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Abstract

The basic unit of chromatin, the nucleosome, is an octamer of four core
histone proteins (H2A, H2B, H3, and H4) and serves as a fundamental reg-
ulatory unit in all DNA-templated processes. The majority of nucleosome
assembly occurs during DNA replication when these core histones are pro-
duced en masse to accommodate the nascent genome. In addition, there
are a number of nonallelic sequence variants of H2A and H3 in particu-
lar, known as histone variants, that can be incorporated into nucleosomes in
a targeted and replication-independent manner. By virtue of their sequence
divergence from the replication-coupled histones, these histone variants can
impart unique properties onto the nucleosomes they occupy and thereby in-
fluence transcription and epigenetic states, DNA repair, chromosome seg-
regation, and other nuclear processes in ways that profoundly affect plant
biology. In this review, we discuss the evolutionary origins of these variants
in plants, their known roles in chromatin, and their impacts on plant devel-
opment and stress responses.We focus on the individual and combined roles
of histone variants in transcriptional regulation within euchromatic and het-
erochromatic genome regions. Finally, we highlight gaps in our understand-
ing of plant variants at the molecular, cellular, and organismal levels, and we
propose new directions for study in the field of plant histone variants.
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Posttranslational
modification:
covalent modification
of a protein following
synthesis including,
but not limited to,
methylation,
phosphorylation,
acetylation,
ubiquitination, or
proteolytic cleavage
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1. INTRODUCTION

Throughout eons of evolution, the nucleosome has remained a defining characteristic of eukary-
otes. As the fundamental unit of chromatin, the nucleosome acts as a barrier betweenDNA and in-
teracting proteins, making it an integral regulatory component in virtually every DNA-templated
process.The nucleosome consists of∼147 bp of DNAwrapped around a histone octamer contain-
ing a core (H3-H4)2 tetramer flanked by two H2A-H2B dimers. Histone–histone and histone–
DNA interactions contribute to nucleosome stability, while the tails of each histone provide a
substrate for posttranslational modifications and protein binding. During replication, DNA con-
tent doubles and so does the demand for nucleosomes. To accommodate this demand, canonical
histone genes evolved into often intronless multigene families whose expression is tightly linked to
the cell cycle with the highest expression during S phase. By contrast, histone variants have introns
and often show replication-independent expression and deposition. The naming conventions for
histone variants generally consist of a prefix indicating the histone protein family (e.g., H2A) to
which they belong followed by a period and a number or letter indicating a specific variant type
(e.g., H2A.Z) (127).

Some histone variants, such as H2A.Z, are conserved throughout eukaryotes, while others are
lineage specific, such as the flowering-plant-specific H2A.W variant. By changing nucleosome
composition, histone variants can change the internal stability of a nucleosome, DNA–histone
interactions, internucleosomal interactions, and the accessibility to chromatin-binding proteins, as
well as potential posttranslationalmodifications.All of these changes alter the chromatin landscape
and influence key nuclear processes. Therefore, histone variants represent a wealth of currently
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Transposable
element (TE):
DNA sequences with
potential to change
their position within a
genome; often silenced
by heterochromatin

untapped information that will contribute to answering several of the outstanding questions of
eukaryotic epigenetics.

In this review, we assess the current understanding of plant variant histones with a focus on
the roles they play in transcriptional control. The eukaryotic genome can be partitioned into
transcriptionally permissive euchromatic and transcriptionally repressive heterochromatic regions
of both facultative and constitutive types. Histone variants H3.3, H2A.Z, and H2A.X are found
in euchromatic regions. Recent reviews of H3.3, H2A.Z, and H2A.X can be found in Borg et al.
(9) and Lei & Berger (68). Here, we discuss how H3.3 is implicated in promoting chromatin
accessibility in ways that are potentially unique to plants. H2A.Z has a more complex relationship
with gene expression, and we discuss evidence that implicates the variant as both a transcriptional
activator and repressor. While H2A.X is known primarily for its role in DNA damage response,
we focus on recent evidence pointing toward a role for H2A.X in transcriptional control. Other
histone variants contribute to heterochromatin function, and we highlight H2A.W andH1,which
have also been recently reviewed in Lei & Berger (68), Kotliński et al. (62), and Probst et al.
(105). H2A.W serves as the heterochromatic counterpart to H2A.X with respect to the DNA
damage response, and its structure is thought to promote chromatin condensation. Finally, we
call attention to the oft-overlooked linker histone H1 and analyze how chromatin structure is
dependent on H1 in both heterochromatin and euchromatin (see Figure 1).

2. EUCHROMATIN-ASSOCIATED HISTONE VARIANTS

2.1. H3.3

In plants, histone H3 proteins are categorized into four groups: canonical histone H3.1, H3.3
variants, centromeric H3 variants, and H3-like histones. Centromeric H3 defines the centromere
and is essential for kinetochore assembly and proper cell division, while the function of H3-like
variants is largely unknown (149). Plant H3.3 contains many features typical of histone variants
including introns, replication-independent deposition into chromatin, and expression in termi-
nally differentiated tissue (50, 97, 124). Despite these differences, H3.3 differs from H3.1 at only
four amino acids (writtenH3.1→H3.3): A31T,F41Y, S87H, and A90L (Figure 1b).TheArabidop-
sis genome possesses three H3.3 genes encoding identical proteins (127) (Table 1). Evolutionary
analysis of H3 proteins shows that H3.3 evolved independently in plants and animals (136, 137).
Despite their independent origins,H3.3 differs fromH3.1 at three of the same amino acids in both
plants and animals, with H3.1 in flowering plants having an additional amino acid substitution at
residue 41 (136). This evidence of convergent evolution strongly points toward the importance of
H3.3 to the function of the eukaryotic genome.

