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Abstract

Diploidy has profound implications for population genetics and suscepti-
bility to genetic diseases. Although two copies are present for most genes
in the human genome, they are not necessarily both active or active at the
same level in a given individual. Genomic imprinting, resulting in exclusive
or biased expression in favor of the allele of paternal or maternal origin, is
now believed to affect hundreds of human genes. A far greater number of
genes display unequal expression of gene copies due to cis-acting genetic
variants that perturb gene expression. The availability of data generated by
RNA sequencing applied to large numbers of individuals and tissue types
has generated unprecedented opportunities to assess the contribution of ge-
netic variation to allelic imbalance in gene expression. Here we review the
insights gained through the analysis of these data about the extent of the
genetic contribution to allelic expression imbalance, the tools and statistical
models for gene expression imbalance, and what the results obtained reveal
about the contribution of genetic variants that alter gene expression to com-
plex human diseases and phenotypes.

101

mailto:cathal.seoighe@nuigalway.ie
https://doi.org/10.1146/annurev-biodatasci-021621-122219
https://www.annualreviews.org/doi/full/10.1146/annurev-biodatasci-021621-122219


1. INTRODUCTION

Allelic imbalance arises when there is a difference in the states or activities of the alleles of a locus
in a diploid (or higher-ploidy) organism. Much of the research on allelic imbalance has focused
on differences in mRNA abundance, which we will refer to as “allelic expression imbalance.” Im-
balance in mRNA abundance between alleles has been referred to as “allele-specific expression”
(ASE) (1).This term is often used to refer to gene expression imbalance,without regard to whether
the difference in expression is due to genetic variants or epigenetic effects, such as imprinting or
random monoallelic expression (RMAE) (2, 3). However, as it is suggestive of an effect that arises
from the allele itself, we propose that the term “allele-specific expression” should be reserved for
imbalance with a genetic origin and adopt that usage here.We use the term “allelic expression im-
balance” when the cause of the differences in expression between alleles is not specified. Similarly,
we use “allelic imbalance” to refer to any differences between alleles in chromatin state, expres-
sion level, or relative isoform abundance and “allele-specific imbalance” when these differences
are genetic in origin (see the sidebar titled Terminology as Used in This Review).

ASE has a close association with expression quantitative trait loci (eQTLs), which are genetic
loci with an effect on gene expression. eQTLs can act in cis, affecting the expression of a gene
on the same chromosome and typically located close to the locus, or in trans, in which case the
eQTL and the affected gene may be unlinked. When it acts in cis, an eQTL typically, though
not inevitably (4, 5), results in imbalance between the alternative alleles in heterozygotes. Conse-
quently, allelic imbalance is often used to support the identification of cis-eQTLs.The high power
of ASE for the detection of regulatory variants, particularly rare variants (6), and the contribution
of regulatory variants to variation in human phenotypes and complex disease susceptibility have
led to increasing interest in the phenomenon. This in turn has driven a proliferation of methods
to detect ASE itself and to leverage ASE to infer regulatory variants and their effects on gene
expression.

Here we review recent methodological developments and results of analyses of ASE, primarily
focusing on human data. We begin with an overview of the types of allelic imbalance and re-
view the mechanisms through which other types of imbalance can lead to ASE. We discuss the
range of statistical models and computational pipelines that have been developed to identify allelic
imbalance from high-throughput sequencing data and to leverage ASE to identify eQTLs and pri-
oritize genomic variants that may be causal for human diseases.We review estimates of the preva-
lence of ASE in human samples and discuss the implications of ASE for penetrance of genetic
diseases and its potential for discovering the causal variants underlying the phenotypic associa-
tions identified in genome-wide association studies (GWAS).

TERMINOLOGY AS USED IN THIS REVIEW

Allelic imbalance: difference in chromatin state or mRNA or protein levels between the alleles at a locus
Allelic expression imbalance: allelic imbalance that results in differences in mRNA levels, from complete imbal-
ance with exclusive expression of one allele to subtle differences in expression between alleles
Allele-specific imbalance: difference in chromatin state or mRNA or protein levels between the alleles at a het-
erozygous locus that is due to the genetic differences between the alleles
Allele-specific expression: allelic expression imbalance that is genetic in origin, i.e., a difference in expression
levels between alleles due to differences between the allele sequences
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2. MECHANISMS OF ALLELIC IMBALANCE AND ALLELE-SPECIFIC
EXPRESSION

Genetic variants can have an impact on chromatin structure (7, 8), on gene transcription (7, 9, 10),
and on posttranscriptional processes, including mRNA splicing (11–13), microRNA (miRNA)
binding (14), and mRNA translation (15–17) (Figure 1). In many cases, these variants can affect
the expression level of the linked allele, leading to ASE, as well as other measurable forms of allele-
specific imbalance. For example, genetic variants that alter transcription factor binding sites can
lead to imbalance in the transcription factor binding and result in ASE by altering the rate of
initiation of transcription. Similarly, allele-specific imbalance in mRNA splicing, which itself can
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Figure 1

Types of allelic imbalance. (a) Allelic expression imbalance. Three cases are shown: equal expression of both
alleles (top), exclusive expression of one allele (middle), and higher expression of one allele (bottom). (b) Allelic
imbalance in translation: Genetic variants can alter the rate of mRNA translation, resulting in different levels
of ribosome occupancy between alleles. (c) Imbalance in transcription factor binding: In the example shown,
a sequence variant reduces transcription factor binding affinity, resulting in allele-specific expression.
(d) DNA methylation imbalance: Methylation inhibits the expression of one allele. If the difference in
methylation results from cis-acting genetic variants it can lead to allele-specific expression. (e) Allele-specific
splicing: A variant that alters splicing results in different isoforms from the two alleles.
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impact on gene function and reveal splicing regulatory variants, can lead to ASE by altering the
frame of translation and inducing nonsense-mediated decay. Below, we consider some of the main
mechanisms leading to allele-specific imbalance, highlighting the potential of some of these to
give rise to ASE.

2.1. Transcriptional Regulation

Heterozygous single-nucleotide polymorphisms (SNPs) in noncoding regions may be causal for
ASE by affecting transcription factor binding affinity or causing differences in chromatin state be-
tween alternative alleles with a downstream effect on the rate of transcription. Chromatin modifi-
cations also play a key role in allelic imbalance of nongenetic origin (including genomic imprinting
and X chromosome inactivation). Interplay can also occur between genetic and epigenetic effects
through allele-specific DNA methylation (18).

2.1.1. Transcription factor binding. The alleles of a heterozygous SNP can have different
affinities for a transcription factor, resulting in allelic imbalance in transcription factor occupancy
(10) and distinct rates of transcription for each allele (19) (Figure 1c). Analysis of allele-specific
transcription factor binding has played an important role in understanding how noncoding DNA
can affect gene expression and contribute to disease phenotypes. In order to fully dissect the impli-
cations of altered binding, one should identify the causal gene regulatory variant, the transcription
factor that binds to it, and the target gene (20).

