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Abstract

With the recent transformative developments in single-cell genomics and,
in particular, single-cell gene expression analysis, it is now possible to study
tissues at the single-cell level, rather than having to rely on data from bulk
measurements. Here we review the rapid developments in single-cell RNA
sequencing (scRINA-seq) protocols that have the potential for unbiased iden-
tification and profiling of all cell types within a tissue or organism. In ad-
dition, novel approaches for spatial profiling of gene expression allow us to
map individual cells and cell types back into the three-dimensional context
of organs. The combination of in-depth single-cell and spatial gene expres-
sion data will reveal tissue architecture in unprecedented detail, generating a
wealth of biological knowledge and a better understanding of many diseases.
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INTRODUCTION

All cells in the human body carry the same genetic information yet can differentiate into a vast
array of different cell types and tissues. Modern genomic methods make it possible to identify
tissue-specific patterns of gene expression, and this has led to key insights into the molecular
mechanisms underlying the function of different tissues and organs. However, tissues are complex
compositions of cooperating individual cells, which are the basic functional unit of biology and
of gene regulation. To fully understand an organ’s function, researchers need to identify all the
different cell types that make up this tissue and to examine how individual cells or cell type
composition can change dynamically over time or in response to external stimuli.

Recently, projects such as GTEx (Genotype-Tissue Expression; https://www.gtexportal.org)
(1) and Illumina Human Body Map 2.0 have generated large-scale gene expression data sets from
different organs. A key challenge now is to harness these data sets for a better understanding of
tissue function. Here we review how tissue gene expression data sets can shed light on the presence,
abundance, and function of distinct cell types; how individual cells can now be profiled; and how
these data can be placed back into the organ context to understand function (Figure 1).
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Figure 1

Overview of approaches to identify cell types present in tissues and place them back into their tissue context. (#) Bulk analysis obtains
information from homogenized tissue and relates this back to known reference cell types. (b) In single-cell analysis, tissues are first
dissociated to a single-cell suspension and then profiled individually by single-cell RINA sequencing (scRNA-seq). Cell types, including
previously unknown cell types, can be identified but no positional information is retained. (¢) In spatial analysis, sections are cut from
tissue blocks and the position of cell types within the tissue can be identified using marker genes. This technique generates
two-dimensional (2D) information but often for only a few genes. Once spatial data are available, scRNA-seq data can be mapped back
onto the tissue and it is possible to reconstruct a 2D image of the tissue.
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STUDYING TISSUE ARCHITECTURE AT THE SINGLE-CELL LEVEL

Early single-cell research used quantitative polymerase chain reaction (PCR), fluorescence-
activated cell sorting (FACS), and immunofluorescence or fluorescence in situ hybridization
(FISH) to investigate a limited number of genes or proteins, but technical improvements have
allowed significantly more genes or proteins to be investigated. Mass cytometry [or cytometry
by time-of-flight (CyTOF)] now allows up to 40 proteins to be assayed in parallel using metal-
conjugated antibodies (2). These techniques have contributed to the delineation of cell types and
subtypes, but they rely on a panel of preselected genes or proteins. This may bias the study and
requires prior knowledge of, for example, the identity of key cell surface markers, which is not
always available.

In contrast, single-cell genomics offers the chance to profile tissues at the single-cell level in
an unbiased way. It is now possible to generate successful sequencing libraries from RNA (3) and
DNA (4) from a subnanogram of material. In 2009, Tang et al. (3) presented the first single-cell
transcriptome based on previous improvements in complementary DNA (cDNA) amplification (5,
6). Subsequently, full-length cDNA libraries from several mouse oocytes and a single blastomere
were generated and sequenced (3). Two years later, Navin et al. (4) generated the first single-cell
genomes from breast cancer samples. It was these pioneering studies that opened the gateway to
the new field of single-cell genomics. Over the past decade, rapid experimental and computational
developments together with massive improvements in sensitivity and throughput have generated
fundamental new insights into many biological systems.

CELL-TYPE DECONVOLUTION

We should not forget that although single-cell technology is transforming the way we study tissues,
there is already a very large amount of bulk data (obtained from a complex mixture of cells) that
can be mined for more facts about tissue composition. Furthermore, bulk tissue or biopsy samples
remain the primary source of material for biomedical research. The abundance of bulk data has
led to the development of computational techniques that infer cell type composition by assuming
that gene expression patterns in complex tissues are a linear combination of those in different cell
types (7). Different studies have used regression and nonnegative matrix factorization on bulk data
to identify distinct cell types in colon cancer samples (8), reveal cell cycle dynamics in yeast (9),
and estimate the relative proportions of predefined cell types in the mouse mammary gland (10).

Cell type-specific significance analysis of microarrays (11) and population-specific expression
analysis, a tool for RNA sequencing (RNA-seq) data, have been developed for deconvolution but
are limited to a relatively small number of cell types. Altboum et al. (12) improved on this num-
ber, generating a reference compendium of over 200 immune cells. They also applied digital cell
quantification to reveal the dynamics of up to 70 immune cell types in influenza infection (12).
CIBERSORT (13), a widely adopted algorithm, has improved methods further by using a machine
learning approach (support vector regression) to reveal, for example, a complex relationship be-
tween tumor-infiltrating immune cells and cancer survival (14). For a detailed survey of available
deconvolution tools, readers are referred to References 7 and 15. Although these computational
tools are very valuable, they require prior knowledge and do not identify new cell types. Single-cell
RINA sequencing (scRNA-seq) can overcome both of these limitations.

