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Abstract

Microfluidic cell-separation technologies have been studied for almost two
decades, but the limited throughput has restricted their impact and range of
application. Recent advances in microfluidics enable high-throughput cell
sorting and separation, and this has led to various novel diagnostic and ther-
apeutic applications that previously had been impossible to implement using
microfluidics technologies. In this review, we focus on recent progress made
in engineering large-volume microfluidic cell-sorting methods and the new
applications enabled by them.
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1. INTRODUCTION

The advent of microfabrication, precision engineering, and rapid prototyping techniques has
accelerated the growth of microfluidic technology since the early 1990s, making it an ideal platform
to bridge the gap between wet sciences (biology and chemistry) and engineering (1). The scale of
microfluidic systems and their resemblance to 3D physiological environments provide a compatible
interface for manipulating cells and imitating in vivo conditions. The ability to sort cells enables
important discoveries in cell biology, thus further enabling diverse biomedical applications in a
variety of areas including HIV diagnostics (2) and cancer therapy (3).

Historically, microfluidics evolved out of microscale capillary electrophoresis (4), the main
selling points of which were fast and efficient sample processing (that is, separation) and the re-
quirement for only small samples. Although these are highly attractive and novel features for
analytical chemistry, they also represent a significant limitation of microfluidics technology be-
cause they lead to low throughput and give rise to issues of world-to-chip interfacing.

The typical sample volumes used in microfluidics (up to approximately 1 nL) and the flow
rates achievable in microfluidic systems (up to approximately 1 µL/min) are incompatible with
the typical biosample volumes used in biochemistry and clinical diagnostics (usually ranging
from 1 µL to approximately 1 mL). These limitations are especially detrimental for detecting
and recovering low-abundance targets, such as low-abundance circulating tumor cells (CTCs)
and blood-borne pathogens, whose clinically relevant abundance ranges approximately from 1 to
100 cells/mL. Often, the scarcity of these targets requires processing at least 1–10 mL of raw blood
just to collect sufficient targets for meaningful and reliable downstream analysis. In addition,
applications that have been proposed for microfluidic implementation, such as blood dialysis
[e.g., an artificial kidney (5)], may require macroscopic-volume flow rates of up to a few liters per
minute.
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Within the past 5 years, new ideas in microfluidics (such as inertial microfluidics platforms)
have enabled cell sorting and separation using much larger volumes and much higher flow rates,
leading to various novel diagnostic and therapeutic applications that previously had been deemed
impossible. With the new large-volume microfluidics technologies, one can now consider bringing
innovations to many important areas, such as filtration. These applications are different from the
original vision of microfluidics that emphasized the vertical integration of components, from
sample intake to readout. Rather, microfluidics can now be considered a drop-in replacement that
has much more functionality and specificity, which is enabled by microfluidic control of cells and
targets, but still provides macroscopic flow rates and volumes.

Many good reviews have already been published on the subject of cell separation and microflu-
idic cell-sorting techniques (6–11). In this review, we focus only on the microfluidic technologies
that are enabling these new high-volume applications (i.e., systems that can generate throughput
of milliliters per minute). Table 1 illustrates the various separation methods reviewed in this pa-
per. In addition, we also provide case studies of current and emerging examples of large-volume
microfluidic cell-sorting applications, the list of which will lengthen in the coming years.

2. HIGH-VOLUME CELL-SORTING TECHNOLOGIES

2.1. Microfluidic Microfiltration

The age-old method for separating particles is to use physical barriers, and this technique is widely
used in many large-volume applications. Filtration processes can be incorporated into microfluidic
platforms, and offer many added benefits, including precise control of pore size, filter orienta-
tion, and geometry, and more control of the interaction between the filter structure and filtrates
(12, 13). In the context of microfluidics, three major designs have been employed for cell-separation
purposes, namely weir, pillar, and crossflow (Figure 1a). The weir-type design includes an array
of individual barriers that obstruct the flow path to trap cells of a certain size while allowing
smaller constituents to pass through narrow slits located on top of the barrier. In other designs,
this barrier can be altered by using an array of well-ordered micropillars with different shapes [e.g.,
crescent-shaped isolation wells (14)] where the main flow is either perpendicular or tangential to
the filters. The first use of micromachined silicon filters for blood fractionation was introduced
by Wilding and colleagues (15). They designed a weir-type filter with a 3.5 µm gap between the
silicon structures and the top layer to effectively isolate white blood cells (WBCs) from red blood
cells (RBCs).

