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Abstract

Crops feed the world’s population and shape human civilization. The im-
provement of crop productivity has been ongoing for almost 10,000 years
and has evolved from an experience-based to a knowledge-driven practice
over the past three decades. Natural alleles and their reshuffling are long-
standing genetic changes that affect how crops respond to various environ-
mental conditions and agricultural practices. Decoding the genetic basis of
natural variation is central to understanding crop evolution and, in turn, im-
proving crop breeding. Here, we review current advances in the approaches
used to map the causal alleles of natural variation, provide refined insights
into the genetics and evolution of natural variation, and outline how this
knowledge promises to drive the development of sustainable agriculture un-
der the dome of emerging technologies.
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1. INTRODUCTION: THE GREAT VALUE OF NATURAL VARIATION

Feeding an ever-increasing global population poses a grand challenge in light of the declining
availability of cropland under changing climate conditions. One of the best solutions to this prob-
lem is to continuously and sustainably improve crop productivity. The genetic improvement of
crops involves selecting and combining different favorable traits, which are usually controlled by
many quantitative trait loci (QTLs). The accumulated knowledge of underlying genetic causes of
agronomically important traits increases the predictability of customized breeding and enables the
de novo design of new traits and crops. This knowledge-guided approach to crop improvement
is thus superior in both effectiveness and actionability compared to conventional breeding based
solely on phenotypic variation.

In the foreseeable future, mapping the QTLs and (ultimately) the causal quantitative trait nu-
cleotides (QTNs) underlying complex traits will be a cornerstone for breeding design. Natural
populations provide unparalleled experimental designs built up over thousands of years, as these
populations simultaneously contain segregating variants at millions of loci and hundreds of allelic
replications at each locus. These natural changes are ideal not only for discovering genetic cau-
sation but also for improving mechanistic insights into genotype-phenotype connections. During
the past decade, the collection and development of diverse crop populations, dramatic innovations
in genomic technologies, emerging quantitative genetics methods, and increasing availability of
molecular biology tools have enabled the genetic basis of natural variation to be decoded in an
unprecedented manner.
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In this review, we summarize the progress, problems, and potential improvements in QTL-
to-QTN mapping in crops, using rice, maize, wheat, tomato, soybean, and barley as examples.
The first crop QTL—Pto, which confers disease resistance in tomato—was identified in 1993
(108). We surveyed the literature and found that 364 QTLs have been cloned (that is, the causal
genes have been identified and validated) since then in the six crops, as of May 2020 (Figure 1a;
Supplemental Table 1). We use this representative data set to provide a general picture of the
regulation and evolution of QTLs in crops as well as their similarities and differences within and
between species.We end with a discussion of how this knowledge can be exploited for traditional
and novel approaches to crop improvement.

2. DISSECTING THE GENETIC BASIS OF NATURAL VARIATION

2.1. Linkage Analysis

Linkage mapping using artificially created segregating populations has been the most successful
method used to dissect the genetic basis of crop traits. Unlike humans and animals, crops can be
studied using diverse genetic designs with distinct properties (143, 188) (Figure 1b), and these ge-
netic populations have been exploited to identify thousands of QTLs for hundreds of agronomic
traits. Among the types of linkage populations, recombinant inbred lines are the most popular
because of their simple development, balanced parental mixture, repeated phenotyping, and rel-
atively high mapping power. Introgression lines, together with other interspecies advanced back-
cross populations, are also widely used to study domestication-related traits and to quickly initiate
QTL fine mapping. In a pioneering study, an introgression line population was successfully used
to map the first yield-relatedQTL in tomato: fw2.2 (28). A large maize-teosinte BC2S3 population
was recently developed and used to successfully clone QTLs for a variety of traits important for
domestication and adaptation (42, 48, 49, 56, 88, 160, 184).

Although linkagemapping is a straightforward process, the results obtained using this approach
should be carefully interpreted.While it is well known that linkage analysis underestimates QTL
number, and that QTL effects are biased in different backgrounds and/or environments, the effect
size of a QTL can also be overestimated in small (<500) populations (the Beavis effect) (192). In
addition, the results could be completely misleading due to complicated modes of inheritance
(e.g., pseudo-overdominance resulting from two closely linked loci in repulsion phase) (86).

Given that linkage mapping is based on the occurrence of recombination events between ge-
netic loci, existing populations could be reused to maximize efficiency and value. For instance,
the widespread residual heterozygosity among advanced inbred lines can provide a quick starting
point for fine-mapping target QTLs (163). Recent advances could partially remedy the limited
mapping resolution of linkage analysis, such as (a) genotyping larger populations for recombinant
screening, (b) speed breeding techniques (57, 182) to promote generations of recombination at
the same period, and (c) increasing the recombination frequency by using optimized alternative
parents (104) or manipulating potential targets (such as RecQ-7) (37). However, the low allelic di-
versity of biparental populations remains an impediment for identifying many other causal genes.

2.2. Genome-Wide Association Study

Genome-wide association study (GWAS) using natural populations (preferably collections of ho-
mozygous lines) has become a powerful and routine approach for dissecting trait variation in crops.
Compared with linkage populations, natural populations harbor numerous mutations and abun-
dant historical recombinations and are cost-effective for population development, genotyping, and
repeated phenotyping (116) (Figure 1b). The unique properties of natural populations provide
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Figure 1 (Figure appears on preceding page)

A timeline of the progress of QTL cloning, comparison of mapping populations, and schematic diagram of QTN identification in
crops. (a) The number of QTLs cloned from 1993 to May 2020 in rice, maize, wheat, tomato, soybean, and barley. The total number of
cloned QTLs are indicated in parentheses after each species. The years in which the crop reference genomes were released are indicated
by dashed lines. (b) A comparison of trade-offs when developing and implementing different genetic designs. The larger circles
represent a higher relative advantage, not the extent, of a given criterion. For example, the biparental populations are generally less
confounded, which is more favorable for genetic mapping. Natural population here represents the inbreds for a collection of natural,
unrelated individuals. (c) A simplified procedure for QTL-to-QTN mapping. A and B represent that the phenotype of recombinant
progeny is similar to corresponding parents. Abbreviations: CUBIC, complete-diallel design plus unbalanced breeding-like inter-cross;
MAGIC, multiparent advanced generation inter-cross; NAM, nested association mapping; NS, nonsegregating; QTL, quantitative trait
locus; QTN, quantitative trait nucleotide; ROAM, random-open-parent association mapping; S, segregating.