IMPACT OF RECENT DEVELOPMENTS IN scRNA-seq

In the field of single-cell genomics, scRINA-seq is the most rapidly evolving technique and has
proved to be a powerful tool in the study of complex tissue. Table 1 highlights recent insights
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Table 1

Recent examples of atlas-type single-cell studies of tissues

Reference(s)

Tissue

Number of
cells

Method

Key results

104

Mouse spleen

>4,000

MARS-seq

—

. Developed MARS-seq
. Demonstrated the feasibility of using scRNA-seq

to unbiasedly identify different cell types and
subtypes in a tissue

22

Mouse retina

>44,000

Drop-seq

1. Developed Drop-seq

. Successfully uncovered 39 cell populations in the

retina

. Determined that large cell number is important

for clear distinctions among these cell types

105

Mouse somatosensory
cortex and
hippocampus

>3,000

STRT-seq
(Fluidigm C1)

—_

. Successfully identified 47 distinct cell types in the

cortex

. Developed a biclustering method for cell and gene

clustering

106

Human pancreas

>3,000

CEL-seq2

—_

. Provided cell type—specific markers for different

pancreatic cells

. Identified CD24 and TM4SF4 as reliable markers

to purify alpha and beta cells

107, 108

Human pancreas

>2,000,
>1,000

SMART-seq2,
Fluidigm C1

—_

. Successfully identified various cell types and novel

subtypes in the human pancreas

. Revealed key genes that have altered expression in

type 2 diabetes

27

Caenorbabditis elegans
(L2 stage)

~50,000

sci-RNA-seq

1. Developed sci-RINA-seq

. Was the first single-cell atlas for a whole organism
. Was able to uncover rare cell types for as few as

one cell in the worm

28

Mouse brain

>100,000

SPLiT-seq

—

. Developed SPLiT-seq
. Provided a snapshot of a whole brain in a

developmental stage (postnatal day 5)

109

Human blood

>2,000

SMART-seq2

—_

. Unbiasedly identified six dendritic cell subtypes

and four monocyte subtypes

. Discovered a new dendritic cell type that potently

activates T cells

24

Human blood

>68,000

Chromium

. Developed the Chromium system
. Provided a commercial platform for

high-throughput droplet-based scRNA-seq

110

20 different organs and
tissues from mouse

~100,000

Chromium
and
SMART-seq2

—

. Provided an expression reference of cell types from

the mouse

. Built a useful resource that can serve as a

foundation for future mouse studies

111

51 different organs and
tissues from mouse

>400,000

Microwell-seq

1. Developed Microwell-seq

. Provided an initial single-cell expression atlas for

the mouse
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SINGLE-CELL ISOLATION METHODS

The first step of most scRINA-seq protocols is the isolation of single cells, and this step is the primary determinant
of the throughput of the method. Since the abundance of different cell types differs in tissues, it is critical to
profile enough cells to capture infrequent or rare cells. A key aim in the technological development of single-cell
experiments is to increase the number of cells that can be analyzed (59). Early proof-of-principle studies used
low-throughput methods like manual picking and FACS to isolate single cells into plates or microfluidic chips (e.g.,
Fluidigm C1) to capture single cells in nanoliter chambers and subsequently generate sequencing libraries (3, 17,
18, 44, 65, 104, 112-117). These strategies can process hundreds of cells per experiment but can be laborious and
error prone. To overcome this, many research groups have used robotics to automate procedures. Subsequently,
droplet-based microfluidics (22-24) and nanowell-based technologies (25, 118-121) were developed to randomly
capture single cells into isolated nanoliter compartments (droplets or nanowells), increasing the throughput to tens
of thousands of cells while at the same time significantly reducing manual labor. scRNA-seq at this scale makes
unbiased tissue profiling possible.

into tissue complexity and heterogeneity. Currently, scRNA-seq is the most sensitive and unbiased

way to measure cell types and states. The process involves several important steps. First, single
cells are isolated (see sidebar titled Single-Cell Isolation Methods), then sequencing libraries are
prepared from these single cells. The basic principles used to produce and sequence single-cell
libraries are the same as those used for bulk material. The issue for single-cell library preparation

is the tiny amount of starting material. Single cells contain as little as 10-30 pg of RNA, and

for lowly expressed genes, only a small number of transcripts will be present in the cell. When

adapting sequencing protocols to single cells, this scarcity of input material is the key challenge

and ingenious solutions have emerged to counter this.

scRNA-seq library construction methods use well-established chemistry but optimize many of

the steps (e.g., removing many intermediate purification steps) to make them suitable for single

cells. The study object of most scRNA-seq methods so far is polyadenylated messenger RNA
(mRNA). Therefore, most scRNA-seq protocols start with capturing mRNA with oligo-dT cou-
pled with either a sequence for PCR oraT’7 promoter and synthesize the first strand of cDNA using
a reverse transcriptase, with Moloney murine leukemia virus (MMLV) reverse transcriptase being

the most widely used. The main differences between various scRNA-seq protocols are (#) how the
second strand of cDNA is generated (see the sidebar titled Second Strand Generation) and (4) how
sequencing libraries are constructed and amplified (see the sidebar titled Library Construction).

The miniscule amounts of starting material necessitate the use of multiple rounds of PCR,

leading to potentially very large amplification biases. This can be overcome by using PCR or
ligation to integrate a very diverse set of oligonucleotide barcodes called unique molecular iden-
tifiers (UMIs) into ¢cDNA transcripts (see the sidebar titled Barcoding or Indexing). After PCR
amplification, we can conclude that molecules with the same UMI were derived from the same

original transcript, allowing the amplification bias to be removed computationally (16).