2.1.2. Chromatin accessibility. Epigenetic marks, such as DNAmethylation and histone mod-
ifications, can be inherited across cell generations, giving rise to distinct populations of cells ex-
pressing the same allele (7, 21). Imprinting and X chromosome inactivation are due to epigenetic
effects rather than genetic differences between alleles. Epigenetic differences caused by genetic
differences between alleles can also result in ASE via a process termed sequence-dependent allele-
specific methylation (22, 23) (Figure 1d). This can affect nonimprinted, autosomal genes in a
tissue- and individual-specific manner. Approximately 5% of CpG sites show evidence of sub-
stantial (>30%) imbalance in DNA methylation (24). Histone modifications are more complex
than CpG methylation, with hundreds of different types of histone tail modifications of distinct
amino acids in the tails of the H3 and H4 histones possible, including acetylation, methylation,
phosphorylation, ubiquitination, sumoylation, and ADP-ribosylation (7). The effects of genetic
variants on gene expression are, in many cases, mediated by their impact on chromatin modifica-
tions (25). Differences in chromatin accessibility can also result from allele-specific transcription
factor binding and may make a substantial contribution to complex diseases (8).

2.2. Posttranscriptional Mechanisms

There are multiple regulatory mechanisms that act on genes after they have been transcribed.
Because these mechanisms are often sequence specific, their effects can differ between alleles,
leading to allelic imbalance.

2.2.1. Nonsense-mediated decay and alternative splicing. Nonsense-mediated decay
(NMD) is a key cellular quality control mechanism that results in the elimination ofmRNAs carry-
ing premature termination codons (PTCs) that might result in malformed proteins (26).This pro-
cess takes place in the cytoplasm and is associated with the termination of translation and mRNA
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degradation (27). NMD also plays a role in controlling mRNA expression levels, contributing to
the regulation of a large number of human genes (28). A heterozygous SNP at which one of the al-
leles results in a PTC can result in degradation of mRNA derived from that allele, resulting in ASE
(29). Genetic variants can affect mRNA splicing by altering splicing signals in the transcript. Such
mutations can occur within or close to splice donor or acceptor sites, around the branch point, or
in exonic or intronic enhancer or suppressor sites (13). Common effects on splicing include exon
skipping, intron retention, alternate 3′ or 5′ exon ends, and mutually exclusive exons (30). Because
they act in cis, transcribed splicing mutations typically result in allele-specific splicing (12, 13).
When a mutation that alters mRNA splicing introduces an in-frame stop codon (e.g., by skipping
an exon within the coding region that is not a multiple of three nucleotides in length), it can trig-
ger NMD (30) targeted toward the affected allele. This results in a lower abundance of the mature
mRNA from the allele causing mis-splicing than from the wild-type allele and consequently re-
sults in ASE.Even whenNMD is not triggered, differences between the protein isoforms resulting
from genetic variants that affect splicing can have important functional consequences (31).

2.2.2. Variants affecting mRNA binding sites. RNA-binding proteins (RBPs) play a role in
posttranscriptional gene regulation by binding to RNA in a sequence-specific manner,modulating
the fate of the bound RNA. Genetic variants on the mRNA can disrupt the interaction of RBPs
with the mRNA, resulting in allelic imbalance in RNA binding and, potentially, ASE or allelic
variation in mRNA localization or translation (32). The application of a method developed to
detect allelic imbalance in RNA binding to eCLIP-Seq (enhanced cross-linking and immunopre-
cipitation sequencing) data from ENCODE (Encyclopedia of DNA Elements) revealed genomic
variants that alter mRNA splicing and gene expression levels (33, 34), illustrating the potential
of allele-specific RNA binding to cause ASE. miRNAs and long noncoding RNAs (lncRNA)
contribute to posttranscriptional regulation of gene expression. These noncoding RNAs can
themselves display allele-specific imbalance in their expression and induce ASE in the genes they
regulate (35, 36). Compared to protein-coding mRNAs, lncRNAs show greater levels of allelic
imbalance in their expression (37). The interaction of miRNAs with their target mRNAs can be
affected by SNPs within sites in the mRNA that are complementary to the miRNA (14) and,
again, this is likely to result in ASE.

2.3. Translational Mechanisms

Genomic variants that create or disrupt upstream initiation codons in the 5′ untranslated region,
alter mRNA secondary structure, affect the translation start site or nearby sequence motifs, or cre-
ate novel mRNA isoforms can impact mRNA translation (15). Because these variants all act in cis,
they can result in allelic imbalance in the rate of mRNA translation, as well as change the result-
ing protein product in some cases. Treating the ratio of ribosome-associated and non-ribosome-
associated RNA as a quantitative trait, Li et al. (16) identified SNPs inferred to have a significant
association with mRNA translation rates in human lymphoblastoid cell lines. A more recent study
(38) used translating ribosome affinity purification to identify genetic variants associated with al-
terations in ribosome occupancy and found evidence that sequence variants in upstream open
reading frames, miRNA binding sites, and poly-A signals led to variation in translation efficiency
in 1–2% of transcripts in mouse astrocytes. Allelic variation in the rate of translation can create
imbalance in protein abundance derived from the two alleles, even in the absence of ASE at the
mRNA level. Imbalance in RNA editing between alleles can also result in differences at the pro-
tein level, in this case unexpected variation in the amino acid sequence. A genome-wide search
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for allele-specific RNA editing has revealed examples of synonymous SNPs, resulting in nearby
nonsynonymous changes caused by RNA editing (17).

3. ALLELIC IMBALANCE ANALYSIS

3.1. Experimental Design Considerations and Computational Pipelines

Analysis of allelic imbalance and ASE from high-throughput sequencing data typically involves
the generation of counts of sequence reads mapped to each allele. Generating this data involves
multiple steps, as detailed below, each of which is associated with potential biases and confounding
factors. Several efficient and scalable pipelines are available for these tasks, such as AlleleWork-
bench (39),WASP (40), CloudASM (41), and ALEA (42). The discussion below focuses primarily
on the inference of allelic expression imbalance fromRNA sequencing (RNA-seq) data, but similar
approaches can be adapted for other types of allelic imbalance.

3.1.1. Sequencing. In order to have sufficient power to discriminate between the expression
levels of alternative alleles, analysis of allelic imbalance requires higher coverage than is generated
in a typical RNA-seq experiment focusing on total expression analysis (4). A threshold of 30 reads
spanning the location of interest is often applied to infer allelic imbalance at individual heterozy-
gous sites (43, 44). This can limit the number of genes with sufficient coverage to detect allelic
imbalance. For example, with a median of 55 million mapped reads per sample in the Geuvadis
study, there was a median of only 3,000 genes that met this threshold (45). This is affected by
sample heterozygosity, as well as sequencing depth, and does not consider the possibility of map-
ping to haplotypes, rather than individual heterozygous SNPs. The Genotype-Tissue Expression
(GTEx) project performed RNA sequencing to a median depth of 83 million reads (46), and using
haplotype-based methods, far higher proportions of genes could be tested for imbalance (47). In
the case of bulk RNA-seq experiments, only allelic imbalance that is mitotically stable (i.e., all
daughter cells from the original cell share the pattern of expression of one allele) can be detected.
Single-cell RNA-seq can provide information on dynamic imbalance that changes over time due
to, for example, bursts of transcriptional activity (48, 49). This can result in patterns of allelic
imbalance that are not stable over successive cell generations (50).