In a recent study, Chung et al. (16) developed a novel, microfluidic cell sorter for isolating and
characterizing CTCs from whole blood. Their platform utilized a modified weir-type structure
along with fluidic channels (Figure 1b) to continuously separate and capture CTCs at flow rates of
up to 20 mL/h. Micropillar arrays with different gap sizes have also been employed to demonstrate
the effective isolation of CTCs from blood (26), the enrichment of fetal nucleated red blood cells
(27), leukapheresis (28), and the removal of pathogens (29), but their reported throughputs were
lower.

One of the inherent problems in both conventional filtration and its microfluidic counterpart
is blockage and clogging (i.e., cell buildup over time), leading to shorter operational times and
lower throughput (30). In conventional filtration, crossflow filtration is often adopted to mitigate
this challenge. Microfluidics offers the additional flexibility of both observing and manipulating
filtrate–filter interactions, enabling the design of more intelligent filter structures. For example,
Sethu and coworkers (28) showed that leukocyte depletion from whole blood (i.e., apheresis) was
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Table 1 High-throughput separation methods reviewed in this articlea

Method of
separation

Mode of
separation

Separation
criteria

Target
sample to

be removed Throughputb

Separation
efficiency

(%) Remarks Reference

Microfilter Size exclusion Size and de-
formability

Cancer cells 20 mL/h
(0.33 mL/min)

>95 Tested with murine
blood; prone to
clogging

16

Deterministic
lateral
displacement

Migration
between
microposts in
an array

Size Cancer cells 10 mL/min 85 Blood dilution
required; prone to
clogging

17

Hydrodynamic Streamline
manipulation

Size, shape,
and de-
formability

Droplet
separation

160 particles/sc 79.2 99% purity with
>10,000-fold
enrichment

18

Inertial
(straight
channel)

Lift forces Size and de-
formability

Bacteria in
0.5% v/v
blood

8 mL/min 80 10% contamination
with RBCs (in
parallelized
version); prone to
clogging

19

Inertial
(curvilinear
channel)

Balance of lift
and Dean
forces

Size and de-
formability

Cancer cells 1 mL/min 85 Lysed blood used;
can reach
>100 mL/min
using multiplexing

20

Centrifugal
(hydrocyclone
with CCE and
disk
microfluidics)

Ratio of
centripetal
forces to fluid
resistance

Size, density Particles
suspended
in fluid

∼1–10,000 mL/
min

∼90 Throughput varies
with inlet velocity
and particle size;
readers are advised
to refer to the
original paper for
more details

21

Affinity
(magne-
tophoresis)

Differential
affinity

Surface
markers

Cancer cells 10 mL/h
(0.17 mL/min)

90 Costly; nonspecific
binding

22

Acoustic Acoustic
radiation forces

Size, density,
and com-
pressibility

RBCs from
whole
blood

0.3 mL/min 70 20% of lipid particles
remained

23

Biomimetic Mimicking mi-
crovasculature

Size and de-
formability

Infected
RBCs from
whole
blood

5 μL/min
(0.005 mL/
min)

∼90 Leukocyte
contamination; can
reach throughput of
milliliters per
minute using
parallelization

24

Integrative Combination of
various
techniques

Size, de-
formability,
surface
markers,
etc.