Few studies have investigated exactly how H3.3 is deposited into plant chromatin. In mam-
mals, H3.3 variants are incorporated into genic regions by the Histone transcriptional regula-
tor A (HIRA) complex and in nongenic regions such as pericentromeric repeats and telomeres
by Alpha thalassemia-mental retardation X-linked syndrome (ATRX)/Death-domain-associated
protein (DAXX) (69, 109) (Table 1). Arabidopsis atrx mutants do indeed have altered global H3.3
levels (34, 94). While atrx mutants are viable, hira atrx double mutants result in partial lethality
and show strong developmental defects in the surviving plants, indicating potential cooperation
between ATRX and HIRA (34). Interestingly, atrx mutants display loss of H3.3 in genic regions,
while H3.3 enrichment at transposable elements (TEs) and pericentromeric regions is unchanged
(34). This is counter to observations in mammals where ATRX deposits H3.3 at nongenic re-
gions, suggesting a functional divergence of ATRX-dependent H3.3 localization between plants
and mammals (34).
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Figure 1

The nature of histone variants and their distribution in chromatin. (a) Schematic diagram of a chromosome, showing the distribution of
major chromatin types and the histone variants associated with each. (b) Diagrams comparing histone variants and their canonical
counterparts. Regions of sequence differences or additions between variants and canonical types are shown as boxes. H3.1 and H3.3
differ by only four amino acid substitutions: two in the N-terminal tail and two in the histone-fold domain. H2A variants are
distinguished mainly by sequence variation in the L1 loop and docking domain, while H2A.X and H2A.W have variant-specific
C-terminal extensions. H1 subtypes vary in the occurrence of DNA-binding domains and their overall length. (c) Diagram showing the
distribution of H2A.W on silent transposable elements and association with H1 and H3K9me2. Vertical axes represent enrichment
relative to the genome average for each mark. Grey boxes represent genes or transposable elements with black arrows indicating the
transcription start site. (d) Two distinct, and perhaps interconvertible, distribution patterns of H2A.Z on silent genes in facultative
heterochromatin (left) and active euchromatic genes (right). Silent genes show ubiquitinated H2A.Z nucleosomes across the gene body
and are associated with H3K27me3 and H1, while active genes show acetylated H2A.Z in the +1 nucleosome and H3.3 in the gene
body.

2.2. H3.3 Localization and Relationship with Gene Expression

While the H3.3 genomic distribution pattern is different from H3.1 in both plants and animals,
their respective distribution patterns are highly similar across species (124). In Arabidopsis, im-
munofluorescence and chromatin immunoprecipitation sequencing (ChIP-seq) experiments show
that H3.1 is generally enriched at TEs, pericentromeric heterochromatin, and heterochromatin
domains in the arms, while H3.3 is associated with euchromatic and nucleosome-depleted regions
(119, 120, 124, 141). Recent evidence indicates that this distinction in H3.1 and H3.3 distribution
is caused in part by sequence variation at amino acid 41: phenylalanine (Phe) in H3.1 and tyrosine
(Tyr) in H3.3. Alignment analysis of monocot, dicot, and ancient plant histone H3 reveals that the
Phe41 residue first appeared in fern H3.1 and became established in land plants (75). Lu et al. (75)
showed that while Tyr41 is not important for the genomic distribution of H3.3, a Phe41Tyr point
mutation in H3.1 causes the protein to lose its heterochromatin-specific localization and spread
into active regions. This is especially surprising considering that animal H3.1 and H3.3 both have
Tyr at position 41, and are still able to maintain distinct localization patterns. Tyr differs from Phe
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Polycomb pathway:
pathway of epigenetic
gene silencing, which
can lead to the
temporary or
permanent repression
of transcription

in its ability to be phosphorylated. In human cells, H3 is known to be phosphorylated at Tyr41,
and this is thought to help prevent heterochromatic proteins from binding active regions (27).
Therefore, one hypothesis drawn from these results is that Phe41 evolved to differentiate H3.1
from H3.3 in plants where phosphorylation at Tyr41 has not yet been reported. Alternatively,
these results could indicate that H3.1 Phe41 evolved to achieve an additional degree of chromatin
targeting unique to vascular plants.

Highly expressed genes have enrichment of H3.3 over the transcribed region, or gene body,
with a bias toward the 3′ end (120, 124, 141). However, there is no correlation between H3.3
occupancy and transcriptional changes in h3.3 knockdown (h3.3kd) plants, and H3.3 appears to
be dispensable for general transcription. This is particularly surprising considering that complete
loss of H3.3 is lethal (142). However, a reduction in H3.3 in some stress-responsive genes has
been associated with reduced transcript levels in h3.3kdmutants. Thus,H3.3 likely plays a specific
role in the activation of groups of genes that are involved in environmental responses, while not
impacting transcription globally (142). Also, a recent study demonstrated that H3.3 inhibits flow-
ering by increasing H3K4me3 and H3K36me3 levels at the FLOWERING LOCUS C (FLC) gene
(152). The authors found that an interaction between FRIGIDA (FRI) and the HIRA chaperones
results in the deposition of H3.3 at the 3′ end of FLC. Consequently, increased H3.3 at the 3′ end
of FLC aids in the formation of a gene loop, increasing the interaction between the 5′ and 3′ ends,
thereby promoting transcriptional activation (152).

While H3.1 overlaps with several repressive chromatin modifications, including DNA meth-
ylation, H3K9me2, and H3K27me1/H3K27me3, H3.3 overlaps with several active chromatin
marks such as H3K4me3, H3K36me3, H3K9me3, H2B ubiquitination, and RNA polymerase
II (Pol II) occupancy (124, 141). Despite these correlations, genome-wide patterns of H3K4me3
and H3K36me3 are relatively unchanged between h3.3kdmutants and wild-type Arabidopsis (142).
However, H3.3 was shown to promote H3K4me3 at a subset of genes with shorter length (<1 kb)
(152). Interestingly, loss of H3.3, specifically over gene bodies, is associated with a decrease in
DNA methylation and an increase in H1 occupancy (142) (Figure 2a). Additionally, chromatin
accessibility assays showed that H3.3-containing nucleosomes are more sensitive to DNase I ac-
tivity (120). Since H1 has been shown to prevent binding of DNA methyltransferases in pericen-
tromeric heterochromatin,H3.3 may serve as a foil to H1 in euchromatic regions, with gene body
H3.3 increasing chromatin accessibility to DNA methyltransferases by preventing H1 deposition
(142, 150). Crystal structures of H3 methyltransferases Arabidopsis trithorax-related protein 5 and
Arabidopsis trithorax-related protein 6 reveal their ability to methylate lysine 27 of H3.1 but not
H3.3. Therefore, H3.3 could also attenuate the Polycomb pathway of gene repression, of which
H3K27 methylation is a key element (55). This difference also suggests that H3.3 not only can
stimulate relaxed chromatin but also can perpetuate this chromatin state across cell divisions by
preventing the establishment of heterochromatic marks.