GWASs with higher mapping resolution, which allows multiple functional alleles at a given locus
to be surveyed. With dramatic increases in the power of sequencing technologies and statistical
methods, GWAS has been revolutionized over the past decade. Its applications have shifted from
providing validation to identifying new loci with common alleles or even small effects (100, 106,
177, 188), from exploring traditional agronomic traits to omics-based molecular phenotypes (51,
188), from trait-targeted GWASs to genome–phenome-wide association study (89), and so on.

Mixedmodels are commonly utilized in GWASs of crops.These models incorporate both pop-
ulation structure and familial relatedness to control genetic confounding from stratified and cryp-
tic genetic backgrounds (165). These corrections allow valid associations to be distinguished from
spurious ones; however, true marker-phenotype associations could be missed during the analysis,
especially for traits correlated with subpopulation differentiation or local adaptation (e.g., flower-
ing time). Another major source of false negatives is the lack of detection power of substantially
lower-frequency and rare functional variants, although several statistical strategies have been pro-
posed to address this issue (5, 138).

Additionally, the lack of high-quality nonreference genomes and the presence of large struc-
tural variation may account for a great portion of causality—the hidden genetic landscapes of
traits. For example, de novo assembly of a tropical maize inbred line led to the identification
of ZmBAM1d, a gene responsible for kernel weight and whose expression is regulated by large
upstream insertions affecting chromatin interactions and methylation (199). The large number
of transposable elements and the widespread presence of duplications in crops can lead to greater
regulatory complexity as well as missing phenotypic contributions, yet these effects are largely un-
derestimated. Fragmented pan-genomes assembled from short resequencing reads (62, 158) and
k-mer-based GWAS without assembly (4, 166) can be used to explore hidden genetic causality
genome wide. Furthermore, the upcoming era of rapid reference-quality assemblies at the popu-
lation level combined with ever-evolving long-read sequencing technologies (2, 100) would bring
more progress.

Despite the improved mapping resolution, identifying the causal genes for association signals
can be challenging in some cases. Particularly, the associationsmight be located far from functional
genes because of complex linkage disequilibrium architecture caused by allelic heterogeneity and
the presence of distal noncoding regulatory elements (11, 96). Several comprehensive methods
have been proposed to pinpoint causality, especially by incorporating information from genomic
functional elements and transcriptomic and/or proteomic variation (139–141). Importantly, re-
cently developed high-throughput genome-editing techniques provide a rapid, large-scalemethod
for identifying and validating gene function (93).

2.3. Joint Linkage Association Mapping

The presence of rare alleles and genetic confounding are two major limitations of GWASs in
natural populations, but both problems can be circumvented to some extent using controlled
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segregating populations. Using a multiple-founder-derived genetic design, which integrates
the complementary strengths of association panels and traditional biparental populations, is a
promising approach for enhancing both allelic richness and mapping power in plants (Figure 1b).
Various multiparent genetic designs have been proposed, including nested association mapping
(NAM) (110, 202), multiparent advanced generation inter-cross (MAGIC) (47), random-open-
parent association mapping (ROAM) (124, 189), and the recently described complete-diallel
design plus unbalanced breeding-like inter-cross (CUBIC) (95).

These designs have greatly facilitated the genetic dissection of complex traits. For instance,
flowering time is a highly complex trait that is strongly correlated with population structure (76).
Therefore, it is often difficult to identify statistically significant associations with flowering time
in a natural population when including population structure as a covariate in a statistical model.
Indeed, in a GWAS using a diverse set of maize inbred lines, only one locus (ZmCCT10) was
identified that was associated with photoperiod response with genome-wide significance (201), and
several candidate loci validated by other pieces of evidence only displayed moderate associations
with this trait (61). By contrast, many small-effect flowering-time QTLs were identified in NAM
(10, 56) and CUBIC populations (95). Beyond identifying many rare alleles and small-effect loci
(10, 159), multiparent designs are also powerful for discovering QTLs with multiple alleles (95)
or allelic series with opposite effects (189).

In theory, joint linkage association mapping using these multiparent designs offers a way to
increase mapping resolution, given the simultaneous employment of both historical and recent
recombination. For example, in the maize ROAMpopulation consisting of 10 recombinant inbred
line populations derived from 14 founders, there were ∼14,600 genetic bins in the linkage map
and over 185,000 segments in the linkage disequilibrium map (189). However, due to the limited
number of founder lines, outcrossing events, and progeny sample size, the mapping resolution of
these multiparent populations is still not sufficient in practice. Given the low sequencing costs,
a larger number of parents (e.g., more than 100) could be recruited to achieve not only a higher
mapping resolution but also allelic richness, providing greater representation of rare alleles.

So far, it seems as though no specific design is the best, but in the near future, a pyramidal
assembly could be established for most crops. Each pyramid would include one large collection of
thousands of individuals consisting of wild, landrace, and cultivated lines, several diverse largemul-
tiparent designs, and many specific biparental populations. Community-wide efforts are required
to realize this goal, with data sets of all types of variation processed under the same guidelines and
made publicly available. Such community-assembled data sets would set the standard for mapping
directly to individual genes and validating the associated effects.

2.4. From Quantitative Trait Loci to Quantitative Trait Nucleotides

Various mapping populations not only provide great power to detect QTLs but also lay the foun-
dation for identifying QTNs. Positional cloning (or map-based cloning) is the most widely used
method for QTL cloning. Among the 364 cloned QTLs we gleaned from literature, 297 (81.6%)
were cloned by positional cloning alone or in combination with other methods (Supplemental
Table 1).Mendelizing the QTL of interest from background loci is required for QTL cloning, as
most QTL effects are moderate or even minor (106). Two major strategies are generally used to
develop QTL near-isogenic lines. One strategy involves consecutive backcrossing with a marker-
assisted selection of the target and background region (157). The other strategy involves using
a heterogeneous inbred family (163) that is heterozygous only at the target QTL but fixed in
background loci. Another key aspect of QTL cloning is to precisely phenotype the progeny of
recombinants, which can be conducted within or between recombinant families (3, 88, 149, 150)
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(Figure 1c).Which strategy is more appropriate depends on the effect size of the target QTL. In
general, the between-family comparison is suitable for moderate- to large-effect QTLs (3, 150),
whereas within-family comparison is especially helpful for minor QTLs, as it can effectively con-
trol the interference from the genetic background and/or the environment (49, 88).

When a QTL is delimited to a sufficiently small region by fine-mapping or narrowed down to
an acceptable resolution by GWASs, candidate gene-based association could be used to quickly
identify causative variation (42, 49, 135, 178, 201). Nevertheless, like GWASs, candidate gene as-
sociation analysis also has limited power to detect rare alleles. Bioinformatics analysis of potential
functional elements in the causal region together with various in vivo or in vitro assays of critical
sequences help identify the causative polymorphism underlying the target QTL (6, 55, 149, 160).