Cancer cells 8 mL/h
(0.13 mL/min)

97 Complicated;
difficult to automate

25

Abbreviations: CCE, counterflow centrifugal elutriation; RBC, red blood cell; v/v, volume/volume.
aThe metrics listed in the table are not representative of all microfluidic particle-sorting techniques; they are examples selected to illustrate the range of
particles that can be sorted using these techniques. The numbers in the table are the authors’ interpretation of the information provided in the papers
cited; readers are encouraged to refer to the original papers for more information.
bWhen throughput values were provided in units other than mL/min in the original paper, the original units are given and the conversion to mL/min is
shown in parentheses.
cThe units for throughput in the original paper were given as approximately 3–7 μL/h for 10× diluted blood. Given that the original work relied on
encapsulating cells in droplets before sorting, only the original units for throughput are shown here.
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Figure 1
(a) Schematic illustrating various microfilter designs. (Left) The weir structure excludes cellular components based on their size,
allowing smaller cells to pass through a narrow slit. (Center) Arrays of pillars with defined pitch that exclude cells larger than the spacing
of the pillars. (Right) A crossflow microfilter allows continuous separation and collection of both large and small cells from different
outlets. (b) Schematic illustration of a crossflow microfluidic cell sorter used to separate circulating tumor cells from normal blood cells.
Large cancer cells move along the weir-type barrier and are collected at one outlet while smaller hematological cells pass through a gap
underneath the barrier, and are directed to a separate outlet. Panel b adapted from Reference 16 with permission from Wiley.
(c) Schematic showing a crossflow microfluidic system with an integrated isopore micromachined filter [made from
polydimethylsiloxane (PDMS)] to continuously separate white blood cells from red blood cells in diluted blood samples. Panel c
adapted from Reference 32 with permission from the Royal Society of Chemistry.

possible without channel clogging, offering the possibility that leukocyte-depleted blood could
be returned to the donor. Their device employed microsieves with 2.5 µm gaps that exploited
differences in the size and deformability of cells in order to separate them, permitting erythrocytes
to pass into side channels while acting as barriers to leukocyte migration. Using the same approach,
the same group demonstrated the feasibility of size-based separation of myocytes and nonmyocytes
from neonatal rat myocardium in a high-throughput manner (28).

The integration of isoporous microengineered membranes into microfluidic devices has grown
substantially during the past 10 years. For example, Aran et al. (31) recently reported integrating
polycarbonate track-etched membranes into microfluidic channels to make a crossflow filtration
system to continuously extract bacteria from whole blood for the treatment of sepsis. Using
membranes with 2 µm pores, they successfully separated smaller bacteria from larger blood cells at
a flow rate of approximately 50 µL/min. Instead of integrating a polycarbonate membrane, Li and
colleagues (32) designed a simplified approach using surface micromachined polydimethylsiloxane
(PDMS) filters inside a microfluidic chip to continuously isolate and sort WBCs from whole
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blood, with a sample throughput of 1 mL/h (Figure 1c). Using the same filters, this group has
also reported high-throughput (>5 mL/min) isolation and characterization of immune cells that
bind to antibody-conjugated polystyrene microbeads (33).

The potential challenges of microfluidic filtration, in addition to clogging and fouling, may
include high shear stress on cells trapped during filtration, and poor recovery of captured cells for
subsequent characterizations due to the nonspecific adhesion of captured cells (34).

2.2. Hydrodynamic Sorting Techniques

Hydrodynamic-based separation methods constitute the largest portion of microfluidic cell-
sorting approaches. Hydrodynamic cell-sorting techniques are passive approaches and rely on
no external field or force other than the forces generated by the flow of fluid. Thus, these tech-
niques allow not only easy integration of cell-sorting modules into complex micro total-analysis
systems, but also offer the potential for high-throughput cell sorting via device parallelization.
Moreover, hydrodynamic approaches are label-free techniques that separate cells based on their
physical properties (e.g., size and deformability), and thus avoid the potential interference of bio-
chemical labeling on downstream applications of isolated viable cells. In this section, we review
the major hydrodynamic sorting techniques and discuss their application in high-volume sample
processing.