H3.1 replacement by H3.3 is also a marker for cell fate transitions. Cells undergoing their last
cell cycle before differentiation have a lower H3.1 to H3.3 ratio and a higher rate of H3.1 eviction
compared to dividing cells. This ratio is thought to change in the cells exiting the root meristem
because H3.1 replacement with H3.3 occurs during G2 phase, a phase that is longer in this last
cell cycle than in earlier cycles, allowing more time for H3.1 eviction (99). This phenomenon is
found in several plant developmental processes, including the stomatal and hypocotyl cell lineages,
suggesting that H3.1 eviction is a general feature in cell proliferation and organogenesis (48, 99).

2.3. H2A.Z

H2A.Z can be traced to a single evolutionary origin, and its maintenance through nearly all
branches of Eukarya underscores its vital role in multicellular development (79). Since the
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Figure 2

Chromatin landscape changes in response to histone variant depletion. Vertical axes represent enrichment
relative to the genome average for each mark. Grey boxes represent genes or transposable elements with
black arrows indicating the transcription start site. (a) H3.3 loss at transcribed genes results in reduced DNA
methylation (DNAme) in the CG context, and increased H2A.Z and H1 in the downstream regions
previously occupied by H3.3. Active histone marks such as H3K4me3 and H4K36me3 are generally
unaffected. Given that H3.3 does not seem to be methylated at K27, genes targeted for Polycomb repression
may be subject to silencing when H3.1 nucleosomes become predominant in the absence of H3.3. (b) H2A.Z
loss from silent, inducible genes in SWI2/SNF2-related 1 (SWR1) mutants [actin-related protein 6 (arp6) and
photoperiod-independent early flowering 1 (pie1)] results in reduced H3K27me3 without affecting H1 levels.
These silent genes also lose H3K27me3 and generally become active upon H2A.Z loss. (c) In transcribed
genes, H2A.Z loss in SWR1 mutants results in a reduction of H3K4me3, particularly around the +1
nucleosome, without changes in DNAme. H2A.Z loss from these genes generally corresponds to decreased
DNA polymerase II (Pol II) occupancy and transcription as well. (d) Loss of H2A.W at transposable
elements (TEs) results in reduced DNA methylation and increased H1 occupancy, while the repressive mark
H3K9me2 is generally unaffected. Interestingly, one study showed that loss of H2A.W in h2a.w mutants did
not result in widespread expression of silent TEs (10), while another study showed that H2A.W loss
resulting from mutation of DECREASE IN DNA METHYLATION 1 (DDM1) did result in increased TE
expression (96). In these ddm1 mutants, there was also a reduction in H3K9me2 without changes in H1
enrichment. These contrasting results suggest that H2A.W and the DDM1 remodeler have overlapping and
distinct functions in heterochromatin.
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Docking domain:
located in the C
terminus of the
histone fold domain of
histone H2A; involved
in nucleosome
assembly via an
interaction with the
N-terminal α-helices
of histone H3

L1 loop: one of two
short loops connecting
three α-helices (α1, α2,
and α3) of the H2A
histone fold domain
responsible for H2A–
H2A interactions
within the nucleosome

Acidic patch: a run of
protein sequence
containing an
enrichment of acidic
amino acid residues

TSS: transcription
start site

discovery of H2A.Z, it has been linked with numerous biological processes, including plant im-
munity, germline development, and stress response; cellular processes, including genome stability
and DNA repair; and both transcriptional activation and repression (56, 81–83, 106, 111, 145)
(Table 1). H2A.Z comprises, on average, 15% of total H2A cellular content, and loss of H2A.Z
is lethal in most multicellular and some unicellular eukaryotes, including Tetrahymena,Drosophila,
mice, and humans (17, 37, 56, 73, 133). This surprisingly is not the case for plants, where loss of
H2A.Z in Arabidopsis is not lethal but does lead to a severe and pleiotropic phenotype including
stunted growth, early flowering, and reduced fertility (16, 20, 81, 93).This tolerance of H2A.Z loss
makes plants an exciting model to probe the mechanisms of this histone variant in transcriptional
regulation.

H2A.Z is deposited into the postreplicated nucleosome as an H2A.Z/H2B dimer by the
SWI2/SNF2-related 1 (SWR1) complex, a member of the INO80 subfamily of chromatin re-
modelers (61, 85, 134) (Table 1). At the level of primary structure, H2A.Z varies from H2A in
three prominent ways: the docking domain, the L1 loop, and the acidic patch (Figure 1b). The
implications of these differences with respect to chromatin binding and gene regulation have been
reviewed by Bönisch & Hake (8). Briefly, the extended acidic patch of H2A.Z is speculated to in-
crease the opportunity for interactions between adjacent nucleosomes as well as secondary protein
binding (31, 38, 102). Taken individually, the changes to the docking domain and the L1 loop ap-
pear to have opposing effects on nucleosome stability. The docking domain of H2A.Z exhibits less
hydrogen bonding withH3, suggesting nucleosome destabilization,while the four amino acid sub-
stitutions found in the L1 loop have been shown to increase histone octamer stability (1, 8, 126).
Additionally, amino acid substitutions in the H2A.Z C terminus reduce the binding of linker his-
tone H1 to the core nucleosome particle (154).

While all plants appear to have H2A.Z, they do differ in the number of H2A.Z paralogs, and in
some cases distinct splice variants exist within organisms (32, 60). TheArabidopsis genome encodes
three expressed H2A.Z proteins: HTA8,HTA9, and HTA11 (Table 1). Although mutant analysis
in plants indicates substantial redundancy between isoforms, they do exhibit distinct expression
levels and patterns (121). As subfunctionalization has been shown in some animals, future inves-
tigations will reveal any unique roles between paralogs in plants (35, 95). Interestingly, we found
that the expression pattern across tissue types of the various Arabidopsis H2A.Z paralogs is syn-
chronized with corresponding somatic H2B isoforms, with HTA11 and HTB2 having matched
expression profiles, as do HTA9 and HTB4. This suggests that H2A.Z isoforms have preferred
dimerization partners when deposited in the nucleosome (121).

2.4. H2A.Z Localization and Relationship with Gene Expression

There is a wealth of evidence that implicates H2A.Z as an essential player in transcriptional re-
sponses. However, understanding the exact mechanisms dictating H2A.Z-dependent transcrip-
tional regulation is complicated by the reported roles of H2A.Z as both a transcriptional activator
and a repressor. In this section, we discuss how analyses of h2a.z mutants, structural features, and
localization patterns support a role for H2A.Z as a transcriptional activator. H2A.Z’s role as a
repressor is discussed in Section 3.1.