Additionally, scRNA-seq protocols are complex and every step results in a further loss of the

already small amounts of RNA input material. This has been addressed by pooling samples (e.g.,

17) or reducing/eliminating intermediate purification steps in the protocols—for example, by using

a mixture of enzymes to catalyze several consecutive steps in the same reaction volume (e.g., 18).

Barcoding or indexing has proved critical when pooling material. Protocols mark all transcripts

from the same cell with a common barcode, thus allowing all subsequent steps to be carried out in
bulk (e.g., 17). Once reactions from single cells have been combined, the loss of material becomes
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SECOND STRAND GENERATION

One method for synthesis of the second strand cDNA employs a terminal transferase to add a polyA tail at the
3’ end of the first strand ¢cDNA. A polyT primer with a PCR sequence is then added, and ¢cDNA is amplified by
PCR. The method of Tang et al. (3), Quartz-seq (115), Quartz-seq2 (116), and methods used in some other early
studies (5, 122-124) are all based on this method. Alternatively, the second strand synthesis can rely on the terminal
transferase activity of MMLV. In the presence of Mg?* or Mn**, cytosines are added to the 3’ end of the first
strand cDNA (125, 126). By the addition of a template-switching oligonucleotide (T'SO) with a PCR sequence and
a stretch of guanines at its 3’ end, full-length cDNA can be synthesized by PCR. STRT-seq (112, 113), SMART-
seq (18), SMART-seq2 (114), Drop-seq (22), Seq-Well (25), Chromium (10x Genomics; 24), and SPLiT-seq (28)
use this approach. This TSO-based method provides a simple and, compared to the polyA tailing—based method,
more faithful way of generating full-length cDNA. The third way of generating double-stranded cDNA is based
on the combined activity of ribonuclease (RNase) H and DNA polymerase I from Escherichia coli (127). In this
method, RNase H first cuts mRINA in the mRINA-DNA duplex. Then, the RNA-primed first strand cDNA is used
as template, and second strand cDNA is synthesized by DNA polymerase I (128). CEL-seq (17), CEL-seq2 (117),
MARS-seq (104), inDrop (23), and sci-RNA-seq (27) are all based on this straightforward approach.

LIBRARY CONSTRUCTION

MostscRNA-seq protocols use PCR-based methods for library amplification due to simplicity and speed. In contrast,
in vitro transcription (IVT) achieves linear amplification of the library, resulting in less amplification bias but
requiring more steps and time than PCR. CEL-seq (17), CEL-seq2 (117), and inDrop (23) use IVT for library
amplification. Most scRNA-seq methods only sequence the 3’ end of a gene. So far, only Quartz-seq (115), SMART-
seq (18), and SMART-seq2 (114) can sequence the full-length transcripts combining full-length ¢cDNA synthesis
with fragmentation or tagmentation. Of note, STRT-seq (112), STRT-seq-2i (119), Drop-seq (22), Chromium
(10x Genomics; 24), Seq-Well (25), and SPLiT-seq (28) all perform full-length cDNA synthesis like SMART-seq
and SMART-seq2, but STRT-seq and STRT-seq-2i only sequence the 5" end of the transcripts, while the others
focus on 3’ sequencing of the mRNA.

BARCODING OR INDEXING

Early studies prepared the cDNA and library individually for each cell, and cell barcodes were added either during
second strand synthesis, for example in the STRT-seq method (112), or during the library PCR stage, for example
in the modified STRT-seq (113), STRT-seq-2i (119), Quartz-seq (115), SMART-seq (18), and SMART-seq?2
(114). Each single cell is converted into a separate library, and the cell barcodes are equivalent to sample barcodes.
Most recent methods add cell barcodes during the reverse transcription stage as part of the oligo-dT primers to
increase the experimental throughput. Cells can be pooled after reverse transcription, and downstream procedures
can be performed in a single reaction. This has the benefit of reducing technical variation between different cells
during library preparation. In addition, another level of barcode (sample barcode) can be added during the library
amplification stage so that many samples can be multiplexed and sequenced together.
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SMART-seq2  CEL-seq2 STRT-seq  Quartz-seq2 MARS-seq Drop-seq inDrop  Chromium Seq-Well
. FACS,
S.lngle—.cell . FACS! . . FACSI . microfluidics, FACS FACS Droplet Droplet Droplet  Nanowells
isolation microfluidics microfluidics ——r
Sramdsiant RNase H PolyAtailing  RNase H RNase H
. TSO and TSO and primer and TSO and TSO TSO
4 DNA pol | ligation DNA pol | DNA pol |
Full-length
CDNA synthesis? Yes No Yes Yes No Yes No Yes Yes
Barcode wll_tltk: rs;)rlcf)f:lz d Barcoded Barcoded Barcoded  Barcoded Barcoded Barcoded Barcoded Barcoded
addition primers RT primers TSOs RT primers ~ RT primers  RT primers  RT primers  RT primers RT primers
Pooling
before library? No Yes Yes Yes Yes Yes Yes Yes Yes
Library PCR In vitro PCR PCR In vitro PCR In vitro PCR PCR
amplification transcription transcription transcription
Gaie Full-length 3 5 3 3 3 3 3 3
coverage
10— ————
4
Number of o e e e I I N

cells per assay

Figure 2

sci-RNA-seq SPLiT-seq
Not needed Not needed
RNase H
and TSO
DNA pol |
No Yes
Barcoded N
RT primers and Wiggiiamel
. . barcoded
library PCR with RT primers
barcoded primers p
Yes Yes
PCR PCR
3 3

A detailed technical comparison of popular single-cell RNA-seq protocols. For further technical details, readers are referred to the
sidebars titled Second Strand Generation, Library Construction, and Barcoding or Indexing. Abbreviations: cDNA, complementary
DNA; DNA pol I, DNA polymerase I; FACS, fluorescence-activated cell sorting; PCR, polymerase chain reaction; RNase H,

ribonuclease H; RT, reverse transcription; TSO, template-switching oligonucleotide.

less problematic and sample handling much less labor intensive since it no longer needs to be
carried out for each individual cell. Recently described scRNA-seq protocols have combined these
different approaches to minimize the effect of small amounts of input material (summarized in
Figure 2).

