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Abstract

Oxygenic photosynthesis converts solar energy into chemical energy in the
chloroplasts of plants and microalgae as well as in prokaryotic cyanobac-
teria using a complex machinery composed of two photosystems and both
membrane-bound and soluble electron carriers. In addition to the major
photosynthetic complexes photosystem II (PSII), cytochrome b6f, and pho-
tosystem I (PSI), chloroplasts also contain minor components, including a
well-conserved type I NADH dehydrogenase (NDH-1) complex that func-
tions in close relationship with photosynthesis and likewise originated from
the endosymbiotic cyanobacterial ancestor. Some plants and many microal-
gal species have lost plastidial ndh genes and a functional NDH-1 complex
during evolution, and studies have suggested that a plastidial type II NADH
dehydrogenase (NDH-2) complex substitutes for the electron transport ac-
tivity of NDH-1. However, although NDH-1 was initially thought to use
NAD(P)H as an electron donor, recent research has demonstrated that both
chloroplast and cyanobacterial NDH-1s oxidize reduced ferredoxin. We
discuss more recent findings related to the biochemical composition and ac-
tivity of NDH-1 and NDH-2 in relation to the physiology and regulation
of photosynthesis, particularly focusing on their roles in cyclic electron flow
around PSI, chlororespiration, and acclimation to changing environments.
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1. INTRODUCTION

Oxygenic photosynthesis and respiration have long been considered independent mechanisms
involving distinct electron transport chains, respectively located in two distinct compartments of
eukaryotic cells, the chloroplasts and the mitochondria. The discovery of respiratory-like genes,
enzymes, and complexes in chloroplasts of higher plants led scientists to revisit this paradigm.
Oxygenic photosynthesis first appeared in cyanobacteria, prokaryotic cells in which photosynthetic
and respiratory chains coexist and interact in the same cellular compartment. In higher-plant
chloroplasts, as in cyanobacteria, the plastoquinone (PQ) pool serves as an electron buffer between
photosystem II (PSII) and photosystem I (PSI). It can be reduced in a nonphotochemical manner
by two different types of NAD(P)H PQ oxidoreductases, called type I NADH dehydrogenase
(NDH-1) and type II NADH dehydrogenase (NDH-2). NDH-1 is a multisubunit complex similar
to mitochondrial complex I, whereas NDH-2 is a single-subunit flavoenzyme. Compared with its
mitochondrial counterpart, the NDH-1 complex has developed specific features and functions
to cope with the chloroplast environment. Remarkably, in spite of a photosynthetic machinery
resembling that of higher-plant chloroplasts, unicellular green algae lack a functional NDH-1
complex but have a plastidial NDH-2, which may substitute for the electron transport activity of
NDH-1.

Our knowledge of the biogenesis, subunit composition, and regulation of the plastidial
NDH-1 complex has greatly improved during the last decade, revealing an astonishing degree

56 Peltier · Aro · Shikanai



PP67CH03-Peltier ARI 14 March 2016 10:32

of complexity, but the physiological function of this complex in higher plants remains obscure.
Plastidial NDH-1 and NDH-2 are considered components of a complex network of regulatory
mechanisms that allow the photosynthetic machinery to function optimally in fluctuating
environmental conditions. The partial redundancy of these mechanisms likely explains the
difficulty of identifying the physiological function of these enzymes.

2. PLASTIDIAL AND CYANOBACTERIAL NDH-1 COMPLEXES

The existence of a chloroplast NAD(P)H dehydrogenase complex was postulated from the se-
quencing of tobacco and liverwort plastid genomes, which revealed the presence of a set of
11 conserved genes (ndh genes) showing sequence homology with genes encoding subunits of
mitochondrial NADH dehydrogenase (80, 96, 123). Experimental approaches combining bio-
chemistry, genetics, bioinformatics, and proteomics helped to identify additional subunits of
chloroplast NDH-1 encoded by the nuclear genomes of land plants (reviewed in 62, 120). In
parallel, cyanobacteria genome sequencing and subsequent reverse genetics studies revealed the
structural and functional multiplicity of cyanobacterial NDH-1 complexes (74, 93, 94, 118). In
this section, we describe our present knowledge of the subunit composition of chloroplast and
cyanobacterial complexes using the common subunit nomenclature proposed by Ifuku et al. (62).

2.1. Subunit Composition of the Plant NDH-1 Complex

The 11 plastid-encoded subunits (NdhA–K) are conserved in all NDH-related protein complexes
and form an L-shaped skeleton. Chloroplast NDH-1 is a large protein complex consisting of
these 11 subunits and more than 19 nucleus-encoded subunits (62). Based on the subunit com-
position of the NDH complex in different mutant backgrounds and on homologies with bacterial
and mitochondrial NDH complexes, chloroplast NDH-1 was structurally subdivided into five
subcomplexes: A, B, M (membrane), L (lumen), and ED (electron donor) (102, 146) (Figure 1a).

Subcomplex A corresponds to the Q module of respiratory NADH dehydrogenases and in-
cludes four plastid-encoded subunits (NdhH–K). All the cofactors required for electron transport,
from the soluble electron donor to the complex to PQ, are probably harbored by these subunits
(50, 60). Chloroplast NDH-1 includes four additional nuclear-encoded subunits (NdhL–O), which
copurify with a tagged NdhH subunit in tobacco (113). Subcomplex M consists of seven plastid-
encoded subunits (NdhA–G) and forms the membrane arm that functions in proton translocation
across the membrane (the P module in respiratory NADH dehydrogenase). Subcomplex B is
composed of five subunits (PnsB1–5) and is specific to chloroplast NDH-1. PnsB4 and PnsB5
have transmembrane domains, whereas PnsB1, PnsB2, and PnsB3 are localized to the stroma
side, probably anchored on PnsB4 and PnsB5. Although the molecular function of subcomplex
B remains unelucidated, defects in its subunits result in the destabilization of the total complex
(64, 102, 124, 128). Subcomplex L contains at least five subunits (PnsL1–5) and is also specific
to chloroplast NDH-1. Phylogenetically, the occurrence of subcomplex L is linked to the forma-
tion of a supercomplex between NDH-1 and PSI (see Section 2.6). Three of the subcomplex L
subunits (PnsL1–3) show sequence similarities to lumenal subunits of PSII: PnsL1 is PsbP-like
protein 2 (PPL2) (63), and PnsL2 and PnsL3 are forms of PsbQ-like protein (PQL) (127, 145). In
PSII, PsbP and PsbQ stabilize the PSII supercomplex by interacting with CP26 and CP47 (61),
supporting the idea that subcomplex L stabilizes the NDH-1–PSI supercomplex at the lumen side.