In Arabidopsis, most genes contain a prominent H2A.Z peak at the +1 nucleosome beyond
the transcription start site (TSS). With respect to this enrichment pattern in plants, no gene
has been studied more than FLC. The most prominent and unifying phenotype of all H2A.Z
and SWR1 mutants is the accelerated transition from vegetative to reproductive growth. Expres-
sion analysis reveals that these mutants display decreased transcript levels of the floral repres-
sor FLC, which leads to early flowering (15, 16, 28, 29, 67, 81, 84, 96, 121). H2A.Z-containing
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nucleosomes at this locus follow the pattern expected for expressed genes with a characteristic
peak of enrichment directly downstream of the TSS (Figure 1d). ChIP analysis revealed that
SWR1 subunits Photoperiod-independent early flowering 1 (PIE1) and Actin-related protein 6
(ARP6) are required for deposition of H2A.Z at FLC as well as FLC paralogsMADSAFFECTING
FLOWERING 4 and MADS AFFECTING FLOWERING 5 (29). This finding, coupled with the
observation that loss of HTA9 and HTA11 also results in decreased expression of these genes,
indicates that H2A.Z itself is required for their proper activation (81).

Recently, several protein interaction assays from independent groups have provided new in-
sight into the composition of the plant SWR1 complex and H2A.Z interactors (78, 93, 104, 121).
Understanding how these new subunits influence SWR1 activity will help in the deconvolution
of the various and sometimes contradictory functions of H2A.Z in plant transcription. Of sev-
eral newfound subunits, the most studied in relation to H2A.Z deposition has been Methyl-CpG
binding domain 9 (MBD9).ChIP-seq analysis of H2A.Z enrichment inArabidopsis seedlings shows
that about 20% of H2A.Z-enriched sites become depleted in mbd9mutants (121). Comparison of
FLAG-tagged MBD9 enrichment with corresponding assay for transposase-accessible chromatin
with high-throughput sequencing (ATAC-seq) data indicates that MBD9 localizes primarily to ar-
eas of open chromatin and suggests thatMBD9 promotesH2A.Z deposition at the 5′ end of highly
active genes (104). Future experiments will be needed to determine exactly where and when during
plant development this MBD9-containing SWR1 complex is performing its function and whether
specific SWR1 subtypes may be related to the activating and repressive roles of H2A.Z.

H2A.Z enrichment at the +1 nucleosome of genes in most organisms leads many to speculate
that H2A.Z may help in the targeted recruitment of transcription initiation machinery. However,
the presence of a second H2A.Z peak at the −1 nucleosome in some organisms suggests that
H2A.Z may serve as a mere mark of transcription as opposed to a targeting factor. Bagchi et al.
(4) found that while the level of H2A.Z at the +1 nucleosome did not correlate with gene activ-
ity in yeast, it did correlate with upstream antisense transcript levels, indicating that the bimodal
profile of H2A.Z at the +1 and −1 nucleosomes found in yeast is the reflection of a transcription
event rather than an initiator of that event. This observation is corroborated by H2A.Z enrich-
ment patterns in other organisms. For instance, in humans, where bidirectional transcription is
common,H2A.Z peaks are found on both sides of the nucleosome-depleted region (131), whereas
in Drosophila, where bidirectional transcription is not frequently observed, there is a pronounced
lack of H2A.Z enrichment at the−1 nucleosome (23).Colino-Sanguino et al. (21) reviewed recent
work in mammals highlighting the contradictory results of experiments aimed at uncovering the
relationship between RNA polymerase pausing at the TSS and H2A.Z. In Arabidopsis, global run-
on sequencing (GRO-seq) data indicate a lack of bidirectional transcription, and we again observe
a lack of H2A.Z enrichment at the −1 nucleosome (47). While H2A.Z has been implicated in
gene activation across organisms, the idea that promoter H2A.Z enrichment reflects the direction
of transcription implies that H2A.Z incorporation perhaps does not facilitate targeted initiation
but may help reinforce existing transcription patterns.

While H2A.Z is clearly required for high level transcription of many genes, the presence of
an H2A.Z-containing nucleosome alone is likely not sufficient for transcriptional activation. For
instance, recent evidence points toward acetylation of H2A.Z as a modulator of flowering time.
Crevillén et al. (25) revealed for the first time in plants the occurrence of H2A.Z acetylation and
showed that it is required for proper FLC expression. While this study marks an exciting insight
into H2A.Z-mediated activation, future studies are needed to determine how universal this
mechanism of activation is across the plant genome. NAP1-related protein 1 (NRP1) and NRP2
were recently identified as inhibitors of H2A.Z deposition (135). Unexpectedly, nap1 nap2 double
mutants displayed an increase in H2A.Z enrichment at the TSS of FLC but a decrease in FLC
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expression. Wang et al. (135) use an observed increase in nucleosome density around the TSS to
explain this reduced expression and thus provide further evidence that TSS H2A.Z enrichment is
likely not sufficient for activation. Additionally, arp6mutants also display alterations in H3K4me3
enrichment at FLC, but it is unclear whether this observation is a direct consequence of H2A.Z
loss in the arp6 mutant (84) (Figure 2c). Based on current evidence, whether H2A.Z’s role in
active transcription is one of initiation, maintenance, or both is still unclear. Indeed, various
seemingly contradictory results have been reported regarding the role of H2A.Z nucleosomes as
a barrier to Pol II elongation and in modulating chromatin accessibility (19, 88, 90, 139).

2.5. H2A.X

H2A.X, the most similar histone variant to H2A, differs from canonical H2A only via a C-terminal
SQL(E/D) motif in animals and a SQEF motif in plants (Figure 1b). H2A.X is present in most
eukaryotes; however, unlike H2A.Z, it has evolved multiple times (60, 128). Arabidopsis and rice
each encode two constitutively expressed and functionally redundant H2A.X genes (66) (Table 1).
The H2A.X variant is best known for its role in coordinating DNA damage responses in both
animals and plants. The presence of phosphorylated H2A.X is considered a hallmark of DNA
damage repair (DDR) (108). However, a number of studies suggest that phosphorylated H2A.X
is also required for gene activation (30, 122, 143).

The mechanisms underlying the genome-wide distribution of H2A.X remain largely unknown
in both plants and animals (103). In humans, the Facilitates chromatin transcription (FACT)
complex plays an important role in both the removal and incorporation of H2A.X (33, 46)
(Table 1). Studies in the mammalian system showed that H2A.X is incorporated de novo into
damaged chromatin by FACT (46, 103). However the involvement of the FACT chaperone in
plant H2A.X deposition has not been investigated, and we do not know if de novo deposition of
H2A.X in response to DNA damage occurs in plants. Since the FACT chaperone is conserved
among eukaryotes and domain organization of both FACT proteins, Structure specific recogni-
tion protein 1 (SSRP1) and SPT16, is similar in plants and mammals, FACT may also play a role
in plant H2A.X deposition (44).