3.1.2. Alignment and removal of polymerase chain reaction duplicates. One of the first
steps in software pipelines for the analysis of allelic imbalance is to align the sequence reads to a
reference genome or transcriptome. Errors in the alignment, or mapping, can have a substantial
impact on the results obtained (45). Mapping errors (mapping a read to the wrong location or
failure to map a read) can occur with greater frequency for reads containing the alternative than
the reference allele at heterozygous SNPs (51), leading to false-positive signals of allelic imbalance.
Several strategies have been proposed to mitigate sequence alignment biases. These include the
use ofmasked references (52); personalised diploid genomes (53) or transcriptomes (54); haplotype
genomes for alignment (55); SNP-tolerant mappers such as GSNAP (56), STAR-WASP (57),
ASE-lux (58), and SNP-omatic (59); and methods that use remapping strategies such as WASP
(40). Methods that align sequence reads to a diploid transcriptome that includes genetic variants
have been reported to result in improved estimation of ASE (54).

Inference of imbalance at the gene level provides an incomplete picture, as there may be dif-
ferent degrees of imbalance between splice isoforms, with functional implications. It has also been
reported that the inference of ASE at the gene level is biased when splice isoforms are ignored
(60). For the task of inferring expression imbalance at the isoform level (60, 61), sequence reads
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must be mapped to both the isoform and allele from which they are derived. There can be ambi-
guity about both the transcript isoform and allele to which the read maps, particularly since many
reads do not overlap heterozygous SNPs or transcript regions that distinguish among different
isoforms. This has been addressed by applying a weighted allocation of reads using a hierarchi-
cal expectation-maximization strategy, which has been reported to lead to an improvement in the
inference of allelic imbalance in general, including at the splice isoform level (54).

The polymerase chain reaction (PCR) amplification step in the preparation of sequencing li-
braries can result in the same complementary DNA fragment being sequenced more than once.
This results in sequence reads with identical mapping coordinates. Although it is straightforward
to identify these duplicate reads and remove them, this is generally not recommended for RNA-
seq data due to loss of information for highly expressed genes. However, statistical tests of allelic
imbalance are often not robust to the presence of duplicate reads and, therefore, potential PCR
duplicates should be removed prior to analysis of allelic imbalance (45). Many tools for removing
duplicates retain the read with the best mapping score, but for analysis of allelic imbalance, it is
essential to use tools such asWASP (40) that select the retained reads at random to avoid mapping
bias in favor of the reference allele.

3.1.3. Genotyping and haplotype phasing. Generation of allele-specific read counts requires
at least one heterozygous SNP within the targeted feature (gene, transcription factor binding site,
etc). Heterozygous SNPs can be identified separately using genotyping arrays or genomic DNA
sequencing. Alternatively, the heterozygous SNPs can be inferred from the reads that map to the
feature of interest. In the case of ASE, for example, genotype can be inferred from the RNA-seq
reads. However, this carries the risk that features that show extreme imbalance can be mistakenly
called as homozygous, leading to false negatives in the inference of allelic imbalance. Conversely,
sequencing errors, transcription errors, or even rare somatic mutations that result in a site that
is homozygous in the germline incorrectly being called heterozygous can lead to a false positive
inference of allelic imbalance. Errors may also occur when genotyping is performed on genomic
DNA. In this case, homozygous sites incorrectly called heterozygous can lead to a false positive
inference of allelic imbalance (40). More recent methods for the analysis of allelic imbalance take
account of uncertainty in genotyping (40, 62, 63).

Accurate SNP phase data supports the inference of allelic imbalance by allowing reads to be
mapped to haplotypes spanning multiple heterozygous SNPs. The information contained in the
sequence reads can be used for this purpose, with the higher accuracy obtained when long read
data are available (61). Haplotypes inferred from population phasing can be combined with the
information contained in RNA-seq reads spanning heterozygous SNPs to improve accuracy (64).
However, this tends to be accurate for common variants but uncertain for rare variants.

Allele-specific read counts are the required input for many ASE tools (62, 65–68). These can
be determined for heterozygous SNPs using tools such as ASEReadCounter (45). However, map-
ping reads to haplotypes rather than individual heterozygous SNPs provides greater power for
ASE analysis (64). Haplotype-specific expression levels can be estimated from RNA-seq data us-
ing phASER (phasing and allele-specific expression from RNA-seq) (64) and haplotypes obtained
from the RNA-seq reads can be integrated with population-level phasing using phASER-pop (64)
to extend haplotypes to putative regulatory variants in untranscribed regions (Figure 2c). Some
tools such as IDP-ASE (61) and BYASE (60) perform haplotyping as part of ASE estimation. For
tools such as EAGLE (69) that take read counts as input, it is possible to supply gene-level haplo-
typic counts instead of heterozygous SNP counts (70), as phASER generates one count per gene
(64).

www.annualreviews.org • Allele-Specific Expression 107



a

b

c d

e

Heterozygous SNPs
Homozygous SNPs

Figure 2

The types of statistical models used in the analysis of allelic expression imbalance. Boxes represent
individuals. Filled gray circles represent heterozygous single-nucleotide polymorphisms (SNPs) and black
circles represent homozygous SNPs. Sequence reads mapped to alleles of (a) a single heterozygous SNP or
(b) haplotypes spanning multiple expressed heterozygous SNPs can be tested for unequal representation of
the two alleles. (c) Haplotypes can be extended to putative regulatory SNPs when population-based phasing
is taken into account. If data from multiple individuals are available, this allows the extent and direction of
expression imbalance to be tested for correlation with the allele at the putative regulatory SNP. (d) Statistical
modeling can be used to learn the parameters of distributions describing the variation of allele-specific
expression (ASE) across genes within a single sample. (e) Models can be constructed to combine evidence
from ASE in heterozygous individuals with evidence from variation in gene expression level across
individuals to detect regulatory variants. These models include distributions describing allelic expression
ratios across SNPs in the same gene and across different genes, as well as distributions for total expression
level of the gene in different individuals.

3.1.4. Considerations for analysis of allele-specific expression in cancer. Somatic copy
number alteration (SCNA) can be a confounding factor in analyzing allelic imbalance in cancer
studies, leading to false positives for ASE (71). A recent pan-cancer study revealed that SCNAs
accounted for 84.3% of the observed allelic imbalance (72). Some studies address this by filtering
positions that overlap with copy number variation (53, 73). Methods have been developed to
take account of copy number variation and tumor purity when assessing allelic imbalance of
somatic mutations (74). Due to the presence of high-frequency somatic mutations and copy
number alterations in cancer, genotyping is usually based on the normal sample. Comparison of
the cancer and normal sample can then reveal the allele that is retained in cancer in the case of
loss of heterozygosity, which can be informative about the process leading to cancer development
(75). Alternatively, ASE can be estimated for tumor and normal samples separately, and the
proportions of SNPs showing ASE can be compared between the two groups (76). Other studies
have compared the variant allele frequency of heterozygous SNPs in whole-exome sequences and
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transcriptome sequences (77–79) or used the allelic ratios in genomic DNA to correct for the
effects of copy number variants (67).