Three subunits of subcomplex ED—NdhS, NdhT, and NdhU—have been identified by pro-
teomic analysis of the NDH-1–PSI supercomplex (146). NdhS is involved in ferredoxin (Fd)
binding (see Section 2.3). NdhT and NdhU are J and J-like proteins, respectively, that have a
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Figure 1
Subunit composition of (a) chloroplast and (b) cyanobacterial NDH-1 complexes. (a) The chloroplast model is based on an analysis of
subunit stability in different mutant backgrounds (62) and the assembly model proposed by Peng et al. (101). This model does not
provide information on the actual positions of subunits in the complex. (b) The cyanobacterial model is based on the crystal structure of
respiratory complex I (8) and on a single-particle analysis of cyanobacterial NDH-1 (5). The two models differ in the positions of
NdhM and NdhO (15, 120). Abbreviations: Fd, ferredoxin; PQ, plastoquinone; PQH2, reduced plastoquinone; PSI, photosystem I.

transmembrane domain and likely form a heterodimer required for stabilizing NdhS (146). Fan
et al. (35) recently identified NdhV as a new subunit loosely bound to subcomplex ED, forming
the most fragile part of the complex. Subcomplex ED interacts with subcomplex A to form the
Fd-binding site, which includes the Fd-oxidizing site (146).
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Proton motive force:
the force generated by
electron transport
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2.2. Subunit Composition of Cyanobacterial NDH-1 Complexes

The development of blue native gel electrophoretic separation of thylakoid protein complexes
combined with mass spectrometric identification of protein subunits led to the characterization of
different NDH-1 complexes in the cyanobacterial thylakoid membrane (9, 54, 95, 144, 149, 150).
All of these complexes contain the NDH-1M module, which is composed of both hydrophilic
and hydrophobic domains and is presently known to comprise 14 subunits (NdhA–C, NdhE,
NdhG–O, and NdhS) (Figure 1b). NDH-1M has no physiological function by itself but repre-
sents an assembly intermediate for functional NDH-1 complexes (9). The NdhH–K, NdhO, and
NdhS subunits form the hydrophilic domain, while the NdhA–C, NdhE, NdhG, and NdhL–N
subunits are components of the hydrophobic membrane domain (9). The NdhO subunit, earlier
assigned to the hydrophobic domain (9), was recently shown to strongly interact with the NdhI
and NdhK subunits of the hydrophilic domain, thereby providing flexibility and maximal NDH-
dependent cyclic electron transport (NDH-CET) activity under high-light conditions (151). The
NdhS subunit of the hydrophilic domain of NDH-1M is essential for binding of Fd, the putative
electron donor to cyanobacterial NDH-1 complexes (9), as in the case of plant chloroplasts (see
Section 2.3).

Whereas assembly mechanisms of the chloroplast NDH-1 complex are now quite well de-
scribed (see Section 2.4), very little is known about the assembly of NDH-1M. So far, only one
maturation factor, the Slr1097 (CRR6) protein, has been identified in Synechocystis sp. PCC6803
(27). In addition to the NDH-1M module, which is common to all complexes, cyanobacterial
NDH-1 complexes differ in the nature of the NdhD and NdhF subunits. The Synechocystis sp.
PCC6803 genome contains six different ndhD genes (ndhD1–6) and three different ndhF genes
(ndhF1, ndhF3, and ndhF4).

2.2.1. The NDH-11 and NDH-12 complexes. NDH-11 (also called NDH-1L) is present in
cyanobacterial thylakoid membranes as a 450-kDa protein complex (54). In addition to the NDH-
1M module, NDH-11 has two specific subunits, NdhD1 and NdhF1, that extend the membrane
domain and give the complex an L shape that is typical of bacterial or mammalian NDH-1
complexes (for a review, see 9). Studies have recently shown that the NDH-11 complex includes
two small subunits, NdhP and NdhO, that are localized to the membrane arm and are essential
for the stabilization and optimal activity of the complex (117, 142, 152).

The NDH-12 complex (also called NDH-1L′) harbors the NdhD2 subunit instead of NdhD1.
NDH-12 may be expressed in particular environmental conditions, as expression of the ndhD2 gene
differs conspicuously from that of the ndhD1 gene, increasing in particular upon CO2 limitation
(140) or iron depletion (53). A recent study suggested that this complex withdraws the excess of
electrons in the intersystem chain by catalyzing reverse electron flow using the proton motive
force and reduced PQ (PQH2) to reduce NAD(P)+ or Fd (B. Forberich, S. Künzel, L. Cournac,
Y. Allahverdiyeva, R. Schulz, et al., manuscript in review).

2.2.2. The NDH-13 and NDH-14 complexes. The NDH-13 complex (also called NDH-
1MS) contains NdhD3 and NdhF3 and two additional subunits, CupA and CupS, that are bound
to the NdhD3 and NdhF3 proteins in the distal membrane arm of the complex (Figure 1b).
Upon isolation, the NDH-13 complex falls into two parts in the blue native gels, the NDH-1M
complex and a small NDH-1S subcomplex (54, 149). Isolation of the complex from a thermophilic
Thermosynechococcus elongatus cyanobacterium demonstrated that these subcomplexes are part of
the larger NDH-13 complex (150). The NDH-14 complex (also called NDH-1MS′) contains
NdhD4, NdhF4, and CupB subunits in addition to the NDH-1M complex (142).
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2.3. The Nature of the Electron Donor to NDH-1

Compared with the minimum set of 14 Nuo subunits of the Escherichia coli NADH dehydrogenase
(44), plastid genomes lack three important genes encoding subunits (corresponding to bacterial
NuoE, NuoF, and NuoG) that form the NADH-oxidizing (N) module. Missing genes were not
found in land-plant nuclear genomes or in cyanobacterial genomes, and Friedrich et al. (44)
proposed that chloroplast and cyanobacterial NDH-1 are equipped with an NAD(P)H-oxidizing
module different from that present in bacterial or mitochondrial complex I. The nature of the
soluble electron donor to the plastidial NDH-1 complex has been a matter of debate. NAD(P)H-
dependent PQ reduction activities have been measured in potato and spinach thylakoid membranes
(22, 32). However, the comparison of NAD(P)H oxidation activities of thylakoid membranes
isolated from wild-type and mutant Arabidopsis plants defective in chloroplast NDH-1 showed
no statistically significant difference (124). Purification of the enzyme is the most straightforward
strategy to determine the complex activity, but the low amount and fragility of the plastidial
NDH-1 complex make this approach difficult. An ∼550-kDa complex isolated from pea leaves
and composed of at least 16 subunits catalyzes NADH oxidation, but the specific activity of the
complex was much lower than is usually measured for NADH dehydrogenases (115). NADH-
oxidizing activity was also reported in a histidine-tagged NDH-1 complex purified from Ni2+

affinity chromatography (113).
In Arabidopsis ruptured chloroplasts, NADPH-dependent PQ reduction by the NDH-1 com-

plex is strictly dependent on the presence of Fd (86). Proteomic analysis of the NDH-PSI super-
complex identified a novel NDH subunit (NdhS/CRR31) involved in high-affinity binding of Fd
(104, 146). NdhS holds an Src homology 3 domain–like fold with a tertiary structure similar to the
Fd-binding site of the PSI subunit PsaE. A positive surface charge of the pocket in the Src homol-
ogy 3 domain–like fold is essential for electrostatic interaction with Fd (147). NdhS is conserved in
cyanobacteria and has a similar function in Synechocystis sp. PCC6803 (11). He et al. (50) recently
affinity purified the NDH-11 complex of T. elongatus via a histidine-rich region naturally present
in NdhF1. The purified complex contained 14 NDH-1 subunits, including NdhS, and protein
interactions between NdhS and Fd were confirmed by surface plasmon resonance analysis. As
with the chloroplast NDH-1 complex, cyanobacterial NDH-11 is likely to accept electrons from
Fd, and the NdhS subunit forms the Fd-binding site (11, 50).