Another challenge in scRNA-seq is the sparsity of the data. Notall transcripts presentin a single
cell can be captured; therefore, the gene expression matrices in these cases contain many zeros
that reflect a failure to capture relevant molecules rather than the absence of gene expression (19).
There are complementary approaches to help overcome this that can be summarized as sequencing
in greater depth (more genes, fewer cells) versus sequencing with higher throughput (more cells,
fewer genes).

Greater-depth techniques, such as SMART-seq and SMART-seq2, can profile the full length
of transcripts. As sequencing libraries contain multiple fragments from different parts of each
expressed gene, the likelihood of capturing individual genes increases. An additional advantage of
profiling full-length transcriptomes is the potential to identify multiple transcripts that arise from
a single gene, i.e., different isoforms, and to sequence variable regions of genes that may not be
located at the extreme 3’ or 5" end. This is particularly relevant for genes such as the T cell and
B cell receptor genes that are highly variable over a 300-bp region and that are unique to individual
T and B lymphocytes, respectively (20, 21).
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The higher-throughput approach deals with the problem of sparse data by profiling large
numbers of cells and combining data from multiple cells. This has been made possible by the
development of very-high-throughput techniques, such as droplet- (22-24) or microwell-based
sequencing (25). In approaches such as Drop-seq (22), inDrop (23), and Chromium (24), microflu-
idics devices are used to generate droplets that contain a single cell together with a bead carrying
barcodes thatallow each transcript from that cell to be specifically labeled. In the Seq-Well method
(25), droplets are replaced by nanowells that trap both cells and beads. Once first strand cDNA
is complete, the droplet emulsion is broken or wells are combined to allow all subsequent steps
to be carried out in bulk. This has made it possible to profile tens of thousands of single cells in
parallel (Figure 2, bottom row). After sequencing and processing, similar cells (i.e., cells of the
same type or state) can be pooled to generate pseudobulk data, significantly increasing the number
of detected genes. Typically, scRNA-seq can detect 1,000-4,000 expressed genes per cell, while
pseudobulk data detect more than 10,000 different genes, partially overcoming data sparsity.

The other tremendous advantage of these high-throughput techniques is the ability to detect
rare cell types. Our experience with the computational analysis of such data has shown that a
minimum of around 20-30 cells is required to identify new cell types or states. In a population
of 10,000 cells, cell types that only represent 0.5% of the bulk population can nevertheless be
identified reproducibly between individuals (26; R. Vento-Tormo, unpublished manuscript).

The recently described approach of split pool combinatorial indexing has enabled cheap single-
cell profiling at a large scale without the need for single-cell isolation. This approach uses the cell
itself as a reaction container, and reverse transcription (RT) is performed in situ. Cao et al. (27)
developed single-cell combinatorial indexing (sci-RINA-seq), where a defined number of cells
are distributed into either 96-well or 384-well plates. Each well contains a unique index that is
added by using a barcoded RT primer during the RT stage. Then all cells are pooled, a limited
number of cells are redistributed into wells in a new plate, and a second index is introduced.
In this process, unique cells can be distinguished by different combinations of first and second
indices after sequencing (27). Using this technique, 96 x 96 (9,216) or 384 x 384 (147,456) cells
can be easily profiled with basic lab equipment at low cost. Similarly, SPLiT-seq (28) uses different
combinations of barcoding oligonucleotides added by ligation. In other areas of genomics, the idea
of combinatorial indexing has already been used successfully in many applications (e.g., haplotype-
resolved genome sequencing; 29).

scRNA-seq DATA ANALYSIS

Once sequencing is complete, a series of computational steps needs to be carefully executed to
convert raw sequencing reads to meaningful biological results. This process usually includes quan-
tification of gene expression, quality control, batch correction, customized downstream analyses,
and visualization. Gene expression quantification can be achieved by aligning sequencing reads to
the corresponding genomes with a splice-aware aligner and counting the number of reads aligned
to each gene (30-32). Transcript abundance can also be directly estimated from sequencing reads
without actual alignment of individual bases, using programs such as kallisto (33) and Salmon (34).

Unavoidable technical variations introduced during sample processing and library preparation,
known as batch effects, can severely hamper data interpretation and mask true biological signals.
Batch correction is often necessary when integrating different single-cell experiments (35-37).
Cell quality control criteria, such as the threshold number of reads or UMIs per cell, the mapping
rate, the number of detected genes, etc., are often applied to filter out data from low-quality cells,
empty wells, or empty droplets. Subsequently, customized analyses can be performed. These anal-
yses usually include dimension reduction techniques to visualize the data, cell clustering based on
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gene expression patterns, and differential gene expression analyses to find marker genes. Several
computational toolkits, such as Cell Ranger (24), Monocle (38), Seurat (39), and Scanpy (40), have
been designed to integrate different types of analysis into simple workflows for data interpretation
and visualization. It should be noted that there are many computational methods available to de-
termine differential gene expression from single-cell data. Their biases, robustness, and scalability
have recently been compared by Soneson & Robinson (41).