With the rapid development and continuously decreasing cost of sequencing technology,
whole-genome sequencing pools of individuals with extreme phenotypes together with mapping-
by-sequencing approaches, including GradedPool-Seq (168), QTL-seq (153), QTG-seq (204),
and BSR-Seq (98), provide a quick and efficient way to identify genetic causes controlling trait
differences. However, these bulked segregate analyses still have limited power to dissect minor-
effect QTLs, and their mapping resolutions depend largely on pooling strategy and the size of
each pool.

The last critical step in QTL cloning is to validate the causality of both the candidates and al-
leles (Figure 1c).Common approaches used to verify the functions of candidate genes includemu-
tant screening, genetic complementation testing, overexpression, and gene knockdown or knock-
out by RNA interference and other various genome-editing technologies. Validating the function
of a QTN in vivo remains challenging if the QTN resides in a noncoding region, especially if
it is distant from its functional gene. Nevertheless, CRISPR/Cas9 provides a promising way to
validate a QTN in noncoding regions (29).

New strategies promise to revolutionize the fine-mapping process by making it more effective
or even less costly, including assembling founder genomes using long-read sequencing technolo-
gies and genotyping segregating descendants via short-read sequencing, combined with additional
omics measurements. The validated QTN not only provides an entry point for uncovering the
regulatory mechanism but also serves as an ideal functional marker for breeding.

3. QUANTITATIVE TRAIT LOCUS CLONING PROGRESS IN CROPS

Natural variation contributes greatly to heritable trait variation that responds to long-term natural
and artificial selection. Therefore, identifying causal genotype-phenotype links will increase our
understanding of plant growth and development as well as crop domestication and adaptation.
A total of 364 QTLs have been cloned in the six crops from 1993 to May 2020, with most—
nearly half of them—in rice, followed bymaize (Figure 1a). The release of crop reference genome
sequences and technological advances in genotyping and genetic transformation have significantly
accelerated the cloning of QTLs. Characterizing this set of cloned QTLs provides us with an
unprecedented opportunity to understand the genetic bases and molecular mechanisms of natural
variation and their roles in crop evolution.

3.1. Critical Quantitative Trait Locus Alleles for Crop Domestication

Within the collection of cloned QTLs, 50 control domestication traits in the six crops
(Figure 2a). During domestication, crops undergo a common suite of trait changes that distin-
guish them from their progenitors. This suite of changes is known as the domestication syndrome
and includes decreased seed shattering, loss of seed dormancy, larger seed size or increased fruit
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Figure 2 (Figure appears on preceding page)

Insights obtained from QTL cloning in six crops (maize, tomato, rice, wheat, barley, and soybean). (a) Currently cloned QTL across
trait categories. (b) Comparison of functional types of causal genes classified based on trait categories. Multiple indicates that more than
one gene is functioning coordinately in the given locus, and unknown indicates that it is without clear annotation. (c) Proportional
differences of underlying polymorphisms among crops. The six crops were sorted based on decreasing (increasing) ratios of coding
(regulatory) variants. Four characteristics associated with the six crops are indicated below the graph. × symbol indicates outcrossing,
while circled × symbols indicate selfing. The estimated genome size and gene number statistics are from Ensembl Plants (http://plants.
ensembl.org/index.html), and the outcrossing rate data of domesticated crops are from References 1, 17, 26, 78, 111, and 131.
(d) Allelic effects (measured in days) of cloned flowering-time QTLs in rice and maize under long- and short-day conditions. The
flowering-time effects of QTL NILs are obtained from published studies, and the mean QTL allelic effects across different studies are
calculated. The white-filled circles represent information not available. (e) The relative importance of de novo mutation versus standing
variation for different traits. (Left) Causal genes are detected with selection signals; (right) all causal genes are shown for cloned QTL.
The categories of biotic stress and fertility are not presented because fewer than three QTLs are available in the selected set. Please
note that the ratios of de novo mutation might be (largely) overrated due to the usually underexamined wild population in the original
study. ( f ) The distribution of the number of causal variants identified at each QTL across crops. Abbreviations: CNV, copy number
variation; NIL, near-isogenic line; NLR, nucleotide-binding leucine-rich repeat receptor; PAV, presence/absence variation; PEBP,
phosphatidylethanolamine-binding protein; PPR, pentatricopeptide repeat; QTL, quantitative trait locus; RLK/RLP, receptor-like
kinase or protein; TF, transcription factor.

weight, and more determinate growth or increased apical dominance (43, 45). It appears that crop
domestication syndrome traits are controlled by both conserved and species-specific genes.

Nonshattering is believed to be the most critical event during the initial domestication of a
crop. Seed shattering in cereals appears to depend largely on the development of an abscission
layer, as the selected alleles of 9 of the 12 cloned shattering QTLs disrupt normal abscission layer
development.Conserved genes controlling shattering include Sh1 in sorghum, rice, andmaize (91)
and Btr1 in barley and wheat (129, 208). Species-specific genes have also been identified, including
sh4 (80) and qSH1 (69) in rice and Btr2 (129) in barley.The genetic basis of soybean pod shattering
tends to be different from that of cereals. SHAT1-5 and Pdh1 control soybean pod shattering by
regulating the lignification of fiber cap cells and the torsion of dried podwalls, respectively (22, 33).

The loss of seed dormancy is another critical event in crop domestication. Eight QTLs
controlling this trait have been cloned. G is a conserved gene controlling seed dormancy in
soybean, rice, and tomato (175). The MKK3 (mitogen-activated protein kinase kinase 3) underlying
the SD2 locus in barley (118) and the Phs1 locus in wheat also play conserved roles in controlling
seed dormancy (162). Rice Sdr4 (150), barley SD1 (137), and wheat PM19 (7) and TaMFT (117)
function in a species-specific manner. In addition, reduced seed dormancy in barley and wheat
is often associated with preharvest sprouting (7, 117, 118, 137, 162). Therefore, identifying and
pyramiding natural alleles with optimum effects represents an efficient way to balance seed
dormancy and preharvest sprouting.

Another striking change during domestication is the increased apical dominance (43, 45). tb1,
the first domestication QTL cloned in crops, controls apical dominance in maize (20, 149) and
functions at the top of the hierarchical maize domestication gene network, where it directly reg-
ulates a suite of domestication genes, including gt1, tga1, tru1, and zagl1 (23, 148). tb1 homologs
in other crops also regulate tillering or branching (18, 130, 155). The major regulator controlling
apical dominance in rice is PROG1, and its loss-of-function allele promotes the transition from
prostrate to erect growth during rice domestication (60, 156).

fw2.2 (31), fw3.2 (12), and fw11.3 (115) are three QTLs regulating fruit weight during tomato
domestication, and a recent study suggested that they are also involved in tomato improvement
(90). fw2.2 encodes a cell number regulator whose ectopic expression during early fruit develop-
ment increased pericarp cell number (31). Its ortholog in rice,OsCNR1, also confers grain weight
(133).
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In addition to domestication syndrome traits, each crop has its specific domestication charac-
teristics. For example, the transition from stony fruitcase–enveloped to naked kernel is a critical
event during maize domestication but not for rice and wheat. Mining the underlying causal fac-
tors of common and specific domestication traits is important not only for understanding the past
domestication history but also for de novo domestication of new crops.