Although pioneering studies reported an NADH-oxidizing activity of plastidial NDH-1, most
recent studies performed in Arabidopsis and cyanobacteria have concluded that photosynthetic
NDH-1 complexes accept electrons from Fd rather than from NADH or NADPH. Early results
showing an NADH dehydrogenase activity of the NDH-1 complex might have been due to the
presence of contaminating enzyme activities. The chloroplast NDH-1 should then be considered
an Fd-PQ reductase rather than a genuine NAD(P)H dehydrogenase.

2.4. Biogenesis of NDH-1

Different proteins have been identified as auxiliary components involved in NDH-1 biogene-
sis (Table 1). Assembly of subcomplex A proceeds in the stroma of chloroplasts in a manner
similar to that described in human mitochondria (101). In mitochondria, NDUFS2 (correspond-
ing to NdhH) and NDUFS3 (NdhJ) initiate Q module assembly (137). Subsequently, NDUFS7
(NdhK), NDUFS8 (NdhI), and NDFUA9 are incorporated into this assembly intermediate, which
is followed by an interaction with ND1 (NdhA) in the mitochondrial inner membrane to form
an ∼400-kDa assembly intermediate (84). In thylakoid membranes, any defect in subcomplex A
subunits almost completely destabilizes subcomplex A.
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Table 1 Assembly factors of NDH-1

Motif Function Reference

CRR1 NAD(P)H-binding Assembly of NdhK or NdhM 122

CRR6 None Assembly of NdhI 100

CRR7 None Insertion of subcomplex A into the membrane part 100

CRR41 None Scaffold for subcomplex assembly 101

CRR42 None Transition from NAI500 to NAI400 101

Cpn60β4 Minor chaperonin β Folding of NdhH 103

PAM68L None Assembly of the membrane part 4

Based on the accumulation pattern of assembly intermediates in different mutant backgrounds,
Peng et al. (106) proposed a model of the assembly process for subcomplex A. In an Arabidop-
sis mutant (crr27) defective in Cpn60β4, none of the assembly intermediates are detected in
the stroma (101). Cpn60β4 is involved in the folding of NdhH, suggesting that NdhH initiates
the assembly of subcomplex A in chloroplasts (103). After folding, NdhH is incorporated into the
∼500-kDa NDH-1 assembly intermediate (NAI500), which includes NdhO and CRR41 (101).
NdhO may directly interact with NdhH. CRR41 is a nonsubunit factor that is required for the
assembly of subcomplex A but ultimately absent in the NDH-1–PSI supercomplex (101). NdhH,
NdhO, and CRR41 are necessary to stabilize each other. The order of subsequent incorporation
of NdhI–K and NdhM into NAI500 to form NAI400 is not well established. NdhJ stably accu-
mulates in the stroma of crr1 mutants lacking NdhK, NdhM (122), or NdhI (100). By contrast,
NdhJ is unstable in mutants (crr27, ndho, and crr41) that are defective in NAI500 accumulation
(101). As in the human mitochondria, NdhJ (NDUFS3) may interact with NdhH (NDUFS2) in
an early step of subcomplex A assembly.

CRR6 was first identified by classical genetics and then further elucidated by an HA-epitope
strategy aiming at purifying the assembly intermediates of subcomplex A (100, 101). CRR6 co-
purified with nonsubunit assembly factors (CRR1, CRR41, CRR42, and HCF101) as well as NDH
subunits (NdhH–K, NdhM, and NdhO). Accumulation of NdhI in the stroma of the crr6 mutant
was impaired, suggesting that CRR6 is required for the incorporation of NdhI into NAI500. How-
ever, CRR6 was not detected in any NAIs in clear native gel, suggesting that CRR6 transiently
interacts with NAIs via NdhI.

CRR1 was also discovered by classical genetics as a mysterious homolog of dihydrodipicolinate
reductase that functions in lysine biosynthesis (122). Although the molecular function of CRR1
is unclear, it is essential for the accumulation of NdhK (101). Because NdhM is essential for
stabilizing NdhK in the stroma, it is also possible that CRR1 is required for the accumulation of
NdhK via the stabilization of NdhM.

CRR42 was identified in the coimmunoprecipitates with CRR6 (101). Because NdhN was not
detected in coimmunoprecipitates with CRR42, CRR42 is likely released from NAI400 before
the incorporation of NdhN (101). Subcomplex A is almost fully assembled in the stroma and
then interacts with NdhL and probably also with NdhA in the thylakoid membrane. This process
is also conserved in the mitochondrial NADH dehydrogenase on which the fully assembled
Q module interacts with ND1 in the mitochondrial inner membrane (84). As discussed below,
NDH-1-related complexes evolved by combining different preexisting modules (42). Assembly
of the complex likely proceeds in each module by putting together all the modules in the
membrane. The assembly of complex I–related enzymes may follow the evolutionarily conserved
scenario.
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Although the assembly process of subcomplex A is well documented, little is known about the
assembly of the membrane embedded arm (subcomplexes B and M) of the chloroplast NDH-1
complex. In human mitochondria, the ∼400-kDa intermediate, which includes DUFS2, -3, -7, -8,
and -9, interacts with an ∼460-kDa intermediate that includes ND2 (corresponding to NdhB),
ND3 (NdhC), ND4L (NdhE), and ND6 (NdhG) to form an ∼650-kDa intermediate. Subse-
quently, ND4 (NdhD) and ND5 (NdhF) are fused to the most peripheral part of the membrane
arm to form an ∼830-kDa intermediate (137). This assembly process may be conserved in pho-
tosynthetic NDH-1, because NdhD and NdhF are exchangeable to form the NDH-1 complexes
with different functions in cyanobacteria (9). Finally, the ∼830-kDa intermediate is equipped
with the N module to form the ∼980-kDa mature complex (137). This final process is missing in
photosynthetic NDH-1 complexes, which lack the N module.

Interestingly, biogenesis of PSII and NDH-1 plastidial complexes show some similarity. Two
closely related Arabidopsis proteins, PHOTOSYNTHESIS AFFECTED MUTANT 68 (PAM68)
and PAM68-LIKE (PAM68L), are involved in the assembly of the PSII core (4) and of the mem-
brane part of chloroplast NDH-1 (3), respectively.