HOW TO DECIDE WHICH SEQUENCING TECHNIQUE TO USE

From a practical point of view, deciding which scRINA-seq technology to use in research depends
on various factors, such as project aims, budgets, and access to specialized equipment. If a high
number of cells is important—for example, to detect rare cell types—droplet- or microwell-based
technologies (such as Chromium and Seq-Well) may be preferred over FACS/plate-based methods
(such as SMART-seq2). Custom or homemade equipment may be cheaper than its commercial
counterparts but can be difficult to construct and often requires special engineering expertise.
FACS/plate-based methods have relatively low throughput but are generally easier to implement
with standard lab equipment. Methods such as SMART-seq2 offer much higher sequencing depth
and detect more genes per cell (42, 43), allowing for detailed characterization of a limited number
of cells.

In two recent studies, Svensson et al. (42) and Ziegenhain et al. (43) compared data generated
from multiple popular scRNA-seq methods, analyzing their detection sensitivity (their ability
to detect lowly expressed transcripts), quantification accuracy, and sequencing depth. All tech-
niques tested had high accuracy but differed in sensitivity. The SMART-seq2 protocol had the
best performance on the number of genes detected per cell. UMI-based protocols generated less
amplification noise (43). Quantification accuracy only marginally depended on sequencing depth,
but the detection limit critically relied on this (42). These two studies provide valuable bench-
mark information for the selection of the sequencing strategy most appropriate to the biological
question under investigation.

INVESTIGATING DYNAMIC BIOLOGICAL PROCESSES
USING scRNA-seq

Biological processes such as the immune response, cancer development, and embryogenesis are all
highly dynamic, with different cells from the same tissue responding in different ways (e.g., cell fate
changes) or at different rates (e.g., asynchronous response). One of the key advantages of single-
cell over bulk RNA-seq analysis is the ability to capture these dynamic processes in an unbiased
way, for example, during embryogenesis (44-47). Xue et al. (46) investigated the dynamics of gene
expression in human and mouse embryonic development using scRNA-seq and identified the
activity of distinct submodules that changed in a stepwise manner during the development from
oocyte to morula. Comprehensive profiling of human preimplantation embryos by scRNA-seq
have revealed the dynamic nature of lineage commitment and provided an atlas of early human
development (47).

The temporal information (response time, developmental stage, etc.) is inherently retained in
scRNA-seq data due to their single-cell resolution. The data capture a snapshot of many unsyn-
chronized single cells from a tissue at different stages of development or in response to stimuli. It
is then possible to reconstruct a pseudotime by computationally inferring the progress of single
cells through a biological process (38). Trapnell et al. (38) developed an analysis technique called
Monocle that is based on finding a minimal spanning tree that links individual cells based on their
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similarity during a dynamic process. This allows the single cells to be placed on a trajectory or
pseudotimeline (38). Monocle 2, a later development, uses reversed graph embedding for better
inference of multiple developmental paths during a process (48). There are other methods for
pseudotime inference, such as Wanderlust, which uses a k-nearest neighbor graph-based method
(49), and Waterfall, which applies a minimum spanning tree on top of k-means clustering to infer
developmental trajectories of neural stem cells (50).

Single-cell clustering using bifurcation analysis was developed to infer branched trajectories
of different lineages derived from the same progenitor cell population (51). Similarly, Wishbone
successfully pinpointed the branching point of mouse thymic T cell development, at which double-
positive progenitor cells become either CD8" or CD4* T cells (52). Haghverdi et al. (53) used
diffusion-like random walks to infer the timing of fate decision of red blood cells and endothelial-
like cells. Gaussian processes are commonly used for nonparametric analysis of time series data and
have been incorporated into several algorithms that infer branching points (54-57). Since 2014,
more than 50 trajectory inference methods have been developed, and many of these have recently
been compared for accuracy and robustness in a large benchmarking study (58). This analysis has
identified useful benchmarking metrics and developed a decision tree to guide potential users to
the most appropriate algorithm.

The explosion of techniques to reconstruct developmental trajectories from single-cell data
highlights the power of scRNA-seq in demonstrating the continuous nature of many biologi-
cal processes. It has also allowed researchers to define progenitor cell populations that may be
important for tissue maintenance and regeneration.

TRENDS IN THE FIELD OF scRNA-seq

The invention of microfluidic and robotic devices to reduce manual labor and significantly increase
the number of cells that can be analyzed per experiment (59), along with the reduction in cost and
the development of computational methods to analyze data, has meant that single-cell genomic
studies are now carried out routinely in many laboratories. That upsurge in research has shifted
studies from proof-of-concept to work that aims to generate mechanistic insights and make new
discoveries (see Table 1). scRNA-seq has even been combined with CRISPR/Cas9 screening
technologies to investigate regulatory circuits in single cells (60-63).

The advent of very-high-throughput technologies (Figure 2) is also driving a shift in re-
search. Benchmarking studies have demonstrated that low-coverage and low-depth expression
data are able to discriminate different cell types (64, 65). In the future, high-throughput droplet-
or nanowell-based methods may therefore be prioritized over sequencing depth for many studies
interested in tissue deconvolution. Once subpopulations (either a subtype or a specific develop-
mental stage) are identified, detailed characterization, using more targeted and sensitive methods
like SMART-seq2, combined with FACS or CyTOF, can specifically investigate subpopulations.