2.6. H2A.X Localization and Relationship with Gene Expression

Cytologically,ArabidopsisH2A.X is excluded from chromocenters and primarily enriched over eu-
chromatin (74).Chromatin immunoprecipitation experiments reinforce this observation, showing
an enrichment of H2A.X over the bodies of expressed genes (147). The relatively ubiquitous dis-
tribution of H2A.X in euchromatin is consistent with its role as a platform for DDR, as sites of
DNA damage preloaded with H2A.X allow for a rapid response.

Although H2A.X is best known as a platform for DDR in plants and other eukaryotes, for
the first time in plants, phosphorylated H2A.X (yH2A.X) was recently found to be required for
transcriptional activation. Xiao et al. (143) found that expression of the ABA-INSESNSITIVE 4
(ABI4) gene is repressed by Oxidative Stress 3 (OXS3) family proteins during seed germination
and showed that this repression is due to an interaction between OXS3s and H2A.X that prevents
H2A.X phosphorylation and subsequent ABI4 activation.Given yH2A.X’s well-characterized role
in DNA damage response, it will be interesting to investigate whether this yH2A.X-dependent
activation involves other elements of DDR. Future experiments measuring the occurrence of
double-stranded breaks (DSBs) and the localization of DDR machinery around the ABI4 pro-
moter during activation will help determine how yH2A.X-dependent activation relates to our
previous understanding of yH2A.X function (143).
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Although rare, some evidence exists of a noncanonical role for H2A.X in gene regulation from
other eukaryotes as well. In the mammalian fibroblast cell, the High Mobility Group AT-Hook 2
(HMGA2) gene also depends on yH2A.X for activation (30). Dobersch et al. (30) found that
yH2A.X precedes DNA demethylation and transcription initiation. These results indicate that
chromatin conformation changes during activation involve DNA breakage.However, not all stud-
ies support a role for H2A.X in gene activation. Recently, Eleuteri et al. (36) found that H2A.X
curbs embryonic stem cell proliferation by repressing ribosomal RNA (rRNA) transcripts. They
found that H2A.X, independent of H2A.X phosphorylation, at recombinant DNA (rDNA) pro-
moters is responsible for the targeted recruitment of the nucleolar remodeling complex, which is
known to establish heterochromatic features at rDNA (36).

While there is still no unifying mechanism for H2A.X/yH2A.X in transcription, evidence does
suggest that H2A.X involvement in transcription is highly dependent upon cell type. Interestingly,
H2A.X is maximally enriched in highly proliferative cell types compared to differentiated cell
types, and the enrichment patterns tend to favor transcribed genes (114, 117). Seo et al. (114) have
shown that endogenous H2A.X occupancy is positively correlated with Pol II density at a given
TSS in the proliferative Jurkat cancer cell line, while they are inversely correlated in differentiated
CD4 cells. Thus, noncanonical functions of H2A.X may arise from unique enrichment patterns
present in unique cell types.

Given the apparent connection between DDR and H2A.X phosphorylation, there are sur-
prisingly few studies profiling the mark in plants. However, profiling in mammalian cells shows
yH2A.X spreads in cis over large domains surrounding a DSB (52). Interestingly, the boundaries
of yH2A.X domains often correspond to the native topological associated domains (TADs),
suggesting yH2A.X propagation is compartmentalized by the three-dimensional conformation of
chromatin in the nucleus (22). This will be a particularly interesting avenue to explore in plants,
considering that Arabidopsis has significantly fewer TAD boundaries than animal models or even
other plant species such as rice (71).

3. HETEROCHROMATIN-ASSOCIATED HISTONE VARIANTS

3.1. H2A.Z in Facultative Heterochromatin

Since H2A.Z incorporation at the TSS has been shown to be important for proper transcription
in many organisms, it is puzzling at first to realize that the level of H2A.Z at this site does not reli-
ably reflect expression level. Coupling H2A.Z ChIP-seq data with RNA sequencing in Arabidopsis
seedlings reveals that this TSS enrichment has a parabolic correlation with expression.That is, the
highest and lowest expressed genes have lower levels of TSS H2A.Z enrichment than those that
are moderately expressed (20, 148, 155). This correlation is also found to a lesser extent in rice,
where total genic H2A.Z is parabolically correlated with expression similar to promoter H2A.Z in
Arabidopsis (148). Looking at H2A.Z in the promoter region of genes offers a limited perspective.
Recent works discussed in this section analyzing genic H2A.Z beyond promoter enrichment help
to paint a more complete picture of H2A.Z as a transcriptional regulator.

Several recent studies in plants have revealed a role for H2A.Z in gene repression. While
initial experiments revealed some H2A.Z-dependent repression within specific genes or gene
families, no genome-wide relationship between H2A.Z and repression had been established (65,
123). However, in 2012, Coleman-Derr & Zilberman (20) found that H2A.Z enrichment beyond
the TSS and into the gene body is anticorrelated with transcriptional output and that these lowly
transcribed genes are enriched in pathways involving environmental or developmental responses.
Since then, several papers have been published validating a repressive role of H2A.Z in gene
transcription. Particularly, gene body H2A.Z was shown to play a repressive role in response
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to light, drought stress, salt stress, and heat stress in Arabidopsis, as well as phosphate deficiency
in rice and heat stress in Brachypodium distachyon (7, 24, 80, 91, 125, 148). A recent study in rice
showed that reductions in both H2A.Z and H3K4me3 correlated with increased expression under
phosphate starvation, while decreases in H3K4me3 alone did not (40). Additionally, loss of the
INO80 chromatin remodeling complex (responsible for H2A.Z eviction from chromatin) leads
to decreases in both the deposition of H3K4me3 and transcription elongation typically observed
at thermomorphogenesis genes during a high temperature induction (146). These results suggest
that a coordination between H3K4me3 and H2A.Z may be required for proper activation of
certain responsive genes.