2.5. Regulation of NDH-1

Although molecular mechanisms of distinct assembly steps of NDH-1 have been widely eluci-
dated based on the discovery of specific mutants, information is still lacking on how each step
is orchestrated to regulate the biogenesis of the complex. RNA editing is a process that alters
genetic information in RNA molecules and frequently occurs in the plastids and mitochondria
of land plants (130). Remarkably, 16 of the 34 editing sites in the Arabidopsis plastid genome are
associated with four ndh genes (ndhB, ndhD, ndhF, and ndhG) (119). An intriguing question is
why the distribution of editing sites in the plastid genome is biased in this way. RNA editing is
considered to be a system of “genome debugging” (75), which is unlikely to have a regulatory
role in plastid gene expression. The physiological meaning of RNA editing of ndh genes is still
unclear, but it may have conferred genetic diversity to NDH-1 subunits during the evolution of
land plants (119).

Induction of NDH-related genes under certain conditions would be a hint to predict the physi-
ological function of chloroplast NDH-1. However, although tobacco plants lacking NDH-1 were
reported to be sensitive to several environmental stresses, stress conditions did not induce expres-
sion of NDH-1-related genes in Arabidopsis. Although the presence of a functional chloroplast
NDH-1 is required for optimal growth in an Arabidopsis proton gradient regulation 5 ( pgr5) mutant
background, the level of NDH-1 complex is not higher in this background than in a wild-type
background (86). Nonetheless, public microarray data suggest that NDH-1-related genes form
several coexpression groups, which enabled Takabayashi et al. (128) to identify novel subunits.
A sigma factor (Sig4) is specifically required for the transcription of ndhF (38), and coexpres-
sion analysis [using the ATTED-II database, version 7 (92)] indicated that the transcriptional
profile of the sig4 genes is related to that of CRR7 genes. Transcript levels of NDH-1-related
genes are downregulated in Arabidopsis genotypes with reduced levels of ascorbate or glutathione
or higher levels of hydrogen peroxide (H2O2) (111), although H2O2 was recently proposed to
activate NDH-CET (126). Plastid NDH-1 levels were also reduced following perception of a
pathogenic cue (46).

A few reports have proposed that chloroplast NDH-1 activity could be regulated by posttrans-
lational modifications (phosphorylation or redox modification) of some of its subunits. Martin
et al. (77) proposed that phosphorylation of the NdhF subunit regulates NDH-1 in response to
oxidative stress. Courteille et al. (26) proposed a redox regulation of NDH-1 on the basis that the
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growth phenotype of the pgr5 mutant was suppressed in a double mutant lacking thioredoxin m4.
Further work remains to fully characterize posttranslational modifications of the NDH-1 complex
and determine their physiological importance.

2.6. Involvement of NDH-1 in a Supercomplex with Photosystem I

In Arabidopsis, chloroplast NDH-1 forms a cyclic electron flow (CEF) supercomplex with PSI
(105). The formation of this supercomplex is intermediated by two minor light-harvesting com-
plex I (LHCI) proteins, Lhca5 and Lhca6 (102), and is required for the stabilization of NDH-1,
especially under high-light conditions (104). Recently, single-particle electron microscopy
analysis of the supercomplex showed that two copies of PSI are attached to one copy of NDH-1,
with LHCI proteins being involved in the attachment (70). The ability to form a supercomplex
between NDH-1 and PSI likely represents a relatively recent evolutionary acquisition, as genes
encoding Lhca5 and Lhca6 are not found in Marchantia polymorpha. There is presently no
experimental evidence for formation of NDH-1L–PSI supercomplexes in cyanobacteria, and in
Marchantia, NDH-1 occurs as a monomer (136). Physcomitrella patens falls in the middle: It holds
a single LHC1 protein related to Lhca5, and only a part of NDH-1 forms a supercomplex with
PSI (3). The formation of a supercomplex between PSI and NDH-1 may allow a more efficient
channeling of electrons from PSI to NDH-1, thereby improving CEF, but experimental evidence
for such a role is still lacking. In cyanobacteria, the NdhP subunit specific to the NDH-11

complex improves CEF efficiency by mediating a coupling with PSI (117), and it may have a
similar function in facilitating the channeling of electrons between the two complexes.

3. PLASTIDIAL AND CYANOBACTERIAL NDH-2s

NDH-2s are single-subunit flavoenzymes that bypass the activity of complex I in plant mitochon-
dria, yeasts, and some bacteria (82). Peltier & Cournac (98) proposed that NDH-2 replaces the
electron transfer activity of NDH-1 in species such as microalgae, which lack the plastidial NDH-1
complex. NDH-2s are nonelectrogenic and monomeric enzymes of approximately 50 kDa, an-
chored to membranes and harboring two β sheet–α helix–β sheet (Rossmann fold) domains, one
involved in the binding of flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN)
and the other involved in the binding of NAD(P)H (82). The crystal structures of yeast Ndi1 and
bacterial NDH-2s were recently solved, showing a dimeric organization, a membrane-anchoring
domain, and binding pockets for FAD, ubiquinone, and NADH, but the enzyme mechanism
remains unclear (39, 52).

The only chloroplast NDH-2 characterized so far at the enzyme level is the Chlamydomonas
Nda2 (30). Recombinant CrNda2 can reduce PQs by using NADH or NADPH as an electron
donor, with NADH being the preferential substrate (30). The substrate specificity of NDH-2s
is determined by the nature of a residue located at the end of the NADH-binding domain (29).
Enzymes showing a preference for NADH harbor an acidic residue, a basic residue present in
enzymes with a higher NADPH activity. The preference for NADH as a substrate is an intriguing
feature for a plastidial enzyme because NADPH, rather than NADH, is considered the major
reduced nucleotide species present in this cellular compartment (51). This might be related to
the presence of a transhydrogenase in algal chloroplasts (132), an enzyme interconverting NADH
and NADPH species. In contrast to most NDH-2s, which use FAD as a non-covalently-bound
cofactor, CrNda2 uses FMN (30). The presence of an FMN cofactor is a rare feature of NDH-2s
that has so far been documented in a few enzymes, including one from an archaeon (7) and another
from the protozoan Trypanosoma brucei (36).
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The genomes of photosynthetic eukaryotes contain several NDH-2 genes: Chlamydomonas
reinhardtii (30) and Physcomitrella patens (143) each have six, and Arabidopsis thaliana has seven
(83). Synechocystis sp. PCC6803 has three genes encoding NDH-2s (59). In photosynthetic eu-
karyotes, some of these NDH-2s are targeted to mitochondria or peroxisomes, whereas others
are plastidial. Dual targeting has been shown for several NDH-2s in Physcomitrella and Arabidopsis
(143). Based on homologies with bacterial and fungal sequences, plant NDH-2s have been clas-
sified into three distinct subgroups, called NDA, NDB, and NDC. Whereas NDA and NDB are
related to fungal sequences, NDC is related to cyanobacterial NDH-2s (83). In Chlamydomonas,
CrNda2 and CrNda3, which belong to the NDB group, are targeted to chloroplasts (30, 65, 132).
In Physcomitrella, three NDH-2s are targeted to the chloroplast, including two from the NDB
group and one from the NDC group (143). In Arabidopsis, only one of the seven NDH-2s, the
cyanobacterial-type NDC, is targeted to chloroplasts (143). All of the plastidial NDH-2s classified
so far belong to the NDB or NDC group.