3.2. Statistical Methods

A wide range of statistical models have been developed for the analysis of ASE. Broadly, they can
be characterized by whether the goal is to detect allelic imbalance within individual samples or to
combine data across multiple samples, either to characterize ASE or to use it to help estimate the
effects of putative regulatory variants (Figure 2). For the former goal, the simplest method is to
treat the number of reads mapping to the reference (or alternative) allele as a binomial random
variable. Several Bayesian methods (61, 80, 81) have also been proposed to analyze ASE within
individuals. Methods focused on estimating ASE can be differentiated based on whether they are
applied on a gene-by-gene basis in individual samples, as is the case with the binomial test and
some more specialist methods (61, 82), or whether they attempt to learn model parameters by
considering multiple genes simultaneously (e.g., 80, 81). It is worth noting that when applied to
single samples, none of these methods can confirm ASE, as defined here, as it is not normally
possible to distinguish whether the observed imbalance has a genetic origin. Methods have been
developed to infer a genetic origin for the imbalance by relating expression imbalance to genotype
across multiple individuals (83). Of particular note has been the development of models designed
to learn about the effects of regulatory variants by combining ASE with variation in gene expres-
sion levels across individuals (40, 63, 84). Building on these, recent work has leveraged ASE to
estimate the expected variance in gene expression for human genes, with important implications
for understanding genetic disease mechanisms (85). Although the focus in this section is on meth-
ods for analysis of ASE, similar methods can be applied to other types of allelic variation, such as
allele-specific chromatin modifications.

3.2.1. The binomial test and its limitations. Some early studies of allelic imbalance were
based on microarray data and adapted methods from gene expression analysis and genotyping
to compare the expression of alternative alleles (9, 86). Contemporary studies, using sequencing,
generate counts of alleles mapping to reference and alternative alleles (Figure 2a). These counts
were initially compared using a binomial test (43–45, 87). Applied to individual heterozygous
SNPs, it is straightforward to evaluate a null hypothesis that a randomly sampled sequence read
has the same probability of being generated from the reference or alternative allele. This null
hypothesis can be modified to account for mapping bias in favor of the reference allele (51) by
setting a slightly higher probability of a read being generated from the reference allele, under
the null hypothesis of no imbalance (43). Further improvements in power can be obtained by
mapping reads to phased haplotypes rather than to individual heterozygous sites, and information
within RNA-seq reads, including allelic imbalance, can be leveraged to obtain phased information
even for rare variants (61, 64, 88). Statistical models have also been developed for joint inference
of heterozygous SNPs and detection of ASE from RNA-seq reads (62). In common with many
other methods to infer ASE (e.g., 67), the latter method uses a likelihood ratio test to evaluate a
null hypothesis corresponding to equal representation of alternative alleles, while accounting for
uncertainty in the inferred genotypes.

Inference of allelic imbalance using the binomial test, and its variants, has several major caveats.
Allele-specific count data tend to be overdispersed, relative to the binomial distribution, meaning
that the variance in the count of reads mapping to an allele is higher than expected for a binomial
random variable (40, 45). This overdispersion is likely to have both biological causes, reflecting a
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high prevalence of true allelic imbalance, and technical causes. It is possible to treat the number of
reads derived from one of the alleles or haplotypes as a beta-binomial [or a binomial-logit-normal
(85)] instead of a binomial random variable (40, 45, 82).The beta-binomial is a two-parameter dis-
tribution that arises when the parameter of a binomial random variable is itself a beta-distributed
random variable. It can be parameterized with a mean and an overdispersion parameter (82), with
the latter controlling the extent of the increase in variance relative to the binomial parameter.
However, if the overdispersion is primarily biological in origin, reflecting a high frequency of
allelic imbalance, including an overdispersion parameter estimated from the data in the null hy-
pothesis may result in a reduction in power to detect ASE.

One of the technical sources of overdispersion is the presence of duplicate reads, but this can
be addressed by removal of duplicates, as discussed previously, or through the use of molecular
barcodes (89). A lack of reproducibility of allelic imbalance results between technical replicates
has recently been reported and interpreted to suggest that other steps in library preparation may
be more important sources of bias than PCR amplification for allelic expression analysis (90).
This lack of reproducibility is in contrast to earlier results, obtained from technical replicates in
the Geuvadis study, which suggested that the variance across technical replicates was similar to
its expectation under the binomial distribution following implementation of quality control steps
(45). A key shortcoming of hypothesis testing for allelic imbalance is that it places the emphasis on
evaluating a null hypothesis, which may be unrealistic and sensitive to sequencing depth, rather
than on estimating the extent of the imbalance between alleles. Lastly, methods to detect allelic
imbalance in single individuals cannot easily distinguish between genetic and epigenetic causes
and therefore cannot be used to infer ASE (which as used here implies a genetic origin). Despite
the above potential limitations, the binomial test remains in use for detecting allelic expression
imbalance (47), perhaps due to the ease of interpretation and use.

3.2.2. Bayesian models for allelic imbalance. Several Bayesian methods have been developed
for the analysis of allelic imbalance. Considering data from just a single gene and a single in-
dividual, but multiple SNPs, IDP-ASE (61) simultaneously performs haplotype reconstruction
and inference of allelic expression imbalance from RNA-seq data. Taking a flat prior, it samples
from the joint posterior probability of the reconstructed haplotypes and the probability that a
random read is derived from one or other of the haplotypes in an individual. Skelly et al. (80)
developed a hierarchical Bayesian model for allelic imbalance that considers data from multiple
genes simultaneously (Figure 2d). This was first used with RNA-seq data derived from crosses
of Saccharomyces cerevisiae strains and data from a single human cell line (80). The study also in-
cluded genomic data, which allowed technical artifacts, such as mapping bias, to be taken into
account. The model for the RNA-seq data consisted of a mixture prior with a component cor-
responding to allelic imbalance genes and another for nonallelic imbalance genes, for which the
allele-specific read counts have the same distribution as in the genomic data. For the imbalance
component, allele-specific read counts in a given gene were modeled using a beta-binomial, pa-
rameterized with the expected value and overdispersion. Across all genes, both the expected value
and overdispersion were themselves beta-distributed, with independent parameters, allowing for
genes with variable or relatively constant allelic imbalance across heterozygous SNPs. Markov
chain Monte Carlo was used to obtain samples from the joint posterior distribution of the pro-
portion of genes with imbalanced expression, expected value, and overdispersion of the imbal-
ance for each gene, as well as parameters describing how these vary across the genes with allelic
imbalance. An advantage of this Bayesian approach is the capacity to make inferences about the
overall proportion of genes affected by allelic imbalance and the effect size distribution across
these genes. A Bayesian implementation of a mixed effects binomial regression model was used by

110 Cleary • Seoighe



the same group to combine information across individuals and across tissues to estimate ASE asso-
ciated withNeanderthal introgression (81).The parameter of the binomial distribution describing
the number of nonreference reads was modeled as a sum of a fixed intercept term (corresponding
to the ASE effect) and random effects for tissue and individual. Recently, Dong et al. developed a
Bayesian model together with a Python library (60) to estimate gene- and isoform-level expression
imbalance for any ploidy >1. The authors claimed that their method compares favorably to exist-
ing methods and gives consistent results across technical replicates. To the best of our knowledge,
however, no independent benchmarking has been carried out to evaluate the performance of these
methods.