3.2. Critical Quantitative Trait Locus Alleles for Crop Adaptation

After their initial domestication, crops spread from their centers of origin to diverse ecological
and geographical areas. Flowering time is a major determinant of plant local adaptation. The set
of cloned QTLs includes 38 for flowering time (Figure 2a). Most of the favorable alleles are
associated with attenuated photoperiod sensitivity.

Rice and maize originated in low latitudes (52, 109).Most of the variation contributing to their
spread from low to high latitudes are loss-of-function or weakened alleles of long-day suppressors
such as Hd6 (154), Ghd7 (193), Ghd8/DTH8 (16, 183, 197), and DTH7 (35, 99) in rice, as well as
ZmCCT10 (201) and ZmCCT9 (49) in maize, or enhanced flowering activators under both long
days and short days such as Hd3a (66), RFT1 (120, 211), and Ehd1 (21) in rice and ZCN8 (42) and
ZmMADS69 (88) in maize.

Unlike maize and rice, soybean was domesticated from temperate regions in China between
32°N and 40°N (87). Therefore, soybean dispersion involved adaptation to both lower and
higher latitudes. J is a soybean flowering activator under short days that downregulates E1, a
legume-specific flowering suppressor (102). Loss-of-function alleles of J were selected to extend
the vegetative phase and improve yields at lower latitudes (102). The adaptation of soybean to
higher latitudes was helped by natural loss-of-function alleles of five other flowering suppressors,
including E1 (187), E2 (181), E3 (180), and the paralogs Tof11/Gp11 and Tof12/Gp12 (40, 82, 101).

Photoperiod and vernalization are important factors affecting flowering time for the long-day
plants, wheat and barley. VRN1 (196), VRN2 (195), and VRN3 (194) in wheat and Ppd-1 (164),
EPS2/HvCEN (14), and VRN-H3 (194) in barley function in response to photoperiod and ver-
nalization. Loss-of-function alleles of VRN2 exhibit increased expression of VRN1 and VRN3,
thereby converting wheat from a winter to a spring growth habit (194, 195).

Although different alleles conferring prolonged or shortened flowering time were selected to
help crops respond to diverse environments, the underlying genes are quite conserved, such as
florigen and MADS-box family. Therefore, critical flowering-time genes identified in one crop
are very likely to function in other species as well.

3.3. Critical Quantitative Trait Locus Alleles for Agronomic Traits

Improved yield and quality are two key traits that humans have long pursued, while plant archi-
tecture is another important trait affecting planting mode and yield potential. These agronomic
traits have been studied extensively, accounting for 30% of the clonedQTLs (Figure 2a). Loss-of-
function of the Green Revolution gene sd1 in rice and gain-of-function of Rht1 in wheat led to the
first breakthrough in increasing grain yields in the 1960s by reducing plant height and improving
lodging resistance (128, 136). The proposal for new plant type breeding (64) lays the foundation
for another advancement in rice yields. IPA1 encodes an SBP-like transcription factor (TF). Mu-
tations in the miR156 target site and tandem repeats in the upstream region of IPA1 resulted in its
higher expression, thereby conferring reduced tiller number, more grains per panicle, and thicker
culms (59, 113, 205).
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Different from other cereal crops, maize is an outcrossing species with separate male (tassel)
and female (ear) inflorescences. Maize yield is mainly determined by kernel row number, kernel
number per row, and kernel weight. KNR6 controls kernel number per row (58), while FEA2
(9), krn1 (170), and KRN4 (97) regulate kernel row number, and qHKW1 (199) and qKW9 (50)
affect kernel weight. Increased planting densities play a critical role in boosting maize yield, and
high-density planting requires an upright plant architecture. UPA1 and UPA2 control leaf angle;
introgressing the wild allele ofUPA2 intomodern hybrids produced narrower plants and enhanced
maize grain yields under high planting densities (68, 160). Pyramiding the favorable alleles of yield
components and plant architecture represents an important strategy for enhancing maize yield
potential.

Beyond yield, grain quality has attracted increasing attention, and many studies have identified
a suite of alleles that improve the appearance, cooking quality, and nutritional quality of crops
(Supplemental Table 1). The quality traits of tomato are quite diverse, including fruit shape,
fruit color, sugar-acid ratio, vitamin content, and the levels of important metabolites. One-third of
the QTLs cloned in tomato are associated with quality traits. The major QTL Brix9-2-5 encodes
a flower- and fruit-specific invertase (32). Introgression of the wild allele of Brix9-2-5 improved
the soluble sugar content of cultivated tomato fruit (32), again confirming that alleles from wild
germplasms are valuable for modern breeding.

3.4. Critical Quantitative Trait Locus Alleles for Stress Responses

Biotic and abiotic stresses severely reduce crop yields, and improving stress resistance could lead
to more stable yields. More than one-third of the cloned QTLs (133 of 364) are related to stress
responses, including 45 for abiotic and 88 for biotic stress responses (Figure 2a). Different crops
face similar abiotic stresses, including high or low temperatures, drought, salt, and nutrient lim-
itation. Various alleles for resistance to these widespread stresses have been identified (112). For
example, the submergence-induced Sub1A-1 improves rice tolerance to submergence (191), and
a 366-bp insertion in the ZmVPP1 promoter confers drought-inducible expression and enhances
drought resistance in maize (178).

By contrast,most biotic stresses, including diseases and pests, are crop specific. Bacterial blight,
fungus blast, and brown planthopper are major biotic stresses in rice.Head smut, stalk root, rough
dwarf, and (southern, northern, and gray) leaf blight pose grave threats to maize yields, while leaf
rust, stripe rust, yellow rust, powdery mildew, and head blight are the most devastating diseases
to wheat. Among the cloned QTLs, nucleotide-binding and leucine-rich repeat receptors (NLRs)
and receptor-like kinases/receptor-like proteins (RLKs/RLPs) contribute greatly to biotic stress
resistance in crops.The specificmolecularmechanisms for biotic resistance have been summarized
in previous reviews (24, 85, 206).