Despite this recent focus onH2A.Z-mediated repression, no model has been proposed to suffi-
ciently account for the genome-wide association between H2A.Z and repression. One idea is that
gene body H2A.Z facilitates repression in a reversible manner, serving as a more dynamic alter-
native to DNA methylation (20). This notion is supported by findings that the SWR1 complex is
required for trimethylation of H3K27 at most H2A.Z-enriched sites, a key step in the Polycomb
pathway of gene silencing (12) (Figures 1d and 2b). However, several recent reports indicate that
H2A.Z may use Polycomb proteins to achieve silencing outside of the accepted Polycomb path-
way, raising several questions about the canonical pathway of Polycomb silencing.While SWR1 is
required for H3K27me3, the small number of overlapping upregulated genes between hta9 hta11
and Polycomb repressive complex 2 (PRC2) catalytic subunit curly leaf (clf ) mutants suggests that
H2A.Z-mediated repression is independent of PRC2 activity (43, 64). Even more evidence that
H2A.Z achieves repression via an unexplored Polycomb pathway comes from Cai et al. (11), who
found that H2A.Z enrichment is required for the repression of several anthocyanin biosynthesis
genes. Interestingly, while H2A.Z is required for the deposition of H3K27me3 at these genes,
H3K27me3 is not necessary for their repression (11). Recently, our group, as well as others, iden-
tified an interaction between the SWR1 complex and several Alfin1-like family proteins (AL5,
AL6, and AL7) (78, 104, 121). Little is known about this plant-specific family of proteins, but the
few studies of AL proteins in Arabidopsis implicate them in Polycomb-mediated silencing.Molitor
et al. (86) identified the same AL proteins found in SWR1 pulldown assays as interactors with
PRC1 (86). They went on to show that al6 al7 double mutants cause a delay in the chromatin
state switch from active H3K4me3 to repressive H3K27me3 in key seed developmental genes
(86). This led the authors to propose that ALs bind H3K4me3 via a plant homeodomain (PHD)
and recruit PRC1 to initiate Polycomb-mediated silencing. How exactly the ALs are targeted to
these genes destined for repression is still unclear, and given H2A.Z’s relatively newfound role in
the repression of responsive genes, it will be interesting to see how the interaction between SWR1
and ALs influences where silencing occurs.

Monoubiquitination of H2A.Z by the PRC1 catalytic subunit Arabidopsis B cell–specific
Moloney murine leukemia virus integration site 1 (AtBMI1) provides yet another connection be-
tween H2A.Z and Polycomb silencing, with 68% of genes upregulated in hta9 hta11 mutants
being enriched for both H2A.Z and H2A121ub in wild type (43). H2A.Z was also found as a
mark of inactive enhancers in plants, with its presence associated with lower expression of puta-
tive target genes and increased enrichment of H3K27me3, a finding that is in contrast to enhancer
H2A.Z in humans, where it instead colocalizes with activating marks H3K4me3 and H3K27ac
(26, 49).

3.2. H2A.W in Constitutive Heterochromatin

H2A.W variants are exclusive to the plant lineage and are defined by an extended C-terminal
tail containing an SPKK motif (60, 147) (Figure 1b). Since green algae and nonflowering land
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plants lack H2A.W variants, H2A.W is proposed to have evolved from early spermatophytes
(60). Liverworts, mosses, and lycophytes possess the novel H2A variant H2A.M as a potential
alternative to H2A.W, with commonalities in the C-terminal tail and L1 loop (60). In contrast to
other histone variants,H2A.Whas S phase expression inArabidopsis (149). Additionally, disruption
of Chromatin assembly factor 1 (CAF-1), which regulates chromatin assembly after replication,
results in reduced H2A.W levels, implying that its deposition is replication dependent (5)
(Table 1).

Phosphorylation dynamics of H2A.W variant HTA7 were found to play an essential role in the
effective response to DNA damage in heterochromatic regions. Therefore, one proposed func-
tion of H2A.W is to serve as a functional complement to H2A.X in heterochromatin, providing a
platform for phosphorylation in response to DNA damage (74). Monocot H2A.W contains mul-
tiple copies of the SPKKmotif, while eudicots have a single copy (60). This SPKKmotif is known
to promote chromatin condensation by binding to AT-rich sites on DNA generally found in the
satellite repeats of constitutive heterochromatin. The presence of this motif as well as in vitro
nucleosome assembly results indicates that H2A.W generally promotes chromatin condensation
(60, 147). However, recent studies highlighted below indicate that the role of H2A.W in hetero-
chromatin is perhaps more nuanced than previously expected.

3.3. H2A.W Localization and Relationship with Heterochromatin Accessibility

H2A.W is located primarily in constitutive heterochromatin, with correlation between the vari-
ant and H3K9me2, DNA methylation, and linker histone H1 (10, 74, 147) (Figure 1c). How-
ever, H2A.W deposition into heterochromatic regions does not depend on DNA methylation or
H3K9me2 (147). New H2A.W triple mutants, hta6 hta7 hta12, created by crossing a CRISPR-
generated null hta6 allele with hta7 and hta12 transfer DNA lines, reveal a potentially unique
role for H2A.W in maintaining a level of accessibility in constitutive heterochromatin (10). Using
ATAC and bisulfite sequencing analysis of h1, hta6 hta7 hta12, and h1 hta6 hta7 hta12 quadruple
mutants, Bourguet et al. (10) concluded that H2A.W actually antagonizes the binding of H1 to
linker DNA in constitutive heterochromatin (Figure 2d). They propose that the SPKK motif of
H2A.W competes with the two SPKK motifs found in H1 for binding on linker DNA. There-
fore, the SPKK motif of H2A.W, which was thought to promote chromatin condensation when
compared to other H2A variants, may actually function to prevent even further condensation by
H1.This allows regions occupied by H2A.W to maintain a heterochromatic state while still being
accessible to maintenance factors like DNA methyltransferases (10).

Of course, an analysis of H2A.W alone is incomplete without considering the chromatin re-
modelers that act on it. Recently, Osakabe et al. (98) identified Decrease in DNA methylation
(DDM1) as a depositor of H2A.W in Arabidopsis. In stark contrast with hta6 hta7 hta12, ddm1
mutants had significant derepression (40%) of pericentromeric TEs and no reported changes in
H1 enrichment (98) (Table 1). While H3K9me2 and DNA methylation were reduced in ddm1,
their effects on silencing TEs were found to be secondary to that of ddm1. The results of these
two studies (10, 98) raise several exciting questions: How does total H2A.W loss in hta6 hta7
hta12 have a lesser effect on TE silencing than DDM1 loss, and is DDM1 acting independently
of H2A.W to silence TEs in hta6 hta7 hta12 mutants? Genomic profiling analysis of DDM1 en-
richment in wild type and hta6 hta7 hta12 mutants is one of many future experiments that will
help answer these questions. Furthermore, the deconvolution of the mechanisms behind DDM1
and H2A.W function may help to inform human disease, where Lymphocyte-Specific Helicase
(LSH) and macroH2A appear to play a similar role in mammalian silencing (92).
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3.4. H1

The linker histone H1 binds both the nucleosome core particle and the linker DNA to facilitate
internucleosomal interactions and chromatin compaction. Interestingly, H1 and associated vari-
ants have a separate evolutionary origin from core histones, having evolved from bacterial proteins
rather than archaeal ones (59). H1 histones are also more divergent across species compared to
core histones (59). However, the general structure of a lysine-rich C-terminal tail, a flexible and
short N terminus, and a central globular domain are conserved across eukaryotes (154).