In yeasts, bacteria, and plant mitochondria, NDH-2s are involved in the respiratory electron
transport chain. In organisms lacking a functional NDH-1, such as Saccharomyces cerevisiae, NDH-
2s are the only enzymes of the respiratory chain able to oxidize NADH (82). What is the function
of NDH-2 in chloroplasts and cyanobacteria? Do these enzymes replace the electron transport
activity of NDH-1 in species lacking the plastidial complex, such as microalgae, or are these
enzymes involved in specific metabolic functions? We discuss these questions in the following
sections.

4. METABOLIC AND PHYSIOLOGICAL FUNCTIONS
OF NDH-1 AND NDH-2

Since the discovery of conserved plastid genes encoding a functional NDH-1 complex in land
plants, genetic and biochemical studies have led to the identification of a large set of nuclear genes
involved in the regulation, biogenesis, and structure of the NDH-1 complex. However, although
NDH-1 was proposed initially to be involved in chlororespiration and later to be involved in CEF,
its physiological function has long remained elusive.

4.1. Chlororespiration and Cyanobacterial Respiration

The presence of an NDH-1 complex in chloroplasts was initially viewed as support for the con-
cept of chlororespiration (96, 97), a respiratory chain previously seen in microalgal chloroplasts
(13) (Figure 2a,b). However, it turned out that microalgal chloroplasts do not harbor ndh genes
and have no functional NDH-1 complex (114). This contradiction was apparently resolved when
an NDH-2 called CrNda2 was discovered in Chlamydomonas chloroplasts (30, 65, 88), as it was
assumed that NDH-2 may functionally replace NDH-1. In higher-plant chloroplasts, studies sug-
gested that the NDH-1 complex participates in the chlororespiratory electron transport pathway
(19, 98) by reducing the PQ pool from NAD(P)H, with PQH2 oxidized by a plastid terminal
oxidase (PTOX) directly branched to the PQ pool (25, 58).

However, the recent finding that reduced Fd is the electron donor to the complex (104, 146)
argues against an involvement of NDH-1 in a respiratory activity on the model of mitochondrial
or bacterial respiration. Indeed, respiratory electron transport chains use NAD(P)H produced
by metabolic reactions as electron donors. Reduced Fd is produced in light by the photosyn-
thetic electron transport chain. In chloroplasts, Fd-NADP reductase (FNR) functions in reducing
NADP+ from Fd, but specific FNR enzymes such as root-type FNR have a lower negative mid-
point potential that facilitates the reduction of Fd from NADPH (90). Such FNRs are involved in
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Figure 2
Electron transfer pathways involving NDH-1 and NDH-2 in oxygenic photosynthesis in (a) plants,
(b) microalgae, and (c) cyanobacteria. Electron transfer pathways related to linear electron flow, cyclic
electron flow, and (chloro)respiration are shown, based on experimental results obtained in Arabidopsis
thaliana for plant chloroplasts, Chlamydomonas reinhardtii for microalgae, and Synechocystis sp. PCC6803 for
cyanobacteria. Abbreviations: COX, cytochrome aa3 oxidase; Cyd, cytochrome bd quinol oxidase; Cyt b6f,
cytochrome b6f complex; Fd, ferredoxin; FNR, ferredoxin-NADP reductase; FNRL, large FNR isoform;
FNRS, small FNR isoform; Pc, plastocyanin; PGR5, PROTON GRADIENT REGULATION 5; PGRL1,
PGR5-Like Photosynthetic Phenotype 1; PQ, plastoquinone pool; PSI, photosystem I; PSII, photosystem
II; PTOX, plastid terminal oxidase; TH, transhydrogenase.

nitrate assimilation in roots and may participate in supplying the NDH-1 complex in reductants,
provided they would be expressed in photosynthetic plastids.

Alternatively, NDH-2s, which use NAD(P)H as an electron donor, could be involved in
chlororespiration. However, the only NDH-2 identified so far in angiosperms is associated with
plastoglobuli and involved in prenylquinone metabolism (108). Therefore, the existence of a com-
plete chlororespiratory chain from NAD(P)H to O2 is doubtful in land plants and might be
restricted to organisms harboring a specific FNR able to reduce Fd from NADPH, or to organ-
isms, such as microalgae, that harbor a plastidial NDH-2 involved in PQ reduction. It is worth
mentioning here that, in any case, chlororespiration should not be considered a pure respiratory
electron transport chain that converts reducing power into phosphorylating power, because in
contrast to respiratory chains, which contain electrogenic complexes, both NDH-2 and PTOX
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are nonelectrogenic enzymes (89). Therefore, chlororespiration should be viewed as a futile path-
way involved in the dissipation of energy or as a regulatory mechanism participating in the poising
of intersystem electron carriers.

In cyanobacteria, photosynthesis and respiration are located in the same cellular compartment
and share the same intersystem electron carriers, such as the PQ pool and the cytochrome b6f
complex (116). Different enzymes, including NDH-1, NDH-2, and succinate dehydrogenase, are
likely involved in the dark reduction of the PQ pool. Low respiration rates and impairment of
photoheterotrophic growth were reported in the Synechocystis sp. PCC6803 �ndhB mutant (M55),
which lacks all of the NDH-1 complexes (93), as well as in double mutants inactivated in both
the ndhD1 and ndhD2 genes, and it was concluded that the NDH-11 and NDH-12 complexes are
involved in respiration (94). More recent data have verified a major role for the NDH-11 complex
in cyanobacterial respiration (see 9), and active electron flow from metabolites to the PQ pool
was indeed strongly suppressed upon depletion of the NdhF1 subunit (14). Similarly, the absence
of other NDH-11- and NDH-12-specific subunits (either NdhP or NdhQ, which stabilize the
complex) drastically decreases the respiratory capacity of cyanobacterial cells (117, 152).

Because cyanobacterial NDH-11 and NDH-12 complexes, like chloroplast NDH-1, use re-
duced Fd as an electron donor, the involvement of NDH-1 in respiration would require a specific
FNR involved in the production of reduced Fd. The Synechocystis sp. PCC6803 genome includes a
single FNR-encoding gene, but two FNR isoforms [the large (FNRL) and small (FNRS) isoforms]
are produced from this single gene (133). FNRL is involved in NADP+ reduction and photosyn-
thesis, and FNRS, which accumulates during heterotrophic growth, catalyzes Fd reduction from
NADPH and likely participates in respiration, particularly in conditions of high cellular energy
status (133).