As pathogens often rapidly adapt to plant resistance genes, creating crops with broad, durable
resistance alleles is therefore an important objective of crop breeding. Bph6 encodes an un-
characterized protein whose amino acid changes provide rice with broad resistance to both the
white-backed and brown planthopper without sacrificing yield (41). ZmCCoAOMT2, a caffeoyl-
CoA O-methyltransferase, simultaneously confers resistance to southern leaf blight, northern leaf
blight, and gray leaf spot in maize (200). Polymorphisms in the coding region of the putative ABC
transporter gene Lr34 provide wheat with durable resistance to leaf rust, stripe rust, and powdery
mildew (71). The horizontal transfer of the glutathione S-transferase gene Fhb7 from fungus to
wheat results in broad resistance to head blight and crown rot without yield penalty (169).

Strong resistance often comes with yield costs. How yield and immunity can be balanced has
been reviewed previously (119, 171). Plant hormones, TFs, and microRNAs play important roles
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in regulating the trade-off between plant immunity and growth (119, 171). Some NLRs and cell
wall-associated kinase (WAK) proteins could balance immunity and yields, making them excellent
targets for breeding crop varieties with high yields and strong resistance to pathogens (119).

3.5. Critical Quantitative Trait Locus Alleles for Fertility

In addition to the Green Revolution, hybrid breeding represents another breakthrough in crop
improvement. The two-line (thermo-sensitive or photoperiod-sensitive genic male sterility) and
three-line [cytoplasmic male sterility (CMS)] hybrid breeding systems were developed in crops,
especially in rice, to make better use of heterosis. The most widely used system, three-line hybrid
breeding, includes three key elements: male sterility, fertility restoration, and hybrid compatibility.
As most CMS male sterility genes of the CMS system are in the mitochondrial genome, QTL
mapping is not appropriate for detecting these genes. The 24 fertility QTLs cloned to date are
mainly involved in fertility restoration and hybrid compatibility.

Rf2, a maize gene encoding an aldehyde dehydrogenase,was the first restorer gene isolated (15).
It can restore the fertility of CMS-T maize and has been used to produce approximately 85% of
hybrid seeds in the United States prior to the southern corn leaf blight epidemic in 1970 (15). The
selfish genetic element qHSM7 controls rice hybrid compatibility, and two closely linked genes,
ORF2 and ORF3, underlie qHSM7 (203). ORF2 encodes a toxic genetic element, whereas ORF3
encodes the antidote to protect pollen from being eliminated byORF2 (203). Additional cases and
the mechanisms underlying fertility were reviewed previously (13, 122). In general, the functional
genes of most fertility restoration QTLs encode pentatricopeptide repeat (PPR) proteins, and
more than one closely linked gene usually underlies a hybrid compatibility QTL with segregation
distortion.

4. THE REGULATORY AND EVOLUTIONARY MECHANISMS OF CROP
QUANTITATIVE TRAIT LOCI

Analyzing the representative set of QTLs provides an excellent opportunity to refine our under-
standing of how natural variation is regulated and has evolved. It should be noted that the QTLs
cloned to date might not reflect a complete polygenic architecture and are inherently biased to-
wards large-effect QTLs and ascertainment biases could also be present among crops and trait
categories. Therefore, the conclusions obtained from the current observations might be biased.
However, the following overview of this comparative data set could be still valuable to provide
a deeper understanding of the biological relevance of QTLs and fresh insights for future studies
and breeding programs.

4.1. The Molecular Functions of Identified Causal Genes

According to the gene functions, the causal genes from the 364 cloned QTLs can be classified into
ten types (Figure 2b). The relative contributions of different gene types to each trait category vary
greatly.Domestication, adaptation, and plant architecture traits aremainly regulated byTFs,while
yield components and quality traits are primarily regulated by enzymes. This notion is consistent
with previous views (19). The likely reason for this difference might be that TFs usually function
at the top of the hierarchy of gene networks, and changes in TFs can have comprehensive effects.

The molecular basis of biotic stress resistance is different from that of abiotic stress resistance
(24, 85, 112, 206). NLR genes (42%) predominately contribute to pathogen or insect resistance,
followed by enzymes (19.3%) and RLK/RLPs (13.6%). However, abiotic stress is often regulated
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by enzymes (26.7%), TFs (24.4%), and transporters (24.4%). Differences also exist among dif-
ferent abiotic stress responses. For instance, salt tolerance is typically regulated by transporters,
while drought tolerance is mainly controlled by TFs and enzymes.

Interacting pairs or multiple closely linked genes contribute greatly to hybrid sterility, while
fertility restoration is controlled predominantly by PPR genes (Figure 2b). Noncoding RNAs ap-
pear to play an important role in photoperiod-sensitive male sterility (65). These general features
of molecular functions of causal genes for different trait categories provide important guidance
when identifying the underlying gene for new QTLs in future studies.

4.2. The Molecular Regulatory Mechanisms of Quantitative Trait Loci

The relative importance of protein-coding versus regulatory changes in phenotypic evolution is
a long-standing debate. Among the 364 cloned QTLs, causative polymorphisms were identified
in 291 (79.9%), including four epigenetic variants. The causal genetic polymorphisms are further
classified into coding variation, regulatory variation, presence/absence variation (PAV), and copy
number variation (CNV). Most causal variants identified to date are coding variation and regula-
tory variation, whereas CNV and PAV account for only a small percentage of total causal variation
(Figure 2c). The underrepresentation of CNV and PAV might primarily be due to technical lim-
itations rather than biological significance, as increasing studies have revealed their roles in trait
variation (2, 100, 105, 158).

Notably, the proportions of the two major variation types, coding versus regulatory, differ
among the six crop species (Figure 2c). In rice, 57.5% of QTLs are caused by coding variation,
while 33% are caused by regulatory variation.Wheat, barley, and soybean exhibit a higher propor-
tion of coding (>62.5%) than regulatory (<21.4%) variation. By contrast, of the 57 maize QTLs,
30.7% are caused by coding variation and 64% are caused by regulatory variation. The predom-
inance of coding versus regulatory variation does not appear to be associated with genome size
or predicted coding gene number (Figure 2c). The mating systems of these crops might explain
these differences. Soybean, rice, wheat, and barley are selfing plants (selfers), whereas maize is a
typical outcrossing plant (outcrosser). Long-term self-fertilization decreases the effective recom-
bination and population size (Ne), thus reducing the efficacy of selection (39). It has been shown
that selfers tend to have a higher ratio of nonsynonymous to synonymous substitutions (39). This
increased coding variation in selfers might reflect a release from selective constraint (39).