2.2.1. Deterministic lateral displacement (operation at low Reynolds numbers). Determin-
istic lateral displacement (DLD) separates particles by exploiting size-dependent hydrodynamic
forces. In DLD, a cell mixture normally passes through a periodic array of micropillars that have a
fixed lateral shift between adjacent rows (35). In such platforms, the displacement of the particles
is perpendicular to the direction of flow, and particles of different sizes are displaced at different
speeds and migration angles. Cells that are smaller than a certain critical hydrodynamic diameter
follow the streamlines and pass the micropillars in a cyclically zigzag motion without significant
lateral deviation. However, cells that have a diameter larger than the critical threshold cannot
completely fit within the streamline and bump against the shifted downstream micropillars into
the adjacent streamlines, resulting in accumulative lateral displacement from the small cells (36).
Thus, different-sized cells collect at different outlets across the DLD array, leading to continuous
separation of the initial sample based on cell size; this method is able to discriminate among cell
sizes with very good resolution (i.e., at less than 1% of cell diameter or on the order of 10 nm)
(35). Additionally, because the critical diameter of cell separation using DLD is determined by the
pattern of the micropillar array, simultaneous separation of subpopulations of cells with distinct
diameters could also be achieved by arranging several DLD arrays with different critical thresholds
in series within the same chip.

Huang et al. (35) made use of DLD to characterize the separation of beads of different sizes
(0.8, 0.9, and 1.0 µm). They were also one of the first groups to apply this concept to isolate arti-
ficial bacterial chromosomes. Davis and coworkers (37) reported fractionating blood components
(platelets, RBCs, and WBCs) using the DLD technique. Inglis et al. (38) have also applied DLD
to purify fungal Aspergillus spores of about 4 µm with a density of up to 4.4 × 106 spores/mL.
Their device successfully isolated 99% of the target particles while eliminating 96% of smaller
and larger particles.

DLD is not limited to sorting relatively smaller particles, such as bacteria and spores; it has also
been applied to sorting mammalian cells. Huang et al. (39) used DLD to isolate nucleated RBCs
from maternal blood. This technique removed up to 99.99% of RBCs and 99.90% of WBCs.
Nonetheless, the flow rate was still low, and blood dilution was necessary. Inglis and coworkers
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(40) also captured 98% of WBCs from whole blood with a high throughput of 1 mL/min using
parallelized DLD. Davis et al. (37) and Li et al. (41) have also used DLD for the same purpose.

Despite working with relatively small Reynolds numbers (approximately 10−1–10−3), DLD can
perform cell separation in a high-throughput fashion when the design is optimal. Based on the
separation principle, several factors are known to determine the critical threshold for a particular
DLD array, including pillar size, the arrangement of individual micropillars in terms of lateral-
position offset, the gap between the pillars, and the angle between the axis of the pillar array
and the flow direction (42). Additionally, researchers have identified two other factors that could
improve the separation characteristics of DLD systems. One involves careful modification of the
channel boundary at each row [based on Inglis’s wall design (43)] to eliminate aberrant fluidic
flow that may compromise the separation in these regions. The other relies on the shape of the
micropillars: recent studies have shown that triangular microposts have superior performance
when compared with conventional circular ones, and that triangular microposts result in reduced
clogging and fluidic resistance (44). By taking into consideration these two factors, Loutherback
et al. (45) recently developed a DLD device (Figure 2a) that can isolate viable CTCs spiked in
blood (106/mL of CTCs in 10× diluted blood) with more than 85% recovery and at a relatively
high flow rate (10 mL/min). One major limitation of the DLD technique is the sample dilution
that results from the introduction of sheath flow during operation; thus, downstream reenrichment
of isolated cells might be necessary when dealing with rare cells or when the technique is used
in dialysis-like therapy. Some groups have also reported that clogging tended to occur in their
devices due to the small critical size and the close proximity of the microposts.