4.2. Cyclic Electron Flow Around Photosystem I

CEF around PSI is an important reaction of oxygenic photosynthesis that contributes to increasing
the proton gradient and producing ATP in the photosynthetic electron transport chain to match
metabolic needs (67) (Figure 2). CEF was initially considered an antimycin A–sensitive reaction
involving a specific component called Fd-PQ oxidoreductase (21). The involvement of NDH-1
in CEF was proposed based on knockouts of the plastidial complex first in tobacco (19, 121) and
then in Arabidopsis (49). Physiological studies performed on tobacco plants with an inactivated
NDH-1 complex concluded that two pathways of CEF operate around PSI: one involving the
NDH-1 complex and one, sensitive to antimycin A, involving Fd-PQ reductase (66). Further
genetic studies identified PGR5 (87) and PGR5-Like Photosynthetic Phenotype 1 (PGRL1) (28)
as essential components of the antimycin A–sensitive pathway, and Hertl et al. (55) recently
proposed that PGRL1 acts as an Fd-PQ reductase. The recent discovery that reduced Fd is the
electron donor to the NDH-1 complex (104, 146) led to the conclusion that this complex is an
antimycin A–insensitive Fd-PQ reductase. Although mutants only affected in the NDH-1 complex
show no obvious change in their growth phenotype, the growth of mutants defective in both CEF
pathways (NDH-1 and PGR5/PGRL1) is severely impaired, indicating that these pathways can
complement each other (86). Given the low abundance of NDH-1 in thylakoid membranes and
the absence of a growth phenotype in mutants lacking NDH-1, NDH-1 is generally considered to
make a minor contribution to CEF. However, studies of NDH-1 knockout mutants concluded that
NDH-1 may significantly contribute to the proton motive force in low light (136, 148), whereas the
PGR5/PGRL1-dependent pathway would preferentially function at high light intensities (139).

Two CEF pathways also operate in Chlamydomonas (112), one involving PGR5/PGRL1 (68,
134) and the other involving CreNda2 (6, 65) (Figure 2b). Because CrNda2 uses NADH as a
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preferential substrate (29), the latter likely requires an interconversion of NADPH (produced
by photosynthesis) into NADH, which might be carried out by a transhydrogenase present in
Chlamydomonas chloroplasts (132). Based on measurements of the maximum capacities of these
two pathways, Alric (1) concluded that the PGR5/PGRL1 pathway is the major contributor under
reducing conditions.

Cyanobacteria lack the PGR5/PGRL1 CEF components (99), and CEF relies on the presence
of NDH-1 complexes (9). Two types of CEF pathways relying on NDH-1 complexes have been
distinguished in cyanobacteria: one related to the NDH-11 and NDH-12 complexes, which also
participate in respiration and heterotrophic growth (see Section 4.1), and one related to the NDH-
13 and NDH-14 complexes, which are involved in the CO2-concentrating mechanism (CCM)
(see Section 4.4) (14). The possible function of cyanobacterial NDH-2s in CEF remains to be
elucidated.

In addition to supplying extra ATP for photosynthetic CO2 fixation, CEF pathways cooperate
to generate a proton motive force that may trigger important regulatory mechanisms of pho-
tosynthesis. When CO2 fixation and ADP regeneration are limited (e.g., in stress conditions),
the CEF-dependent proton motive force is used to induce nonphotochemical quenching and
photosynthetic control at the cytochrome b6f level (41).

4.3. Putative Role as Redox Sensors

Given the low abundance of NDH complexes in chloroplast membranes, these complexes may
have a regulatory function (98, 113). In Synechocystis, although PSI-deficient mutants are sensitive
to high light, inactivation of one or several NDH-2s allowed recovering growth under high-light
conditions, leading Howitt et al. (59) to conclude that cyanobacterial NDH-2s are not involved
in respiration and instead act as sensors of the redox state of the PQ pool. The presence of
FMN as a cofactor in CreNda2, the plastidial NDH-2 identified in Chlamydomonas, may have
physiological implications because FMN catalyzes one-electron transfer reactions known to pro-
duce reactive oxygen species (ROS) (36). The majority of ROS produced by NDH-1s originates
from FMN, with this production occurring when the quinone reductase site is blocked (12). The
Chlamydomonas CrNda2 belongs to the NDB group of NDH-2s, which harbor a putative EF-hand
Ca2+-binding domain (30). Arabidopsis NDB1 and NDB2 bind Ca2+ (47), but these enzymes are
located in mitochondria, not in plastids (143). Whether plastidial NDH-2s are regulated by bind-
ing Ca2+ remains to be elucidated. Terashima et al. (131) reported that a Ca2+ sensor regulates the
PGRL1-dependent CEF pathway in Chlamydomonas. Therefore, Ca2+ might regulate the activity
of both PGRL1- and NDH-2-mediated CEF pathways. Based on a phosphoproteome survey
of the Chlamydomonas eyespot, Wagner et al. (138) identified Nda2 as a highly phosphorylated
protein, thus indicating that the enzyme activity is subject to strong posttranslational regulations.
Taken together, these data indicate that plastidial NDH-2 might be subject to strong regulations,
which may have a signaling function in relation to Ca2+ binding and ROS production. As sug-
gested for cyanobacterial NDH-2s, it is possible that plastidial NDH-2s are sensors of the PQ
pool redox state.

4.4. CO2-Concentrating Mechanisms of Cyanobacteria and C4 Plants

Cyanobacteria have evolved a CCM that greatly improves photosynthetic performances and
growth under CO2-limiting conditions (110). By studying a Synechocystis sp. PCC6803 mutant
that had an inactive ndhB gene and required high CO2 concentrations for growth, Ogawa (93)
established a link between the CCM and NDH-1. A similar high-CO2-requiring phenotype was
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observed in response to inactivation of both ndhD3 and ndhD4, thus showing that two NDH-1
complexes, NDH-13 and NDH-14, participate in the cyanobacterial CCM (74, 94). The CupA
and CupS subunits are involved in CO2 conversion to bicarbonate (HCO−

3 ) (74, 110), while other
subunits of the complex supply energy to the CO2-pumping mechanism by performing CEF (14)
and producing ATP. NDH-13 is an inducible low-affinity CO2 uptake mechanism that is absent
when cyanobacteria grow at elevated CO2 concentrations (1–5%) but rapidly accumulates in thy-
lakoid membranes upon CO2 deprivation (10, 69). NDH-14 is a constitutive low-affinity CO2

uptake system. In Synechocystis, NDH-14 is still elusive at the protein level, but Wulfhorst et al.
(142) recently found the NDH-14-specific subunits NdhD4, NdhF4, and CupB in the T. elon-
gatus thylakoid membrane. Based on the presence of conserved ndhD3/ndhF3 and ndhD4/ndhF4
genes, many cyanobacterial CCMs appear to depend on functional NDH-13 and NDH-14 com-
plexes (110). However, some cyanobacterial species (such as Prochlorococcus) and microalgae (such
as Chlorophyceae), despite harboring efficient CCMs (56, 141), lack specific components of the
NDH-13 and NDH-14 complexes (110) or lack a functional NDH-1 complex. Therefore, de-
pending on the species, the functioning of the CCM relies on different mechanisms.

C4 plants have evolved a CCM that improves CO2 fixation by limiting the oxygenase activity
of Rubisco but requires more ATP to fix one molecule of CO2 than C3 photosynthesis does. The
NDH-1 complex accumulates in high amounts in bundle sheath cells of NADP-malic enzyme
(NADP-ME)–type C4 species and in mesophyll cells of NAD-ME-type C4 species, where there
is a strong need for ATP, and it has been assumed that NDH-1-mediated CEF supplies the extra
ATP needed for C4 photosynthesis (129).