Unexpectedly, the selfer tomato exhibits an intermediate pattern of coding versus regulatory
variation (43.9% versus 50%). Among the six crops, rice and tomato experienced an outcrossing-
to-selfing transition during domestication (114, 132). We found that the mapping populations
used in tomato involved a very high proportion of wild lines compared to rice, with 72.5% of
tomato QTLs identified in wild × cultivated cross-populations compared with 22.6% in rice
(Supplemental Table 1). Since regulatory variation tends to be enriched in outcrossing species,
the high frequency of using wild lines might contribute to the detection of a larger proportion of
regulatory variation in tomato.

Likely due to the greater prevalence of causal coding polymorphisms in selfers, QTL allele
effects for comparable traits are usually larger in selfers than in outcrossers (using flowering time
in rice and maize as an example) (Figure 2d). The contrasting distributions of variation types
suggest that the genetic architecture of complex traits in maize is usually controlled by many loci
of minor effects, as frequently observed in genetic studies of various quantitative traits in maize
(10, 127, 159).

Four epigenetic polymorphisms underlying trait variation have been reported, includingWFP
(113), Gnp4/LAX2 (207), and GLR1/GL-1 (81) in rice and Cnr (107) in tomato. TheWFP locus,
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controlling plant architecture in rice,was narrowed down to a 2.6-kb region upstream ofOsSPL14.
Surprisingly, no nucleotide difference in the causal region was detected between the two parental
lines, indicating epigenetic causality (113). Similarly, no nucleotide sequence was detected in the
causal region of theCnr locus that regulates tomato fruit ripening (107).Differential DNAmethy-
lation in the LeSPL-CNR was found to be responsible for the phenotypic variation (107). These
heritable epialleles might represent another important natural source of trait variation. With the
rapid accumulation of epigenomic data, more epialleles will likely be identified, and the relative
importance of epigenetic regulation in trait variation should be assessed fairly in the future.

4.3. The Evolutionary Mechanisms of Quantitative Trait Loci

The relative importance of standing genetic variation versus de novo mutation in crop evolution
has long been debated. The classification of standing variation versus de novo mutation here is
based on the published studies (Supplemental Table 1). It is worth noting that de novo mutation
can be overrated, as the number of wild lines examined in the published studies is relatively limited
in general compared with the large number of cultivated lines investigated. However, the general
insights obtained in the present review remain intriguing. Among the 167 cloned QTLs for which
the origin of the causative variant has been identified, standing variation and de novo mutation
contribute 51.8% and 47.3% across all traits, respectively. Among the 79 QTLs that were identi-
fied as selection targets during domestication or improvement and with clear information about
variation origin, 53.8% result from de novo mutations and the rest, 45.6%, result from standing
variation. For specific trait categories, de novo mutations are predominant for domestication and
quality traits, whereas standing variation makes larger contributions to other traits, especially for
abiotic stress (Figure 2e). Notably, the selected alleles of three out of four maize domestication
QTLs (tb1, gt1, and ZmSh1-1) (91, 149, 184, 198) involved standing variation, suggesting that
standing variation might have played more important roles during maize domestication than it
did in five other crop domestications. By contrast, at 12 out of 16 rice domestication QTLs, the
selected alleles involved de novo mutation, indicating the predominant importance of de novo
mutations in driving rice domestication. Another interesting observation is that loss-of-function
alleles are more frequently associated with the domestication traits of selfing crops (67, 150, 175),
while alleles selected during maize domestication more frequently involved gene expression reg-
ulation (149, 184).

By counting the number of causative variants within each clonedQTL,we found that rice, soy-
bean, barley, and wheat have higher proportions ofQTLswith allelic series (Figure 2f ). For exam-
ple, nine causative variants were identified at the rice flowering-time locusDTH7/Ghd7.1/qHD7.2
(35, 99). We propose three possible reasons for the differences in the prevalence of allelic series
among crops. First, since the coding variation is inherently easier to detect and validate than reg-
ulatory variation, multiple causal alleles are more likely to be identified in crops with a majority
of coding alleles (i.e., the three high-allelic series crops). Second, the origins of rice and wheat are
more complex than those of maize, barley, and tomato. Wheat originated from an intercross be-
tween tetraploid Triticum turgidum and diploid Aegilops tauschii, and tetraploid T. turgidum was do-
mesticated from wild emmer wheat that resulted from the hybridization between diploid Triticum
urartu andAegilops speltoides (30).Rice has two cultivated species,Oryza sativa andOryza glaberrima,
which were domesticated independently in Asia and Africa, respectively (176), and two subgroups
of wild rice (Oryza rufipogon) are thought to be ancestors of Asian rice (O. sativa) (52, 177). Third,
the selfing mating system limits the spread of favorable alleles, leading to a higher probability of
maintaining independent functional variants in different groups or regions.
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Figure 3

Evolutionary patterns. (a) Stepwise selection. Favorable variant 1 occurs first and is selected. Favorable variant 2 then occurs in the
haplotype of variant 1 and is further selected in response to human demands or local conditions. (b) Sequential selection of polygenes
using maize flowering time as an example. Five early flowering alleles of four maize flowering-time genes were sequentially selected as
maize spread from its tropical origin to higher latitudes (42). (c) Parallel selection. Orthologs among crops are selected to control the
same trait and evolve in the same direction. (d) Divergent selection. Orthologs across crops are selected to control different traits or
evolve in distinct directions. Abbreviation: TE, transposable element.

Examining how those QTLs with allelic series have evolved might provide important insight
into crop local adaptation. Researchers have frequently observed that different alleles within a
locus were selected independently as a crop adapted to distinct ecological regions (35, 102, 183).
Interestingly, recent studies showed that different causal variants in the same gene can be se-
lected in a stepwise manner, such as FZP (6, 55) and DTH2 (186) in rice and ZCN8 (42) in maize
(Figure 3a). Two early flowering alleles, SNP-1245_A and Indel-2339_Del, were identified in the
ZCN8 promoter. The SNP-1245_A allele was initially selected during the early domestication
stage of maize, and the Indel-2339_Del allele, which was introgressed into the SNP-1245_A hap-
lotype, was subsequently selected as maize spread into the Mexican highlands (42). In addition
to the stepwise selection of different alleles in the same gene, favorable alleles of different genes
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controlling the same trait could also be selected sequentially to meet human demands or help
plants adapt to different environments. For example, five early flowering alleles at four flowering-
time genes (ZmCCT9, ZmCCT10, ZmRap2.7, and ZCN8) were sequentially selected to enhance
the adaptation of maize to higher latitudes of temperate regions (42, 49) (Figure 3b).