3.2.3. Combining allele-specific expression and expression level to estimate regulatory
effects of genetic variants. When data from multiple individuals are available, it can become
possible to infer a genetic cause for the observed allelic imbalance (i.e., ASE, as defined in this
review) by identifying an association between the imbalance and nearby putative regulatory vari-
ants (83). This goal is enhanced when haplotypes can be extended beyond the transcribed region
to encompass putatively causal variants in regulatory regions (47). In addition to its high power
to detect regulatory variants even at low frequencies (6, 91), linking allelic imbalance with known
cis-eQTLs provides a confirmation that an eQTL that colocalizes with the affected gene acts in
cis (65). A regulatory variant acting in cis has the capacity to both alter the expression level of the
gene across samples and alter the relative expression levels of alleles in individual samples in which
the variant is heterozygous. In the absence of negative feedback loops that may buffer the effect
of regulatory variants in some cases (5), there is a straightforward relationship between the effect
of a regulatory variant on gene expression levels across samples and the extent of the associated
allelic imbalance.Mohammadi et al. (92) defined the allelic fold-change (aFC) as the expression of
an alternative relative to a reference allele in a heterozygous individual. In a linear model relating
gene expression across individuals to genotype (encoded as 0, 1, and 2 for reference homozygotes,
heterozygotes, and alternative allele homozygotes, respectively), the aFC corresponds to β1/
β0 + 1, where β0 is the intercept and β1 is the effect on gene expression per copy of the alternative
allele.

Instead of estimating ASE and eQTL effects separately, if the goal is to use ASE to understand
the impact of regulatory variants on expression, it is preferable to model the gene expression level
and allelic imbalance effects of regulatory variants jointly (Figure 2e). In this way, ASE com-
plements and greatly enhances the power to identify cis-acting eQTLs. Several similar statistical
models have been applied for this purpose (40, 63, 84). The model underlying the combined hap-
lotype test (CHT) inWASP (40), as well as those of RASQUAL (robust allele-specific quantitation
and quality control) (63) and TReCASE (total read count ASE) (84), involves a likelihood func-
tion based on the joint probability of the number of reads mapping to a gene of interest across
individuals and the reads mapping to specific haplotypes within individuals. All three methods use
likelihood ratio tests to test for a genetic effect on expression. Read counts across individuals are
modeled as a negative binomial (or negative beta-binomial in the case of CHT) and allele-specific
read counts are modeled using the beta-binomial. The negative binomial was used in early meth-
ods for RNA-seq analysis as an alternative to the Poisson distribution in order to allow for the
excess variance observed in read counts across samples, similar to the way in which the beta-
binomial is used as an overdispersed alternative to the binomial distribution, as discussed above.
There are some differences in the details of the methods, in particular, the way overdispersion is
modeled. For example, CHT uses combined gene- and sample-level overdispersion parameters
for the read depth, while RASQUAL uses a single gene-specific parameter to model overdisper-
sion in both the total read counts and the allele-specific counts. Other differences in the modeling
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choices, which include the handling of uncertainty in genotyping and phasing, are conveniently
summarized in Kumasaka et al.’s supplementary table 2 (63).These authors reported higher power
for their RASQUAL method compared to CHT and TReCASE (63); however, again no compre-
hensive and impartial evaluation of the performance of models and tools for these and related
tasks has yet been carried out, to the best of our knowledge.

3.2.4. The expected variance in gene expression. The objective of most of the methods dis-
cussed above is to estimate the relative expression of different gene alleles. Mohammadi et al. (85)
recently developed a method with the goal instead of exploiting ASE in order to estimate the ex-
pected variance in gene expression, VG, associated with the set of all regulatory variants acting in
cis. The model assumes heterozygous transcribed SNPs in imperfect linkage with an unobserved
biallelic regulatory variant. It also allows for the existence of a large number of other cis-acting
regulatory variants with smaller effects and invokes the central limit theorem to derive a binomial-
logit-normal distribution for the count of reads derived from the reference allele of the transcribed
variant. This distribution is similar to the beta-binomial random variable that has been used fre-
quently to model ASE, as discussed above. The genetic variation in gene expression estimated in
this way is of fundamental scientific interest, providing information about the selective constraints
acting on gene expression and relevant to understanding how gene expression evolves over time,
but it also provides a means to prioritize candidate disease-associated genes and mutations. The
method, termed analysis of expression variation (ANEVA), can be used to enhance the detection
of expression outliers (6) by highlighting expression outliers in genes with normally constrained
gene expression. The combination of ANEVA with a dosage outlier test (termed ANEVA-DOT)
was applied to patients with Mendelian muscle dystrophy and myopathy and was shown to have
high power to recover known causal variants, as well as to suggest novel potential causal variants,
one of which was confirmed in the study (85). In general, this statistical model for ASE and oth-
ers inspired by it may become an important part of the arsenal of analytical tools for the critical
problem of diagnosing causal variants for genetic diseases.

3.2.5. Single-cell data and cell type–specific imbalance. Bulk RNA-seq data are derived from
samples that generally consist of multiple cell types, mixed in varying proportions. Genes can be
regulated differently in the constituent cell types, resulting in variability in the extent of imbalance
that depends on cell type composition. This can be addressed by performing analysis of allelic
imbalance in single-cell RNA-seq data after first classifying cells by cell type (93). However, it
remains expensive and challenging to generate appropriate single-cell data, and large-scale surveys
of gene expression across tissues in multiple individuals have to date involved only bulk RNA
sequencing.Gene expression deconvolutionmethods can be used to estimate cell type proportions
in bulk RNA-seq data (94), particularly when gene expression within the constituent cell types is
available from relevant single-cell experiments. This can then be linked with imbalance analysis to
infer the cell types that are affected by allelic imbalance. The BSCET (bulk and single-cell RNA-
seq data to detect cell-type-specific allelic expression imbalance) method makes use of statistical
interaction between the extent of allelic imbalance and cell type proportions across samples to
infer the cell types affected by allelic imbalance in bulk RNA-seq data (95).

4. PREVALENCE OF ALLELE-SPECIFIC EXPRESSION

Several studies have reported the frequency with which allelic expression imbalance is observed
(9, 43, 44, 47, 80, 81, 96, 97). As discussed above, there are multiple genetic and epigenetic mech-
anisms that can lead to allelic expression imbalance; however, most allelic expression imbalance
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is reported to arise from genetic variation (43). Therefore, estimates of the overall prevalence
of allelic expression imbalance provide an indication of ASE prevalence. There are at least two
different quantities that can be considered. The first is the frequency with which the alleles are
imbalanced within an individual. This has been estimated by testing heterozygous SNPs for
evidence of imbalance (43). However, rejection of the simple null hypothesis of equal expression
of two alleles does not guarantee that the imbalance is biologically meaningful. Any sequence
heterogeneity between the alleles may have some effect on gene regulation, and rejection of the
null hypothesis may then become a question of the precision of the measurement, which tends
to be greater for more highly expressed genes. Methods that consider all genes simultaneously
and estimate the proportion of imbalanced genes and the effect size distribution are, therefore,
preferable (80). A second measure of prevalence of allelic imbalance that has been reported is the
proportion of genes that show imbalance in at least some subset of individuals, when data from
a cohort of individuals is analyzed. Given a large enough sample of individuals, high sequencing
depth, and samples from sufficient tissues, this proportion is likely to approach one, and to be
meaningful it therefore requires thresholds on the strength of imbalance and the proportion of
individuals displaying imbalance in a particular tissue type (47).