4.5. The Role of NDH in Acclimation to the Environment

Although mutants lacking the NDH-1 complex have no phenotype under normal growth condi-
tions, growth defects have been reported in response to different stress conditions, including high
light (33), water deficiency (57), and low temperature (148). Such stress conditions are known to
induce a high reducing state in the stromal pool that would favor the activity of CEF (114). Similar
increases in CEF were observed in mutants affected in Calvin-Benson-cycle enzymes (72, 73), and
it has been suggested that H2O2 produced in response to metabolic disorders or stress conditions
may increase NDH-1-mediated CEF (20, 72, 114). Indeed, H2O2 mediates the induction of the
NDH-1 complex (20) as well as the phosphorylation of the NdhF subunit (71). More recently,
Strand et al. (126) showed that H2O2 directly and specifically activates the CEF pathway involving
NDH-1. Therefore, the NDH-1-mediated CEF pathway may be activated under highly reducing
conditions by the production of H2O2.

4.6. Hydrogen Photoproduction in Cyanobacteria and Microalgae

Some cyanobacterial and microalgal species are able to produce hydrogen in light thanks to a
tight coupling between the photosynthetic electron transport chain and a hydrogenase (2, 81).
The conversion of solar energy into molecular hydrogen by photosynthetic microorganisms,
using water as an electron donor, is an important biotechnological issue, but production rates of
wild-type strains need to be improved (34). NDH-1 and NDH-2 are associated with the process
of hydrogen photoproduction in cyanobacteria and microalgae, respectively (6, 23, 24).

Synechocystis harbors a reversible [NiFe] hydrogenase that functions mainly as an uptake hy-
drogenase. The wild-type strain produces very little hydrogen in light, whereas mutant strains
impaired in the NDH-1 complex show sustained hydrogen production (23). Gutekunst et al. (48)
recently reported that the Synechocystis [NiFe] hydrogenase uses Fd as an electron donor. In this
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context, the increased hydrogen production observed in the NDH mutant may be due to increased
electron flow to the hydrogenase in the absence of NDH-1, with both enzymes using reduced Fd
as an electron donor.

Microalgae such as Chlamydomonas spp. harbor an Fe-only hydrogenase using reduced Fd
as an electron donor. One of the major limitations of hydrogen production by photosynthetic
organisms is related to the high oxygen sensitivity of the Fe-only hydrogenase and to the fact
that PSII produces molecular oxygen in light. By allowing the introduction of electrons stored
as starch during oxygenic photosynthesis, the plastidial NDH-2 enables this limitation to be
overcome. Based on a study of microRNA lines expressing reduced levels of CrNda2, Jans et al.
(65) concluded that this enzyme is involved in the reduction of the PQ pool and in hydrogen
photoproduction. Baltz et al. (65) further confirmed the involvement of CrNda2 in hydrogen
production by overexpressing this enzyme and showing that CrNda2 supplies electrons to the
indirect hydrogen production pathway, thereby demonstrating that nonphotochemical reduction
of PQ is a limiting step in conditions where the stromal NAD(P)H pool is sufficiently reduced.
Therefore, despite their completely different bioenergetic contexts, NDH-1 and NDH-2 have
proven to be attractive targets for improving hydrogen production rates in cyanobacteria and
microalgae, respectively.

4.7. The Role of NDH-2 in Prenylquinone and Vitamin K1 Metabolism

A study of a mutant defective in AtNDC1, the unique Arabidopsis NDH-2 targeted to the chloro-
plast, showed that although this enzyme is able to reduce PQs, it is not involved in CEF or
chlororespiration (108). Indeed, AtNDC1 is located in chloroplast lipid droplets (or plastoglob-
ules), where it participates in prenylquinone metabolism and the α-tocopherol redox cycle (108).
AtNC1 would be involved in the regeneration of oxidized α-tocopherol produced in response to
high light by reducing α-tocopherol quinone to α-tocopherol quinol (109). A recent study showed
that AtNDC1 and its Synechocystis ortholog ndbB are actually bifunctional oxidoreductases that
are able to act on both prenyl naphtoquinones and prenyl benzoquinones and are involved in the
penultimate step of vitamin K1 (phylloquinone) synthesis (37).

5. NDH-1, NDH-2, AND THE EVOLUTION OF OXYGENIC
PHOTOSYNTHESIS

Both NDH-1 and NDH-2 are structurally related to the machinery of respiratory electron trans-
port. Even though NDH-1 and NADH dehydrogenases have common origins, they evolved
differently and exhibit different activities.

5.1. Origin and Evolution of the Photosynthetic NDH-1

Even though they both contain a conserved L-shaped skeleton, photosynthetic NDH-1 and
respiratory NADH dehydrogenase have different catalytic activities. How did these two enzy-
matic complexes diverge from their common origin? Analysis of sequence similarities between
NADH dehydrogenase and membrane-bound [NiFe] hydrogenase (group 4) (17) led to the
conclusion that these enzymes have a common ancestor (31, 43, 45) (Figure 3). The Ech
hydrogenase of Methanosarcina barkeri belongs to group 4 and consists of six subunits (EchA–F)
(76). EchA and EchB are membrane-embedded subunits that correspond to NdhF/NuoL and
NdhA/NuoH, respectively. EchC–F correspond to NdhK/NuoB, NdhJ/NuoC, NdhH/NuoD,
and NdhI/NuoI, respectively, which form the Q module in respiratory NADH dehydrogenase.
In Ech hydrogenase, EchF accepts electrons from Fd to reduce protons, with the electron
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Escherichia coli complex I and EchB in [NiFe] hydrogenase. The name of each subcomplex (sub) or module
(mod) is indicated in red. Ech consists of four subunits that form the Q module along with two membrane
subunits. The Q module mediates Fd-dependent quinone reduction. Triplication of F protein completed the
M (membrane) subcomplex (P module plus A protein) as well as insertion of the C, E, and G proteins. In the
evolution of respiratory NDH-1, the complex was equipped with the N module involved in NADH
oxidation. In cyanobacteria, efficient Fd binding to the complex required subcomplex ED (electron donor),
and NDH-1 was diversified into NDH-1L and NDH-1MS. Chloroplast NDH originated from NDH-1L.
In Marchantia polymorpha, the complex is further equipped with subcomplex B. In Arabidopsis, subcomplex L
(lumen) was completed, and NDH-1 interacts with PSI via linkers (Lhca5 and Lhca6) to form the
supercomplex. Abbreviations: Fd, ferredoxin; PSI, photosystem I.
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transport coupled with proton translocation through EchA. Because NdhI is homologous to
EchF, NdhI potentially accepts electrons from Fd in photosynthetic NDH-1. However, the N
module of respiratory NADH dehydrogenase is related to group 3 bidirectional cytoplasmic
[NiFe] hydrogenases (31). In E. coli, formate hydrogenlyase core subunits forming the L-shaped
skeleton interact with FdhF, which oxidizes formate (31). FdhF is homologous to NuoG, a
subunit of the N module. The N module is further equipped with NuoE and NuoF to oxidize
NADH. By contrast, photosynthetic NDH-1 retained the original electron input module, which
accepts electrons from Fd. It seems likely that all of the complex I–related enzymes originated
from a common ancestor with proton-transporting hydrogen:Fd oxidoreductase activity, which
is most similar to group 4 membrane-bound [NiFe] hydrogenase, consisting of six subunits (43).