As discussed in Section 3.1, some conserved genes have been selected in a parallel manner and
exhibit similar functions in different crops, such as the shattering genes Sh1 (91) (Figure 3c) and
Btr1 (129, 208) and the seed dormancy gene G (175). Interestingly, some orthologous genes that
were targeted by selection have divergent functions in different crops. The gain-of-expression
of the HD-ZIP TF gt1 in the nodes of the upper branch of maize reduces ear number (184).
Conversely, the loss-of-function alleles of its ortholog Vrs1 in barley and GNI1 in wheat were
selected to increase spikelet and floret number, respectively (67, 70, 134) (Figure 3d).

4.4. The Mechanisms of Pleiotropic Quantitative Trait Loci

Pleiotropy refers to the phenomenon in which a single locus affects two or more unrelated phe-
notypic traits (144), and it is prevalent among the cloned QTLs. Analyzing the QTL collection
derived from a broad set of traits in diverse crops provides us with clues about the mechanisms
underlying pleiotropy. Pleiotropic genes usually function as hubs in multiple temporally and/or
spatially divergent regulatory networks. Rice IPA1 provides a great example: (a) It suppresses
rice tillering by directly promoting the expression of OsTB1 in the shoot apex (103); (b) it
increases grain number per panicle by directly activating DEP1 in young panicles (173); and
(c) upon pathogen attack, IPA1 becomes phosphorylated and activates WRKY45 expression,
leading to enhanced blast resistance (173).

Pleiotropy might be mediated by distinct cis-regulatory variants of the pleiotropic genes. Tak-
ing GS2/GL2/qGRN2/OsGRF4 controlling both yield and nitrogen-use efficiency (46, 83) as an
example, a mutation within the miR396 target site significantly affects grain size and yield (46),
while cis-polymorphisms in its promoter respond exclusively to nitrogen sensitivity (83). These
mechanism-based examples highlight the relevance and diverse origins of pleiotropy and provide
valuable targets for further manipulating overall crop performance.

5. IDENTIFYING AND CREATING ALLELES FOR CROP BREEDING

The polymorphisms within diverse natural accessions provide an existing variation scope
(Figure 4a), independently or in combination, for various traits or physiological and biologi-
cal processes. The identification of increasing numbers of functional genes, causal alleles, and the
corresponding molecular mechanisms has caused breeding paradigms to evolve from modifying
individual genes and traits to modifying entire gene sets and overall performance and even to
generating novel crops to achieve new agricultural types (Figure 4b). All these exciting advances
make breeding much more targeted and more customizable, efficient, and sustainable.

5.1. Employing Favorable Natural Alleles

Cloned genes and beneficial natural alleles directly provide valuable materials for precisely
targeted trait improvement. In addition to genes controlling specific individual traits, key hub
genes that simultaneously affect multiple traits have great potential for improving overall crop
performance. As described above, fine-tuning the tissue-specific abundance and transient turnover
of the phosphorylated modification of IPA1 offers a way to optimize rice plant type to achieve
the highest grain potential (172, 174, 205) and enhance resistance without yield penalties (173).
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In practice, the ipa1-1D allele (a microRNA target site mutation leading to higher expression of
IPA1) increased yields by at least 10% and 30% under normal and high blast disease conditions,
respectively (59, 173, 205). DEP1 has been shown to regulate both rice yield (53) and nitrogen
responses (151), and its natural allele from the japonica rice variety Qianzhonglang2 coordinately
increases nitrogen use efficiency and yield (151). Interestingly, DEP1 is a direct downstream

Predomesticated

Cultivated

Species-wide natural variation Novel created (epi-) alleles

Orphan

New agriculture type

Gene-centric

Exotic/cross-species transferabilityEnhancing existing  phenotype

New trait
Trait-centric

De novo sequence designMultigene integration

Novel synthetic sequence

Optimized elements and inner distance

b

a

Natural
(106–108)

De novo design
(infinite)

New-edited
(107–109)

(Caption appears on following page)

www.annualreviews.org • Natural Variation in Crops 373



Base editing:
a genome-editing tool
used to directly and
irreversibly convert
one specific nucleotide
to another without
generating double-
stranded breaks

Figure 4 (Figure appears on preceding page)

The value and implementation of genetic engineering for crop improvement. (a) A rough estimate of the
variation space from the natural population, genome editing, and de novo design for a crop. Here, the
number of natural variations only represents a part that can be aligned and is estimated from current
HapMap-like data sets plus the number of structure variation (SV) space identified using long-read
sequencing technologies (2, 100). The scale of new-edited variation space is roughly estimated as about 3 ×
106–1 × 108 Cas9 single-guide RNAs that could be targeted to genic regions of the six crops (152), and
generally ∼3–25 independent mutations can be generated for each (93). The edited alleles could be repeated
with natural ones, but researchers would need to consider that other Cas proteins or other editing
technologies (such as base editing) would add an additional severalfold (or even tenfold) to the number of
potential mutations. For the infinite de novo design, if we assume to only design a 140-bp sequence, the
possible sequences are 4140 ≈ 2 × 1084, which is significantly larger than the estimated number (1078–1082)
of all atoms in the observable universe. (b) Sources of variation and current genetic engineering approaches
used for breeding. Each subpanel represents a specific case described in the main text and is defined as
follows: Species-wide natural variation: employs favorable natural alleles from the species-wide pool. Novel
created (epi-) alleles: de novo creation of favorable (epi-) alleles compared with natural alleles. Multigene
integration: creates better allelic combinations of multiple genes. De novo sequence design: designs a de
novo sequence of a given gene. Enhancing existing phenotype: diverse and customized enhancement of
existing phenotypes. Exotic/cross-species transferability: agricultural bioengineering through synthetic
transkingdom signaling. New trait: develops new traits to better meet the present or novel breeding
objectives. New agriculture type: expands the types and boundaries of traditional farming (here, urban
vertical farming is used as an example).

target of IPA1 (173); thus,manipulating these two genes could provide the opportunity to develop
Green Super Rice (185) with less need for fertilization and pesticide treatment but higher yields.

Another prospect is to directly characterize heterosis-related genes to guide heterosis utiliza-
tion. For example, the rice flowering-time gene Hd3a and tiller angle gene TAC1 show single-
gene overdominance (i.e., the heterozygous alleles perform better than both homozygous alleles);
plants harboring these mutually heterozygous alleles exhibited optimized flowering time and yield
as well as plant architecture adapted to dense planting (54). In addition, the yield of a heterozygote
of the maize KY4q19 locus containing Ub3 (an IPA1 ortholog) was over 13% higher than that of
the homozygous genotype (92).

During crop domestication and improvement or local adaptation, a significant amount of ge-
netic diversity was lost due to genetic bottlenecks and selection, which could have excluded fa-
vorable alleles that are valuable for modern breeding. Introgression of the teosinte UPA2 allele,
conferring upright leaf angle, enhanced maize yield under dense planting in both inbreds and
hybrids (160). Similarly, a number of wild alleles could improve the flavor of tomato fruit (161,
209). Probing species-wide pan-genome or pan-family data would provide great opportunities to
define the optimal landscape of genes and alleles (158), such as by identifying and engineering
nonreference and wild-specific genes for improving agronomic traits (199), disease resistance (4,
36), and nutritional metabolites (36).