4.1. Divergent Reports of Allele-Specific Expression Frequency

In 2002, Yan et al. (98) developed an experimental method to assess differences in expression
between alleles of heterozygous SNPs and applied the method to data from 13 genes in 96 individ-
uals from Centre d’Étude du Polymorphisme Humain pedigrees. For six of these genes, there was
evidence of allelic imbalance, and this imbalance followed a pattern consistent with Mendelian
inheritance. This was followed in 2003 by an estimate of the prevalence of ASE in humans using
microarrays (9). Of 602 genes that could be tested, 54% showed evidence of allelic expression
imbalance. Using reciprocal crosses of two mouse subspecies and a method based on consistent
rejection of the null hypothesis of balanced allelic expression (p-value < 0.05) across replicates,
Pinter et al. (96) estimated that 20% of mouse genes show evidence of allelic expression imbalance
in any given tissue. The majority of the imbalance resulted from genetic effects rather than im-
printing or RMAE.By crossing inbredmice from three subspecies and applying a slightly different
method that also focused on rejection of the null hypothesis of balanced expression, Crowley et al.
(97) reported that over 80% of genes showed evidence of allelic imbalance. Using Bayesian mod-
eling Skelly also estimated a high frequency (80%) of ASE in a hybrid of two diverse S. cerevisiae
strains (80). Applying the same method to a single human cell line, they estimated a frequency of
approximately 20% of allelic imbalance (80). Studies that have investigated allelic imbalance in
humans rely on standing genetic variation, rather than crosses of divergent strains, and the preva-
lence of ASE may therefore depend on the heterozygosity of the individual. Data from human
lymphoblastoid cell lines, generated by the Geuvadis consortium (43), suggested that 6.5% of hu-
man genes show evidence of ASE, again using a binomial test (with a significance level of 0.005). A
similar frequency of ASE (390 out of 6,385 sites interrogated, or 6.1%) was reported by the pilot
study of GTEx (44), using the same p-value threshold. This was reduced to 2.3% when reads were
downsampled to achieve a common sequence depth of 30 reads.This decrease by nearly a factor of
three illustrates that the reported frequency of ASE based on statistical hypothesis tests is not a re-
liable indicator of the underlying prevalence. Estimation of the prevalence requires parameterized
models, such as those described earlier, that can provide estimates of the proportion of genes af-
fected within or across individuals and the distribution of the effect size. If the estimate of 20% for
the weight of the allelic imbalance component in the model of Skelly et al. (80) referred to above is
reasonable, this suggests that locus-specific tests may fail to detect a substantial proportion of ASE.
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This may be due to limitations in sequencing depth and insufficient power to detect weaker ASE
effects.

Approximately 25% of heterozygous SNPs that tag an introgressed haplotype from Nean-
derthals showed evidence of ASE (81). In some sense, this resembles a natural experiment analo-
gous to the reciprocal crosses that were used to estimate ASE prevalence in mouse (96, 97), except
that the crossed populations are outbred and the data are collected many generations after the hy-
bridizations, so that the introgressed segments may have been affected by evolutionary selection.
Interestingly, there was no significant difference in the prevalence of ASE between heterozygous
SNPs that tagged a Neanderthal allele compared to other heterozygous SNPs matched for mi-
nor allele frequency. This is surprising, given that the Neanderthal alleles should be associated
with more divergent regulatory regions, creating more opportunities for allelic imbalance. The
lack of a difference was interpreted as evidence of postintrogression purifying selection acting
on variants that affect gene regulation (81). However, it is worth noting that the comparison in-
volves Neanderthal haplotypes that are at low frequency in modern humans, potentially due to the
relatively small contribution of the Neanderthal introgression and modern human haplotypes at
comparable frequencies, some of which will have been suppressed by purifying selection in mod-
ern humans. Although no differences are reported in ASE prevalence between introgressed and
nonintrogressed haplotypes, a cross-tissue analysis suggested lower relative expression of Nean-
derthal haplotypes in brain and testis compared to other tissues (81).

4.2. Survey of Allele-Specific Expression Across Tissues and Over Time

Generation of RNA-seq data from over 838 individuals across 49 human tissues by the GTEx
Consortium (46) has provided a real opportunity to gain insights into the prevalence and patterns
of ASE. Analysis of the most recent release of GTEx suggested that a very high proportion of
genes show evidence of ASE in at least some of the samples (47). Among protein-coding genes,
53% showed evidence of strong ASE (at least a two-fold difference in expression between the
alleles) in at least 50 individuals in at least 1 of the 49 tissues (Figure 3). Given the mean number
of samples per tissue (311) this corresponds to strong imbalance in a substantial fraction of the
samples. Note that these results show that most genes can be affected by ASE, but they do not
translate easily into an estimate of the probability that a given gene will show expression imbalance
in a given sample.

Analysis of the prevalence of ASE across samples has suggested some differences across GTEx
tissues, with testis having the largest number of genes with detected imbalance, although this ap-
peared to have been driven largely by the number of expressed genes (47). An earlier analysis of
whole-blood RNA-seq data from 65 individuals at age 70 and at age 80 from the PIVUS (Prospec-
tive Investigation of the Vasculature in Uppsala Seniors) cohort (99) suggested a small (2.7%) but
statistically significant increase in the prevalence of ASE with age (100), although there were ex-
amples of genes for which ASE tended to decrease as well as increase with age.Many of the genes
that showed changes in ASE over time were associated with the immune response and suggested
to be involved in the aging process (100). Changes in ASE with age suggest that it may be valu-
able to evaluate the frequency and effect size distribution of ASE across genes at a sample level.
This is likely to reflect sequence heterozygosity but, given the relationship with age,may also have
associations with phenotype or disease risk.

4.3. Caveats

Recent results suggest that ASE is affected by technical artifacts arising most likely during the
preparation of sequencing libraries. Mendelevich et al. (90) simulated replicate RNA-seq datasets
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Figure 3

The top row shows the proportion of protein-coding genes with allelic imbalance data in at least the number
of individuals shown in the column labels for at least one tissue from the GTEx (Genotype-Tissue
Expression) Consortium. The remaining rows show the proportion of protein-coding genes with statistically
significant allelic imbalance (binomial test false discovery rate <0.05) in at least the number of individuals
shown in the column labels in at least one tissue, as a function of the minimum effect size (expression ratio
between the alleles) given in the row labels. Figure reproduced from Reference 47, licensed under CC-BY
4.0 (http://creativecommons.org/licenses/by/4.0/).

and found that the differences in allelic imbalance between technical replicates were greater than
expected from the simulations. They used this difference to calculate an overdispersion factor,
which was found to be relatively stable for a given sample. This was then used as a correction
factor for the inference of imbalance, resulting in substantial reductions in false positive rates.
The absence of technical replicates makes it difficult to assess the potential of false positives to
contribute to the high rates of allelic imbalance reported by the GTEx Consortium. However, it
is difficult to envision how such technical artifacts could result in strong and consistent signals
of ASE across such high proportions of individuals. Encouragingly, the aFCs reported by GTEx
from ASE were also highly consistent (Spearman ρ = 0.83), with aFCs estimated orthogonally
on the basis of eQTL analysis. Interestingly, excluding individuals who were heterozygous for a
known eQTL led to a relatively small drop (median of 7.5%) in the number of genes with evidence
of ASE in at least one sample of a given tissue (47). It is therefore possible that some of the ASE
that is not supported by eQTLs is artifactual; however, it seems more likely that this result points
to a large number of low-frequency eQTLs that have not been discovered.