Another trend relates to the amount of single-cell data being generated. More efficient com-
putational methods have been developed to reduce the time needed to identify patterns from
the high-dimensional single-cell data. In fact, the computational side of single-cell genomics is
probably the fastest evolving area of the field. In 2015, Stegle et al. (19) listed only a few avail-
able tools for scRNA-seq analysis. Now, just three years later, dozens of computational tools and
packages are listed on the GitHub page “Awesome Single Cell” (https://github.com/seandavi/
awesome-single-cell), many of which utilize machine learning techniques. We anticipate that
more and more computational tools will become available not only for scRNA-seq but also for
single-cell genome and epigenome analysis.

Chen o Teichmann o Meyer


https://github.com/seandavi/awesome-single-cell
https://github.com/seandavi/awesome-single-cell

SPATIAL TECHNIQUES FOR GENE EXPRESSION PROFILING
OF SINGLE CELLS

Despite the efficacy with which scRNA-seq can robustly and sensitively identify distinct cell types
and cell states from complex tissues, scRINA-seq requires tissue dissociation and so is unable to re-
tain information about the position of cells in the tissue context. This spatial information captures
the local microenvironment that determines how the cell functions, which cell types it may differ-
entiate into, or what cell state it may be in. Techniques for measuring gene expression within the
tissue context range from microdissection, in situ RNA hybridization, and immunohistochemistry
to in situ sequencing of genes, all of which have greatly increased in scale over recent years. These
techniques are frequently combined with computational rendering of the three-dimensional 3D)
space to obtain final results.

Tissue Dissection

Gene expression studies that retain spatial information have to balance the analysis of large num-
bers of cells for only a few markers against the much more in-depth profiling of a more limited
number of cells. Two dissection methods have become popular. The first uses laser capture mi-
crodissection (LCM) to collect specific cell types that are then profiled by RT-PCR or bulk
sequencing or combined with single-cell sequencing (Geo-seq) (66). This has allowed spatially
resolved transcriptomes to be generated for the early mouse embryo, brain, and other tissues (67,
68). The drawback with LCM is that it is very labor intensive, severely limiting the number of
samples and cells that can be analyzed. An alternative method serially slices an anatomical structure
and profiles the slices using RNA-seq or microarrays. By taking slices in three planes, researchers
can reconstruct a 3D image of gene expression as demonstrated for the mouse brain (69).

Single-Molecule RINA Fluorescent in Situ Hybridization

In situ hybridization of RNA with labeled sequence-specific probes followed by microscopic detec-
tion of the labels has been used for many decades to map gene expression onto tissues. Frequently
probes are linked to enzymes that catalyze a chromogenic reaction or to fluorogenic molecules.
A leap toward quantitative detection of RNA came with single-molecule RNA FISH (smFISH)
(Figure 3a). Individual transcripts are visualized using fluorescent probes and high-resolution
microscopy (70). The use of shorter probes, each labeled with a single fluorophore (70, 71) at
the 3’ terminus of each probe, has made this approach cheaper and more quantitative. Optimized
hybridization conditions have greatly speeded up the protocols (70-72), and the use of different
color fluorophores has allowed multiple genes to be detected in a single sample. smFISH is a highly
quantitative method with near 100% detection sensitivity for multiple genes in parallel (63).

Multiplexed Single-Molecule RNA Fluorescent in Situ Hybridization

Spatial and spectral barcoding have led to further advances in multiplexing of probes (Figure 35,¢)
(73, 74). In spatial barcoding, mRNA molecules are hybridized to sets of different colored fluo-
rophores along the length of the molecule, generating color barcodes detected by super-resolution
microscopy. Spatial barcoding is technically challenging, requires high-resolution microscopes,
and is limited by the need to compress the tissue to linearize the mRINA molecules.

The spectral barcoding approach uses unique combinations of different color fluorophores
distributed across the mRNA, generating a pseudocolor that identifies the mRNA. This is done
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Figure 3 (Figure appears on preceding page)

Schematic representation of gene expression assays that retain spatial information in tissues. (#—) smFISH
can detect individual RNA transcripts at single-cell resolution. Either single or multiple fluorophores can be
linked per probe () or used to generate color barcodes (b) or novel colors in a technique known as spectral
barcoding (c). () Sequential barcoding relies on multiple rounds of hybridization and stripping of probes.
Sequences of distinct fluorophores can mark specific genes. (¢) MERFISH relies on multiple rounds of
hybridization, generating an error-robust barcode that is used to identify genes. Arrows depict multiple
rounds of hybridization. Further details are given in the text. (f) Branched probes allow for local signal
amplification, thereby increasing the signal-to-noise ratio. (g) In situ sequencing relies on RCA to generate
multiple identical copies of DNA that can then be profiled using sequencing by ligation with subsequent
imaging. (b) Spatial transcriptomics is a technique in which a tissue section is overlaid onto a glass slide that
carries locally distinct, barcoded, and identifiable polyA capture probes (Id1-3). After RNA is captured and
transcribed, all further library preparation steps can be carried out in bulk, and sequenced reads can be
mapped back onto tissue sections computationally. Abbreviations: hyb, hybridization; MERFISH,
multiplexed error-robust fluorescence in situ hybridization; mRINA, messenger RNA; RCA, rolling circle
amplification; smFISH, single-molecule in situ hybridization; strip, stripping.

using lower-resolution microscopy with no need to linearize the mRNA (73, 75, 76). Using spec-
tral barcoding in combination with fluorescence resonance energy transfer between emitter and
activator fluorophores, Lubeck & Cai (74) measured the single-cell gene expression profiles of 32
calcium-responsive genes in single yeast cells, finding clusters of coregulated genes. Subsequently
it was realized that multiplexing could be achieved through sequential rounds of hybridization,
imaging, and probe stripping, generating a temporal barcode (73). With this sequential FISH
(seqFISH) approach, four dyes and eight rounds of hybridization (4® = 65,536) should in principle
resolve an entire transcriptome. In a proof-of-principle experiment, 12 genes were analyzed with
four dyes and two rounds of hybridization (73).