During the evolution of complex I–related enzymes, the membrane arm acquired more
subunits, possibly via triplication of EchA/NdhF/NuoL, which resulted in the generation
of NdhB/NuoN and NdhD/NuoM (31, 43). Additionally, NdhC/NuoA, NdhE/NuoK, and
NdhG/NuoJ form another route of protons in the P module. NdhB, NdhD, and NdhF con-
sist of 14 transmembrane helices and are homologous to each other and to the MrpA and MrpD
subunits of the multiple resistant to pH (Mrp) Na+/H+ antiporter (79). NuoL is more closely
related to MrpA, whereas NuoM and NuoN are more closely related to MrpD (78). Moparthi
et al. (85) suggested that MrpA and MrpD have different functions in the Na+/H+ antiporter.
Coupled with the movement of two electrons from the electron donor to quinone, four protons
are pumped across the membrane. Whether this also applies to photosynthetic NDH-1 will need
to be experimentally tested in the future.

5.2. Coevolution of NDH-1 and NDH-2 in the Green Lineage

In cyanobacteria, the NDH-1 complex is involved in numerous functions, including respiration,
carbon concentration, and CEF around PSI, whereas the NDH-2 complex makes a limited con-
tribution to respiration and may instead be involved in regulatory functions. As a result of the
endosymbiotic event at the origin of chloroplasts, photosynthetic cells contain two respiratory
electron transport chains, one mitochondrial and one chloroplastic. This functional redundancy
may have resulted in a selection pressure that favored the specialization of plastid enzymatic
complexes in the photosynthetic function. Despite this specialization, plastidial ndh genes, which
represent approximately one-tenth of the 120 plastid-encoded genes, are highly conserved across
all vascular plant divisions, indicating strong selection pressure (91).

However, plastidial ndh genes have been lost independently several times during the evolution
of photosynthetic organisms. In parasitic organisms, ndh genes are the first to be lost during the
transition from autotrophy to heterotrophy (125). Among microalgae, species from the red and
green lineages, including Chlorophyceae, Ulvophyceae, and Trebouxiophyceae, have lost ndh
genes, whereas they are present in early divergent Prasinophyceae and Nephroselmidophyceae
(135). In angiosperms, the loss of ndh genes is a rare event that occurred in a clade of Geraniaceae
(16) and in Najas species associated with the recolonization of aquatic environments (107). In
gymnosperms, the loss of ndh genes is restricted to Gnetales and Pinaceae (18).

The moss Physcomitrella patens harbors a functional NDH-1 complex (3) and several plastid-
targeted NDH-2s, including the cyanobacterial type and two from the NDB group (PpNDB1 and
PpNDB2) that are phylogenetically close to CrNda2 (143). The plastid targeting of Physcomitrella
and Chlamydomonas NDB proteins is due to the existence of an N-terminal extension that has
been lost in vascular plants, likely owing to some functional redundancy between NDH-2 and the
plastidial NDH-1 (143). As a result of this evolutionary process, Arabidopsis targets only one of
its seven NDH-2s to chloroplasts, the cyanobacterial-type AtNDC (143). However, the function
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of AtNDC is not redundant with NDH-1, as this plastoglobule-associated enzyme is involved in
prenylquinone and vitamin K1 metabolism (37, 108), which may explain why NDC is the only
plastidial NDH-2 found in all photosynthetic organisms.

Therefore, although the NDH-1 complex is extremely well conserved in most land plants and
some algae, it disappeared independently several times over the course of evolution. It will be
of interest to determine whether the disappearance of the plastidial NDH-1 in some species is
associated with the plastidial targeting of NDH-2s that may have functionally replaced NDH-1.

6. CONCLUDING REMARKS

The chloroplasts of both photosynthetic eukaryotes and cyanobacteria contain an NDH-1 complex
that functions in close relationship with photosynthesis. Although our understanding of NDH-1
composition, biogenesis, and functioning has greatly improved over the last decade, revealing a
high degree of complexity, its physiological function remains obscure. This may be due partly
to its redundancy with other pathways (PGR5/PGRL1, NDH-2, flavodiiron proteins, etc.) and
partly to the fact that, depending on the cellular context, NDH-1 and NDH-2 have developed
specialized functions. Future work should clarify the regulatory roles of NDH-1 and NDH-2 in
relation to the acclimation of plant photosynthesis to specific environments.

SUMMARY POINTS

1. Recent studies combining genetic and biochemical approaches have demonstrated a high
degree of complexity of NDH-1s, which harbor at least 18 subunits in cyanobacteria and
30 in chloroplasts.

2. Cyanobacterial NDH-1s show a high degree of diversity: Four complexes (NDH-11−4)
differing in the nature of their NdhD and NdhF subunits are specialized in differ-
ent metabolic functions, including respiration (NDH-11,2), cyclic electron flow (CEF)
(NDH-11−4), and CO2-concentrating mechanisms (NDH-13,4).

3. The chloroplast NDH-1 complex forms a supercomplex with photosystem I and partic-
ipates in one pathway of CEF; the other pathway involves PGR5/PGRL1. In organisms
such as microalgae, which lack NDH-1, a plastidial NDH-2 is involved in CEF. These
two pathways generate a component of the proton motive force that is used to produce
extra ATP for CO2 fixation or to trigger regulatory mechanisms of linear electron flow,
such as nonphotochemical quenching or photosynthetic control.

4. Although NDH-1s were initially thought to use NAD(P)H as an electron donor, recent
studies have shown that both chloroplast and cyanobacterial NDH-1s use reduced ferre-
doxin and should be considered ferredoxin-plastoquinone reductases rather than genuine
NADH dehydrogenases.

5. NDH-1 and NDH-2 are important biotechnological targets for optimizing the hydrogen
production abilities of cyanobacteria and microalgae, respectively.

6. Some plant and microalgal species have independently lost plastidial ndh genes and a
functional NDH-1 during evolution, thus showing that NDH-1 can be dispensable.

7. The existence of conserved subunits and structural features (L shape) indicates that
respiratory NADH dehydrogenase and plastidial NDH-1 most likely originated from a
common ancestor, the [NiFe] hydrogenase Ech.

72 Peltier · Aro · Shikanai



PP67CH03-Peltier ARI 14 March 2016 10:32

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

G.P.’s group has been supported by the French Agence Nationale pour la Recherche ALGO-
H2 and A∗MIDEX projects (number ANR-11-IDEX-0001-02) and by the HélioBiotec platform
(funded by the European Regional Development Fund, the Région Provence Alpes Côte d’Azur,
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