corals?
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� What are the best methods to track the location of microbes in the coral mucus, tissue, and
skeletal microhabitats?

Challenge 3: Developing effective BMC delivery approaches for corals.

� What are the best strategies to deliver BMCs to corals?
� What are the best immobilization approaches to reach the target, with minimum inoculum

loss and environmental impact?
� What is the best choice for large-scale delivery? How often would they need to be reinoc-

ulated?

Challenge 4: Testing strategies to apply BMCs in realistic mesocosms and ultimately on the reef.

� Are there realistic mesocosms for testing BMC delivery strategies before field inoculation?
� Will reefs be monitored after BMC inoculation?
� What are the best coral health parameters to determine whether BMCs are benefiting corals

in mesocosms and in the field?
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