In a more recent iteration of the technique, multiplexed error-robust FISH (MERFISH)
(76, 77) detected thousands of genes using a two-step hybridization protocol (Figure 3e). In
MERFISH, genes are tiled with hybridizing oligonucleotides, each containing a nonhomologous
readout sequence at each end. Then, sequential hybridization of fluorophores to the readout
sequences are visualized. In theory, 26 (65,536) genes could be encoded. This technique is
very sensitive to false negative (lack of hybridization) signals. However, the error-robust coding
system, known as Hamming distance (78), can be applied to identify and correct errors. Using
this approach, it was possible to measure 140 distinct genes with an 80% detection efficiency
(77). The generation of complex, predefined probe sets is a challenge that remains in delivering
this technology.

The MERFISH technique has been scaled using a two-color encoding scheme, enlarging
the field of view, improving the performance of the readout probes, and increasing the speed
of the image analysis (78, 79). This development means that MERFISH is fast approaching the
throughput of droplet-based sequencing techniques, analyzing 130 genes in up to 40,000 cells.
Although it does not profile at the same depth as droplet-based techniques, it does maintain spatial
information and it can identify novel subpopulations of cells.

Branched Probes

Branched probes can generate high-contrast images from in situ hybridization. This is a highly
sensitive technique that can be applied to standard histological sections and has been widely im-
plemented and commercialized, for example by Advanced Cell Diagnostics with RNAscope® or
Affymetrix, which use branched RNA and DNA probes, respectively, that allow for signal amplifi-
cation. These probes are easily combined with antibody or DNA stains, aiding interpretation of the
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results. In addition, methods to amplify the fluorescent signal by single-molecule hybridization
chain reaction (smHCR) have been developed (78-80). By combining sequential hybridization
with smHCR (74, 81) and implementing a simple but efficient error correction, researchers ap-
plied seqFISH to sections of the mouse hippocampus, profiling 249 genes in over 16,000 cells
with only four rounds of hybridization (78-80, 82). Although this technique relies on predefined
gene sets, potentially biasing results (83), the detection efficiency of seqFISH is high compared to
the gold standard smFISH.

All FISH techniques are relatively easy to apply to single-cell layers but more difficult in
tissue sections, as autofluorescence and light scatter increase with the sample thickness. Tissue
clearing and hydrogel embedding, which remove lipids and proteins and replace them with a
porous hydrogel, can be applied to any FISH-based protocol. This has been successfully applied to
improve MERFISH (78, 79) and combined with seqFISH in whole-mount zebrafish embryos and
250-pum mouse brain sections (82). Technological advances in imaging and microscopy technology
also help to improve data acquisition but are beyond the scope of this review.

Sequencing-Based Approaches

Two rolling circle amplification (RCA) methods have been described for spatial in situ sequencing
(Figure 2g). In fluorescence in situ sequencing of RNA, cells are fixed onto a glass slide. The RNA
is then reverse transcribed into amine-modified cDNA and circularized (82, 84). Each ¢cDNA is
then linearly amplified and sequenced by well-established SOLiD (sequencing by oligonucleotide
ligation and detection) sequencing technology, which relies on multiple rounds of capturing fluo-
rescent dinucleotide pairs by ligation (for an overview see References 82 and 84). Fluorescence is
then imaged and converted into sequence information. Ke et al. (85) combined RCA with padlock
probes and sequencing-by-ligation chemistry to demonstrate that short fragments of RNA could
be sequenced and mutations detected in subregions of cancer tissue (82, 84, 85). These techniques
have great potential, but the number of transcripts that can be sequenced is still low and may be
limited by the physical size of rolling circle amplicons.

An alternative approach termed spatial transcriptomics (Figure 35) (82, 84-86) uses histolog-
ical tissue sections and spatial barcoding to analyze gene expression. Tissue sections are placed
on a glass slide with positional barcoded oligo-dT capture probes. Cells are permeabilized, and
mRNA is captured by the barcoded oligonucleotides and reverse transcribed. The cDNA can
then be released from the slides, all further steps are carried out in bulk, and standard sequenc-
ing protocols can be applied. Sequencing reads are computationally mapped back to the tissue
sections using the positional barcodes. Currently, spatial features have a diameter of 100 pm.
Depending on the tissue, this represents 10-100 cells per barcode. By applying machine learn-
ing algorithms for dimensionality reduction followed by hierarchical clustering, researchers can
generate sample clusters that correspond to well-defined morphological features and allow for
unbiased identification of marker genes.

The ease and high throughput of spatial transcriptomics are likely to ensure its widespread
adoption. Future developments are expected to produce smaller barcoded features, which will
ensure that each feature captures fewer cells, further increasing the resolution of this technique.
Compared to LCM, spatial transcriptomics is much less labor intensive and has greater detection
sensitivity, but it is less sensitive than smFISH.