5.2. Creating Novel Alleles Beyond Nature

The knowledge gained from uncovering genotype-phenotype links using natural variation could
be utilized to greatly increase the variation space through genome editing (Figure 4b). Impor-
tantly, recently developed base-editing-mediated technologies could facilitate the directed evolu-
tion of one or a few plant genes by introducing saturation mutations (72, 79). Targeting tomato J2
with CRISPR/Cas9 produced desirable pedicel and branch traits in fresh-market tomato breeding
lines (147). Furthermore,waxy corn was engineered to overcome the production declines that have
accompanied the introgression of the waxy haplotype during traditional breeding (34). In addition
to individual loci, novel allelic combinations are increasingly being produced by genome editing.
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The MADS-box genes J2 and EJ2 in tomato have negative epistatic effects on inflorescence de-
velopment and yield. New alleles from gene editing for these two genes and another MADS-box
gene (LIN) allowed inflorescence architecture to be optimized, leading to improved yields (146).
Targeting diverse SWEET genes simultaneously in rice provided a cost-effective way to achieve
broad-spectrum pathogen resistance with no obvious growth penalties (27, 121).

Engineering stable gene transcriptional changes and inherited epialleles could also potentially
accelerate crop improvement in the context of various stress conditions and global climate change.
This technique has been successfully utilized to alter flowering time and improve drought toler-
ance in Arabidopsis (123, 126). Although basic epigenomic insights in crops are still in their infancy
and few specific epitargets for editing are currently available, additional GWASs of gene expres-
sion and epigenetic modifications should provide promising target sites in the future (94, 190).

5.3. Engineering New Traits

The improvement of existing traits usually involves a gene-centric approach, in which cloned
genes with natural or created alleles are employed as starting points. However, the emerging in-
novative modes of crop production and climate change, new traits, and even new species are be-
coming the breeding objectives in a trait-centric approach (Figure 4b). This type of breeding will
typically require the modification of the activities of new genes and/or series of genes and could
be accomplished using various synthetic biology technologies.

The most straightforward approach is to create a crop ideotype from wild relatives through
rapid de novo domestication. Under the guidance of the numerous underlying genes and their
interactions, new modern crops could be engineered by molecular domestication to increase pro-
ductivity (77), as has already been done, while simultaneously keeping desirable characteristics
from wild relatives, including resistance to diverse stresses and high nutritional value (84, 212).

The types and boundaries of traditional farming are being expanded. For example, urban verti-
cal farming, especially when it involves artificial intelligence–powered gardening, represents a new
productionmode to help cope with the growing urban population, continuing climate change, and
diminishing resource availability (8, 25). Urban farming requires new traits that are different from
those suited for field agriculture. In a pioneering study, one-step targeting of genes responsible
for flowering time (SP5G), growth termination (SP), and stem length (SlER) successfully produced
highly compact, rapid-flowering fruit crops suitable for indoor agriculture (74). Additionally, the
use of genome editing to engineer apomixis for the fixation of hybrid rice through clonally propa-
gated seeds (63, 167) represents a revolutionary approach for hybrid seed production in naturally
selfing crops.

Beyond genome editing, other emerging synthetic biology techniques can enrich bioengineer-
ing applications in agriculture, allowing for the fine manipulation of crops to meet diverse de-
mands. Examples include reconfiguring metabolic flux to enrich nutrients (44, 210), increasing
carbon fixation such as by enhancing the efficiency of Rubisco (the CO2-fixing enzyme in pho-
tosynthesis) (73), suppressing photorespiration by altering pathways (142, 145) or reducing tran-
spiration using a synthetic light-gated ion channel (125), promoting rhizobial symbioses via syn-
thetic transkingdom signaling (38), and employing molecular farming—the artificial introduction
of genes into plants—to develop a COVID-19 vaccine (75).

6. CONCLUSIONS AND PERSPECTIVE

Crops, perhaps the most exciting human inventions, in turn, shape human civilization. Since
the Green Revolution, the pace of crop improvement has not been sufficient to meet the ever-
increasing demands of the growing worldwide population, especially in light of the increasingly
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changing climate and diminishing resources. Natural variation provides us with ideal experimen-
tal disturbances that could be used to characterize the genetic basis of trait variation, providing a
deeper understanding of biological insights and promoting knowledge-guided crop improvement.
As we are currently facing an era of rapidly developing technologies, our ability to map QTLs and
pinpoint QTNs will become even more efficient and high-throughput.

Although natural variants in crops have been around for tens of millions of years, they repre-
sent only a tiny portion of the theoretical variation space. Furthermore, during most of evolution,
these variants have led to the development of phenotypes that are not tailored for today’s or tomor-
row’s agricultural requirements. Genome editing and de novo sequence design (179) have greatly
expanded the vast scope of the potential variation space (Figure 4a) at rates many orders of mag-
nitude faster than natural evolution. Many biologically inspired novel alleles and new traits have
been created, holding great promise for helping us face problems raised by current and emerging
agricultural paradigms.

The continuous harnessing of natural alleles is essential for discovering new targets and in-
creasing the predictability of new-to-nature design. Further exploration and exploitation of these
alleles would offer unparalleled power, from reading to engineering. It is reasonable to expect that
the next generation of crops could be rationally (re)designed to enhance sustainable development
for both humans and the planet.

SUMMARY POINTS

1. Natural alleles are ideal experimental disturbances for characterizing causal genotype-
phenotype connections and the corresponding molecular mechanisms.

2. It is important to understand the trade-offs of different genetic designs. The increasing
availability of independent data sets provides the opportunity for replicating and identi-
fying novel associations and obtaining new biological insights.

3. During the last three decades, natural variants of many genes corresponding to vari-
ous important traits have been cloned, providing fundamental resources for knowledge-
guided crop improvement.

4. A general survey of quantitative trait loci cloned to date provides a picture of the molec-
ular, regulatory, and evolutionary mechanisms of natural variation.

5. Both basic research and applied research are needed for studies ranging from genetic
mapping of individual traits to analyzing overall crop performance. New agricultural
paradigms will continue to emerge, and new phenotypes are required to meet growing
demands.

6. Natural alleles are rich in scope, but emerging genome-editing techniques and other
synthetic biology technologies could further expand the mutational space by quickly
creating de novo alleles, pyramiding favorable alleles from multiple genes, designing
novel sequences for enhancing traits, or even generating new traits.
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