Due to the importance of H1 variants in chromatin dynamics, it is surprising to observe that
H1 depletions in Arabidopsis, yeast, worms, and fungi are viable while mutations of H1 variants in
mouse and Drosophila are lethal (3, 39, 57, 76, 101, 116, 118, 132). Plant H1 variants are classified
into two groups: main variants with ubiquitous and stable expression and minor variants, which
accumulate in response to stress (58, 62, 127). In contrast to mammals with 11 H1 variants, only
3 nonallelic H1 variants are found in Arabidopsis: 2 highly similar major variants H1.1 and H1.2
and the shorter stress-induced minor variant H1.3 (2, 58) (Table 1). The key structural differ-
ences between H1.3 and H1.1/H1.2 are a decreased positive charge in H1.3, a shorter C-terminal
domain, and a lack of (S/T)PXK DNA-binding motifs in both N- and C-terminal domains (113)
(Figure 1b). While H1.1 and H1.2 variants are expressed in all cell types, H1.3 is expressed con-
stitutively in guard cells with induced expression in other cell types during stress.

3.5. H1 Localization

Genome-wide analysis of H1.1 and H1.2 in Arabidopsis shows that linker histones are found in
both heterochromatic and euchromatic regions and generally associate with methylated DNA se-
quences, with the strongest enrichment over hypermethylated TEs and lowly expressed genes.
Genic H1 enrichment, however, is linked with methylation status rather than expression level,
with similarly expressed genes only being enriched for H1 if methylated (14). Gene body H1
enrichment is characterized by peaks at the 5′ and 3′ ends, just inside the nucleosome-depleted
regions. However, as genes increase in expression, total H1 occupancy falls as expected, but en-
richment takes on a new asymmetrical shape, with 5′ ends having lower H1 levels with increasing
enrichment toward the 3′ ends. This asymmetry is not reported inDrosophila or mammals, and fu-
ture investigations may uncover whether and how this pattern affects transcription in plants. The
localization pattern of H1.3 is similar to H1.1 and H1.2 variants. However, compared to H1.1
and H1.2, H1.3 association with chromatin is far more dynamic and is more frequently associ-
ated with active chromatin marks such as H3K4me3 (113). Additionally, increased levels of DNA
methylation, which are normally observed in response to stress, were significantly decreased in
h1.3mutants under stress conditions. These distinctions suggest that H1.3 may outcompete H1.1
and H1.2 under stress, allowing for increased accessibility to regulatory machinery like DNA
methyltransferases (113).

3.6. H1-Dependent Silencing in Euchromatin and Heterochromatin

Recent evidence indicates that plant H1 contributes to the structural organization of both
constitutive heterochromatin and euchromatin. Two independent studies using H1 triple mutants
(3h1) and double mutants both found chromocenter decondensation in Arabidopsis (14, 112).
Despite this observation, H1 double and triple mutants had minimal TE derepression. This
evidence is in conflict with the common view that chromatin compaction is required for efficient
TE silencing and suggests that loss of H1 contributes to heterochromatin structure without any
functional impact on silencing.
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H1 variants impact the pattern of heterochromatic DNA methylation in CG, CHH, and
CHG contexts (107, 113, 150). h1.1 and h1.2 mutants both show increased DNA methylation
in heterochromatic TEs, suggesting that H1 variants inhibit heterochromatin accessibility to
DNA methyltransferases. While further investigation is needed, considering the relationship
between DNA methylation and H1 in plants as well as other eukaryotes may help to explain the
surprisingly minimal impact H1 has on TE silencing. In mice, the situation is similar to plants,
where h1 mutants (mutation in both H1.1 and H1.2) show only partial TE upregulation (39).
However, in Drosophila, where cytosine methylation is absent, H1 loss does indeed induce general
TE expression (54, 77). This suggests that while H1 contributes to TE silencing, organisms
with DNA methylation are able to maintain this silencing despite H1-dependent changes in
chromatin structure (14). This theory is supported by a small number of TEs in Arabidopsis that
were found to be derepressed more in met1 h1 double mutants than in either single mutant
alone (14). Additionally, a recent study revealed that a family of TEs located in pericentromeric
heterochromatin (where evidence suggests that silencing is achieved independently of DNA
methylation) depend on H1 for their repression under heat stress. By contrast, a family of non-
pericentromeric TEs affected by heat relies on DNA methylase Chromomethylase 2 (CMT2)
together with H1 for stable repression (72). H1 overexpression in vegetative Arabidopsis cells also
predominantly leads to the repression of pericentromeric TEs (45). Similar to the effect of H1
on TE silencing, the loss of H1 was shown to intensify the activation of antisense transcripts only
at genes hypomethylated in met1 (14).

As in heterochromatin, euchromatic H1 loss causes profound changes in chromatin structure
with surprisingly little impact on gene expression. In wild-type plant cells, there is a strong inverse
correlation between nucleosome occupancy and transcription, with highly expressed genes having
the lowest occupancy (112). Low nucleosome occupancy is often interpreted as a requirement for
increasing the accessibility of a transcribed gene to transcriptional machinery and lowering the
energy barrier presented by nucleosomes to RNA polymerase procession. In H1-depleted cells
this correlation is almost completely lost, with all genes having similar nucleosome occupancy
regardless of expression level (112). Surprisingly, gene expression is relatively unchanged in these
cells, with only about 3% of genes being misregulated.This result indicates that H1-mediated nu-
cleosome occupancy is a consequence rather than a driver of steady-state transcription. However,
H1-depleted plants do have defects in several developmental and cellular transitions, including
seed dormancy control, flowering time control, and lateral root initiation (112). Collectively, these
observations indicate that the massive structural alterations found inH1mutants likely affect tight
control of developmental and cellular transitions. Therefore,H1-dependent chromatin structures
may have a more prominent role in transcriptional reprogramming rather than in fundamental ex-
pression. Supporting a role for H1 in transcriptional reprogramming is the observation that 3h1
mutant cells also have a dramatic reduction of nuclear H3K27me3, a hallmark of epigenetic si-
lencing memory across plants and animals (112).