Although the focus of this review is primarily on ASE, it is interesting to note the recent contro-
versy over the prevalence of imbalance resulting from RMAE. By applying single-cell sequencing
to mouse fibroblasts and human CD8+ T cells, Reinius et al. (50) found only a small proportion
(<1%) of generally low-expression genes were affected by clonal RMAE, while a much larger
number of genes displayed evidence of dynamic imbalance that was not stable across cell divi-
sions. This contrasted with prior studies (101, 102) that had suggested thousands of genes display
RMAE and generated some debate in the literature (103, 104), with the difference in views com-
ing down primarily to questions of semantics and thresholds applied in the analysis. Reinius &
Sandberg (104) argued that reporting the number of genes that are affected by clonal RMAE in
any cell clone overstates the effect if only a small proportion of genes are affected in an individual
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cell clone. To some extent, there is a similar danger inherent in estimating the prevalence of ASE
of genetic origin by reporting genes that display ASE in any samples, when a large number of
samples are analyzed, or by reporting ASE that affects a substantial proportion of the individuals
in at least one tissue (47). Frequent ASE in a gene across individuals does appear to reflect the
genetic variability in the expression level of the gene and can be informative about the phenotypic
consequences of regulatory variants (85). Although more vulnerable to sample level artifacts, esti-
mates of the extent of allelic imbalance within an individual may also be informative as a measure
of expression heterozygosity in that individual.

5. ALLELIC IMBALANCE AND DISEASE

5.1. Contribution of Allelic Imbalance to Disease

ASE has the potential to contribute to disease when expression imbalance favors the disease allele
and the functional allele is lowly expressed (52, 75, 105–108). Several studies have reported a
tendency for higher expression of the minor allele in cases across several diseases, including autism
spectrum disorder, cardiac disease, and Zellweger spectrum disorder (52, 105–107, 109). This is
consistent with a higher impact of disease-causingminor variants in individuals,with ASE favoring
their expression. It may provide a mechanism for disease alleles that would otherwise be recessive
to make a greater contribution to phenotype in heterozygous individuals (107, 109). Conversely,
allelic imbalance can in some cases function to compensate for high-impact autosomal-dominant
disease variants when the wild-type allele is more highly expressed (108).

Loss-of-function (LOF) mutations in tumor-suppressor genes that might otherwise be reces-
sive can contribute to cancer development when the more highly expressed allele is affected (78).
Allele-specific loss of heterozygosity across cancer samples (where the same allele is consistently
lost or downregulated) has been used to identify germline variants contributing to cancer risk,
highlighting likely risk variants in genes involved in DNA repair (75). ASE may also result in one
somatic mutation being sufficient to prevent the expression of a tumor-suppressor gene at the
level required to suppress tumorigenesis (98), increasing the risk of cancer development. Conse-
quently, at the population level, ASE of cancer-associated genes may be a risk factor for cancer
development, as well as for other genetic diseases (109). This is further supported by the obser-
vation that LOF mutations in tumor-suppressor genes are common in human populations (76).
Allelic imbalance is also associated with oncogenes in cancer,with a tendency for the allele carrying
the oncogenic somatic mutations to be overexpressed (74). Cancer driver mutations that result in
constitutive activation of genes that contribute to cancer development [e.g.,TERT (110)] can lead
directly to expression imbalance if activation of one allele is sufficient to confer the corresponding
oncogenic property.

5.2. Use of Allelic Imbalance to Infer Causal Mechanisms
of Disease-Associated Loci

The analysis of allelic expression imbalance complements eQTL analysis by providing informa-
tion on what is happening at the individual level. This can help to understand the impact of cis-
regulatory variation and interpretation of the effects of rare variants (111). The sharing of envi-
ronmental and technical factors between different alleles within the same sample is a particular
advantage of ASE for understanding the function of cis-factors (85).Combining eQTL and ASE to
fine-map functional genetic variants identified fewer but more accurate causal variants that were
enriched for active regions in the genome (112). The analysis of allelic imbalance has been used
to assess the function of putative disease-causing regulatory variants identified through GWAS
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studies (11, 19, 112). Specific forms of allelic imbalance, including imbalance in DNA methyla-
tion (105, 113), NMD (72, 106), or splicing (11), can reveal the mechanisms leading to disease,
providing a means to explore the impact of putative disease-causing variants identified through
GWAS.

6. CONCLUSIONS

Allelic imbalance is common in humans at all levels, from chromatin state to mRNA expression
level and splicing and the rate of protein translation. Evidence from large-scale studies suggests
that most allelic imbalance in gene expression is genetic in origin. Genetic imbalance in gene ex-
pression, referred to here as ASE, has implications for disease risk and the severity of the pheno-
typic impacts of disease-causing coding sequence variants. The cells of diploid individuals provide
a readout on the impacts of regulatory variants, enabling the functional consequences of putative
regulatory variants to be explored, even in the case of rare variants. A large number of computa-
tional methods and statistical models have been developed to assess the information provided by
allelic imbalance, both within and across individuals, with the latter methods often enabling ASE
to be combined with interindividual variation in expression level to assess the impact of regulatory
variants. Further independent benchmarking of these methods will help to guide optimal analysis.
With the increasing power to detect genetic loci with subtle effects on human phenotype variation
in human populations, there is an ever-increasing demand for methods that can accurately infer
the effects of genomic variants at the molecular level. This is coupled with a need for improved
methods to assess the likely consequences of de novo variants with a suspected involvement in
disease. Leveraging ASE to help assess the variance in gene expression in the normal population
in order to prioritize variants that have a large effect on gene expression, relative to the variance
in the population, is a particularly promising development and one that underscores the power of
ASE to derive disease-relevant insights.
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72. Calabrese C, Davidson NR, Demircioğlu D, Fonseca NA, He Y, et al. 2020. Genomic basis for RNA
alterations in cancer.Nature 578:129–36

73. Li G, Bahn JH, Lee JH, Peng G, Chen Z, et al. 2012. Identification of allele-specific alternative mRNA
processing via transcriptome sequencing.Nucleic Acids Res. 40:e104

74. Bielski CM, Donoghue MT, Gadiya M, Hanrahan AJ, Won HH, et al. 2018. Widespread selection for
oncogenic mutant allele imbalance in cancer. Cancer Cell 34:852–62

75. Luft J, Young RS, Meynert AM, Taylor MS. 2020. Detecting oncogenic selection through biased allele
retention in The Cancer Genome Atlas. bioRxiv 2020.07.03.186593. https://doi.org/10.1101/2020.
07.03.186593

76. Clayton EA, Khalid S, Ban D, Wang L, Jordan IK, McDonald JF. 2020. Tumor suppressor genes and
allele-specific expression: mechanisms and significance. Oncotarget 11:462–79

77. Batcha AM,Bamopoulos SA,Kerbs P,Kumar A, Jurinovic V, et al. 2019. Allelic imbalance of recurrently
mutated genes in acute myeloid leukaemia. Sci. Rep. 9:11796

78. Rhee JK, Lee S, Park WY, Kim YH, Kim TM. 2017. Allelic imbalance of somatic mutations in cancer
genomes and transcriptomes. Sci. Rep. 7:1653

79. Halabi NM, Martinez A, Al-Farsi H, Mery E, Puydenus L, et al. 2016. Preferential allele expression
analysis identifies shared germline and somatic driver genes in advanced ovarian cancer. PLOS Genet.
12:e1005755