All of these spatial techniques are evolving at a rapid pace. Unlike the sequencing data, which
are relatively simple strings of bases, several spatial techniques produce large, complex imaging
data that are difficult to analyze (e.g., 73, 77). Currently, there are fewer computational methods
for automatic high-throughput imaging analysis than those for sequencing analysis. The major
challenge for the future is integrating these methods with other omics technologies.
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RECONSTRUCTION OF THREE-DIMENSIONAL EXPRESSION
PATTERNS AND THEIR ANALYSIS

As described earlier, LCM techniques have allowed gene expression patterns to be mapped into
a 3D context, which in turn can be used as a zip-code to map single-cell data into their spatial
context, as illustrated in a study of mouse development (68). Knowledge of in situ hybridization
patterns for a relatively small number of marker genes is sufficient for the spatial assignment
of cells. This computational assignment is based on the segregation of gene expression patterns
from scRINA-seq data as obtained by Seurat (39) and other algorithms (87). In RNA tomography,
mathematical image reconstruction can be used to generate 3D images (66, 88).

Expression patterns among genes are highly correlated in tissues; therefore, larger clusters
of cells can be determined from as few as 10-12 genes, while a finer classification will require
the combinatorial analysis of many genes (82). To date, the most advanced reconstruction of an
organ is probably that of the mouse brain, as developed at the Allen Institute (http://www.brain-
map.org/). The description of complex 3D data sets will require new tools that allow us to identify
spatial changes in gene expression occurring at different scales and that are able to find recurring
patterns of correlated expression (89).

Even with the wealth of new methods and tools to help with tissue reconstruction, there are
still fundamental issues to overcome. There is evidence that tissue disaggregation itself may lead
to the activation of many genes (90). Lovatt et al. (91) used caged, photoactivatable tags to analyze
single-cell transcriptomes in vivo after laser activation and found that up to 30% fewer genes were
expressed in the intact tissue context. A challenge for the future is the analysis of gene expression
in living tissue. Currently, in vivo monitoring is restricted to model organisms, and the dynamic
imaging of human cells has largely concentrated on in vitro cell cultures (92). Additional gene
expression patterns and functional characteristics of cell types will become apparent once it is
possible to monitor dynamic changes in live cells.

COMBINING DIFFERENT APPROACHES AND ITERATIVE
EXPERIMENTAL DESIGN

Each of the described methods has its unique strengths and weaknesses: RNA-seq can profile very
large numbers of cells in an unbiased manner and is well suited to define cell types and states (39,
93-97). However, scRNA-seq requires the disaggregation of the organ, leading to loss of spatial
information, in order to generate single-cell suspensions that may not contain all the cell types
present in the original tissue. MERFISH and seqFISH maintain the spatial information of cells
and provide highly accurate measurements of fewer genes, but this analysis is not genome wide
and genes to be analyzed must be predefined. FISH techniques are less well suited to finding and
cataloguing new cell types but are superior to RNA-seq when trying to understand the interaction
between differing cell types.

RNA-seq and FISH techniques provide different but complementary transcriptome resolu-
tions. Multiplexed FISH can profile hundreds of preselected genes with great accuracy. scRINA-
seq can in principle measure all expressed genes, but at lower quantitative accuracy and with a
higher dropout rate. Spatial transcriptomics can generate full transcriptomes in an unbiased man-
ner and maintains spatial information, but currently without single-cell resolution. In terms of its
applications, it sits somewhere between RNA-seq and FISH.

The different approaches reviewed here provide information that can be combined and tailored
to specific tissues and different biological questions (Figure 4). For instance, studies could combine
RINA-seq with spatial gene expression for cataloguing the cell types found in different organs and
add multiplexed FISH for understanding the functional dependencies of the same cells.
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An iterative experimental design is most likely to be successful in achieving a robust deconvo-
lution of cell types within tissues. A high-throughput single-cell technique followed by clustering
analysis will define subtypes of cells and identify markers that can then be used to obtain spa-
tial data or enrich rare cell types (Figure 4). Integration of bulk RNA-seq data, single-cell data,
and spatial data can determine whether certain cell types are underrepresented or even missing
from the single-cell data. This is relevant when cell types are highly sensitive to tissue dissocia-
tion, requiring improved experimental protocols, and is particularly relevant for rare cell types.
In this context, alternative sequencing strategies such as single-nucleus RNA-seq (98-100) can
also be employed. In this approach, tissue is frozen and then mechanically dissociated before
nuclei are isolated for sequencing. Several studies have already adapted droplet-based methods
for high-throughput single-nucleus RNA-seq profiling (101, 102). Nuclear RNA-seq can cap-
ture all cells, but a disadvantage is its inability to enrich rare cell types based on cell surface
markers.

Setting experimental standards that can be used in benchmarking studies to identify biases,
which are undoubtedly associated with each of the different single-cell profiling methods, would
greatly facilitate the integration of data sets derived from distinct experimental techniques.

CONCLUSIONS AND OUTLOOK

The last decade has seen an explosion in the field of single-cell genomics. The application of
scRNA-seq, improved deconvolution techniques, and developments in spatial gene expression
analysis mean that surprising new discoveries are on the horizon. The field is now at a stage
where it can move from mapping individual tissue systems or model organisms to profiling the
whole human body. To achieve this massive undertaking, we and others have recently initiated
an international, multidisciplinary consortium to deliver the Human Cell Atlas (103), which aims
to create “a comprehensive reference map of the types and properties of all human cells. . .as
a basis for understanding, diagnosing, monitoring, and treating health and disease.” Delivering
this project will require tightly integrated interdisciplinary studies, where researchers with dif-
ferent expertise ranging from engineering to physics and medicine work together. The massive
amount of data being generated will require input from information science, image analysis, deep
learning, and others and will be a catalyst to developing new data analysis tools. One challenge
for the future in this evolving landscape will be integrating multiple different data types, in-
cluding multiomics data, into a comprehensive framework that is easily accessible to researchers
from a wide range of fields. Addressing these challenges will help us better understand both how
the human body functions, and ultimately, how this knowledge can be used to improve human

health.
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