4. CONCLUSION AND FUTURE DIRECTIONS

Most studies investigate histone variants by observing their genome-wide distributions before and
after a disruption or exposure. However, it is clear that future studies will need to be performed
at a higher temporal resolution to determine the exact order of events that take place during
variant-mediated gene regulation. For instance, there is mounting evidence for a role of H2A.Z
in regulating a majority of environmental responses, but no data currently exist to explain how
this repressive state comes about or how it may change during activation. Excitingly, Willige
et al. (140) used temporally resolved H2A.Z profiling to find that gene body H2A.Z loss actually
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precedes activation of select red and far-red-light-sensitive genes, indicating that H2A.Z loss is
not merely a consequence of their activation. Additionally, following the enrichment of H3.3
and H1 through precise time points during cell fate determinations will help explain why these
histones play fundamental roles in transcriptional reprogramming during development while
being dispensable for general transcription. Similarly, conclusions in variant research have often
been limited by assays profiling large cell populations. Emerging single-cell data indicate that
cells within these heterogeneous populations do not behave uniformly and meaningful changes
in variant deposition may be masked by homogenized tissue samples. As chromatin profiling
techniques advance and read depth requirements fall, single-cell-type profiling will uncover how
these variants behave within uniform cell types and even single cells.

4.1. Modification of Variants

It is reasonable to imagine that the apparent multifunctionality of H2A.Z is due in part to modi-
fications to the histone itself. For instance, we know that H2A.Z acetylation is sufficient for gene
activation at FLC. But what about acetylation at other genes with similar H2A.Z distribution pro-
files that appear inactive? Are those genes simply upstream of others in the process of activation,
or is there a compounding modification such as methylation that is stifling activation? Future
studies profiling these variant modifications genome-wide will be essential to closing the current
knowledge gap between H2A.Z-mediated activation and repression. Additionally, H3.3K4 plays
an essential role in mammalian embryonic stem cell differentiation, likely as a platform for meth-
ylation (41). This essential role for H3.3K4 in the stem cell could help explain the observation
that in plants H3.3 is essential for viability while being dispensable for general transcription. This
residue and others known to be modified in other species are conserved in plants, meaning there
is great potential for the future study of plant H3.3 modifications.

4.2. Role of Chromatin Remodelers in Regulation

Histone variant chaperones are often used as proxies for the study of histone variants. However,
these chaperones often have additional functions outside of histone deposition. For instance, swr1
mutants show a global depletion of H3K27me3, while this phenotype is much less severe in hta9
hta11 double mutants (12, 43). Similarly, ddm1 mutants have significant TE derepression, while
hta6 hta7 hta12 mutants do not. Future studies are needed to decouple the functions of these
chromatin remodelers from the variants themselves. Additionally, while conservation and mutant
analysis implicate other chromatin remodelers as variant chaperones in plants, H2A.X and H3.3
still do not have confirmed interactions with a chromatin remodeler or chaperone.

4.3. DNA Methylation and Histone Variants

Each histone variant discussed in this review has some relationship withDNAmethylation.H2A.Z
and DNA methylation are mutually exclusive in the Arabidopsis genome, suggesting that gene
body H2A.Z may serve to protect responsive genes from the more permanent effects of DNA
methylation (20, 155). However, while loss of H2A.Z does cause hypermethylation over select
regions, overall methylation patterns are unaffected (20, 93). On the contrary, global reductions
in DNA methylation in met1 mutants result in an increase in H2A.Z enrichment at those sites,
implying that DNA methylation excludes H2A.Z rather than the inverse (155).

DNA methylation and H3.3 are both enriched over the body of active Arabidopsis genes (18,
70, 151). Detailed characterization of Arabidopsis h3.3kd mutants revealed that the level of DNA
methylation decreases exclusively at regions where H3.3 and DNA methylation overlap in active
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gene bodies (142). In the same h3.3kd mutants, these active gene bodies are also invaded by
H1 and H2A.Z (Figure 2a). Therefore, reduced gene body methylation in h3.3kd might allow
ectopic recruitment of H2A.Z-containing nucleosomes to gene bodies. Given H2A.Z’s role in
transcriptional repression, H3.3 enrichment over genes may be required to maintain suitable
chromatin structure for transcription by antagonizing H1 invasion of active genes. Low H1
levels will therefore provide sufficient accessibility to DNA methyltransferases that methylate
gene bodies and prevent invasion by H2A.Z. Similarly, hta6 hta7 hta12 mutants also show an
increase in H1 enrichment and a decrease in DNA methylation in constitutive heterochromatin.
Therefore, H2A.W may serve as a functional complement to H3.3 with respect to maintaining
the balance between H1 and DNA methylation specifically in constitutive heterochromatin.

SUMMARY POINTS

1. H3.3 promotes DNA accessibility in part through an antagonistic relationship with H1.

2. Phe41 is an amino acid substitution unique to plant H3.1 and may impart functions on
H3.1 that are plant specific.

3. H3.3 cannot be methylated at K27, implying that H3.3 can interrupt the Polycomb
pathway of gene repression and potentially perpetuate the euchromatic chromatin state
across cell divisions.

4. Eukaryotes without bidirectional transcription have peak H2A.Z enrichment down-
stream of the transcription start site, while organisms with bidirectional transcrip-
tion have bimodal H2A.Z enrichment. H2A.Z is therefore a marker for transcriptional
direction.

5. For the first time in plants, phosphorylation of H2A.X was found to be required for
transcriptional activation of ABA-INSENSITIVE 4. It will be interesting to investigate
whether this phosphorylated-H2A.X-dependent activation involves other elements of
DNA damage response and repair.

6. Recent evidence shows that H2A.Z enrichment within the gene body contributes to
transcriptional repression likely through a noncanonical Polycomb pathway of gene
silencing.

7. H2A.W is a histone variant unique to plants that may promote accessibility of constitu-
tive heterochromatin by competing with H1 for binding to linker DNA.

8. Nucleosome occupancy depends on linker histone H1 and, together with DNA meth-
ylation, promotes the silencing of transposable elements.

9. H1-dependent chromatin structures may have a more prominent role in transcriptional
reprogramming than in steady-state expression.
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