80. Skelly DA, Johansson M, Madeoy J, Wakefield J, Akey JM. 2011. A powerful and flexible statistical
framework for testing hypotheses of allele-specific gene expression from RNA-seq data. Genome Res.
21:1728–37

81. McCoy RC, Wakefield J, Akey JM. 2017. Impacts of neanderthal-introgressed sequences on the land-
scape of human gene expression. Cell 168:916–27

82. Mayba O, Gilbert HN, Liu J, Haverty PM, Jhunjhunwala S, et al. 2014. MBASED: allele-specific ex-
pression detection in cancer tissues and cell lines.Genome Biol. 15:405

120 Cleary • Seoighe

https://doi.org/10.1101/2020.07.03.186593


83. Lefebvre JF, Vello E, Ge B, Montgomery SB, Dermitzakis ET, et al. 2012. Genotype-based test in
mapping cis-regulatory variants from allele-specific expression data. PLOS ONE 7:e38667

84. Sun W. 2012. A statistical framework for eQTL mapping using RNA-seq data. Biometrics 68:1–11
85. Mohammadi P, Castel SE, Cummings BB, Einson J, Sousa C, et al. 2019. Genetic regulatory variation

in populations informs transcriptome analysis in rare disease. Science 366:351–56
86. Pant PK, Tao H, Beilharz EJ, Ballinger DG, Cox DR, Frazer KA. 2006. Analysis of allelic differential

expression in human white blood cells.Genome Res. 16:331–39
87. ’t Hoen PAC, Friedländer MR, Almlöf J, SammethM, Pulyakhina I, et al. 2013. Reproducibility of high-

throughput mRNA and small RNA sequencing across laboratories.Nat. Biotechnol. 31:1015–22
88. Berger E, Yorukoglu D, Zhang L, Nyquist SK, Shalek AK, et al. 2020. Improved haplotype inference by

exploiting long-range linking and allelic imbalance in RNA-seq datasets.Nat. Commun. 11:4662
89. Marx V. 2017. How to deduplicate PCR.Nat. Methods 14:473–76
90. Mendelevich A, Vinogradova S, Gupta S, Mironov AA, Sunyaev S, Gimelbrant AA. 2020. Unexpected

variability of allelic imbalance estimates from RNA sequencing. bioRxiv 2020.02.18.948323. https://
doi.org/10.1101/2020.02.18.948323

91. Almlöf JC, Lundmark P, Lundmark A, Ge B, Maouche S, et al. 2012. Powerful identification of
cis-regulatory SNPs in human primary monocytes using allele-specific gene expression. PLOS ONE
7:e52260

92. Mohammadi P, Castel SE, Brown AA, Lappalainen T. 2017. Quantifying the regulatory effect size of
cis-acting genetic variation using allelic fold change.Genome Res. 27:1872–84

93. Choi K, Raghupathy N, Churchill GA. 2019. A Bayesian mixture model for the analysis of allelic ex-
pression in single cells.Nat. Commun. 10:5188

94. Shen-Orr SS, Gaujoux R. 2013. Computational deconvolution: extracting cell type-specific information
from heterogeneous samples. Curr. Opin. Immunol. 25:571–78

95. Fan J, Wang X, Xiao R, Li M. 2020. Detecting cell-type-specific allelic expression imbalance by inte-
grative analysis of bulk and single-cell RNA sequencing data. bioRxiv 2020.08.26.267815. https://doi.
org/10.1101/2020.08.26.267815

96. Pinter SF, Colognori D, Beliveau BJ, Sadreyev RI, Payer B, et al. 2015. Allelic imbalance is a prevalent
and tissue-specific feature of the mouse transcriptome.Genetics 200:537–49

97. Crowley JJ, Zhabotynsky V, Sun W, Huang S, Pakatci IK, et al. 2015. Analyses of allele-specific gene
expression in highly divergent mouse crosses identifies pervasive allelic imbalance.Nat.Genet.47:353–60

98. Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW, et al. 2002. Allelic variation in human gene
expression. Science 297:1143

99. Lind L, Fors N,Hall J,Marttala K, Stenborg A. 2005. A comparison of three different methods to evalu-
ate endothelium-dependent vasodilation in the elderly: the Prospective Investigation of the Vasculature
in Uppsala Seniors (PIVUS) study. Arterioscler. Thromb. Vasc. Biol. 25:2368–75

100. Balliu B, Durrant M, de Goede O, Abell N, Li X, et al. 2019. Genetic regulation of gene expression and
splicing during a 10-year period of human aging.Genome Biol. 20:230

101. Gimelbrant A, Hutchinson JN, Thompson BR, Chess A. 2007. Widespread monoallelic expression on
human autosomes. Science 318:1136–40

102. Savova V, Chun S, Sohail M, McCole RB, Witwicki R, et al. 2016. Genes with monoallelic expression
contribute disproportionately to genetic diversity in humans.Nat. Genet. 48:231–37

103. Vigneau S, Vinogradova S, Savova V, Gimelbrant A. 2018. High prevalence of clonal monoallelic ex-
pression.Nat. Genet. 50:1198–99

104. Reinius B, Sandberg R. 2018. Reply to ‘High prevalence of clonal monoallelic expression’. Nat. Genet.
50:1199–200

105. Izzi B, Pistoni M, Cludts K, Akkor P, Lambrechts D, et al. 2016. Allele-specific DNA methylation rein-
forces PEAR1 enhancer activity. Blood 128:1003–12

106. McKean DM, Homsy J, Wakimoto H, Patel N, Gorham J, et al. 2016. Loss of RNA expression and
allele-specific expression associated with congenital heart disease.Nat. Commun. 7:12824

107. Falkenberg KD, Braverman NE, Moser AB, Steinberg SJ, Klouwer FC, et al. 2017. Allelic expression
imbalance promoting a mutant PEX6 allele causes Zellweger spectrum disorder. Am. J. Hum. Genet.
101:965–76

www.annualreviews.org • Allele-Specific Expression 121

https://doi.org/10.1101/2020.02.18.948323
https://doi.org/10.1101/2020.08.26.267815


108. de Klein N, van Dijk F, Deelen P, Urzua CG, Claringbould A, et al. 2020. Imbalanced expression
for predicted high-impact, autosomal-dominant variants in a cohort of 3,818 healthy samples. bioRxiv
2020.09.19.30009. https://doi.org/10.1101/2020.09.19.300095

109. Castel SE, Cervera A, Mohammadi P, Aguet F, Reverter F, et al. 2018. Modified penetrance of coding
variants by cis-regulatory variation contributes to disease risk.Nat. Genet. 50:1327–34

110. Huang F, Bielski C, Rinne M, HahnW, Sellers W, et al. 2015. TERT promoter mutations and monoal-
lelic activation of TERT in cancer. Oncogenesis 4:e176

111. GTEx Consort. 2017. Genetic effects on gene expression across human tissues.Nature 550:204–13
112. Zou J, Hormozdiari F, Jew B, Castel SE, Lappalainen T, et al. 2019. Leveraging allelic imbalance to

refine fine-mapping for eQTL studies. PLOS Genet. 15:e1008481
113. Chiba H, Kakuta Y, Kinouchi Y, Kawai Y, Watanabe K, et al. 2018. Allele-specific DNA methyla-

tion of disease susceptibility genes in Japanese patients with inflammatory bowel disease. PLOS ONE
13:e0194036

122 Cleary • Seoighe

https://doi.org/10.1101/2020.09.19.300095