2.2.2. Field-flow fractionation and hydrodynamic filtration (operation at low Reynolds
numbers). Hydrodynamic particle-focusing techniques make use of fluid streams with a low
Reynolds number to achieve their isolation objectives. In these systems, size-based separation can
be achieved by controlling the flow rate, channel geometry, and configuration of outlets (46).
Yamada et al. (47) introduced the concept of pinched-flow fractionation to separate polymer
microspheres by exploiting their size differences. The ratio of the flow rate of the inlet branches
(one with and one without particles) was optimized for efficient sorting; and branches were created
at the outlets for collecting the particles independently. Takagi and coworkers (48) used the
same concept with asymmetrically branched outlets to isolate RBCs from 0.3% diluted blood.
In the study by Takagi and coworkers (48), approximately 80% of the RBCs were enriched in
one of the outlets but there were also outlets that had no RBCs. Next, Yamada & Seki (49)
introduced hydrodynamic filtration into their device; this consisted of placing multiple branches
perpendicular to the inlet (Figure 2b). A small volume of fluid was removed slowly from the
main channel via each branch, and the relative fluid-suction rate of the subsequent branch was
increased. This process caused smaller particles to be isolated earlier in the device, and larger
particles were removed later. WBCs were then enriched using this system and because a smaller
volume of fluid was left, the enrichment ratio also increased. Using the same idea, this group
also demonstrated high-throughput separation of liver cells (2 × 105 cells/min) (50). In a similar
study, Kersaudy-Kerhoas and colleagues (51) created vacuums at multiple branches to influence
particle sorting. This technique has also been used to collect blood plasma. Using this technique,
it was found that isolation efficiency depended on the ratio of the width of each microchannel to
the particle’s size. The plasma yield of 40% was superior to other techniques but the purity of
the samples was inadequate. Generally, the working flow rates of hydrodynamic techniques are
quite low due to the mechanisms used for separation. However, due to the passive nature of this
technique parallelization of microfluidic channels is possible, and this can enable high-throughput
separation. Moreover, because the mechanism of separation primarily relies on the flow profile

www.annualreviews.org • Large-Volume Microfluidic Cell Sorting 7
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but not directly on the dimensions of the channel, the throughput can be easily increased by using
larger channels, which would also minimize clogging.

2.2.3. Inertial separation (operation at moderate Reynolds numbers). In recent years, there
has been considerable interest in using inertial microfluidics—which capitalizes on the use of
size-dependent hydrodynamic forces in microfluidic channels—in diagnostic, therapeutic, and
cell biology applications. As a label-free technique, it manipulates cells and particles in confined
microchannels without an externally applied field, and combines the benefits of a passive approach
with extremely high throughput and yield (52). Due to the inertial lift forces (i.e., shear-induced
lift forces and wall-induced lift forces) arising from the parabolic nature of the laminar velocity
profile, randomly dispersed particles or cells migrate across the streamlines to an equilibrium
position away from the center of the channel (53). Focusing normally occurs for particles satisfying
the confinement ratio λ = ap/Dh ≥ 0.07, where ap is the particle diameter and Dh is the hydraulic
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diameter (46). Apart from this, adding curvature to the channel (such as a spiral or serpentine
curve) introduces a transverse secondary flow (i.e., a Dean flow). The Dean flow is composed
of two counter-rotating vortices (Dean vortices) that are perpendicular to the direction of the
primary channel flow; the velocity of the Dean flow varies across different parts of the channel,
with nearly a zero value at the vortex core (54). As a consequence of the combined effect of the
two size-dependent forces—the inertial lift force (FL ∝ ap

4) and the additional Dean drag force
(FD ∝ ap)—particles with diverse diameters display different focusing degrees at distinct lateral
positions across the width of the channel when flowing through the same curved microchannels. A
detailed understanding and physical modeling of complicated particle-focusing behaviors remains
a fascinating, yet still unfinished, research topic (7, 52, 55).

By taking advantage of diverse particle-focusing behaviors in inertial microfluidics, various cell-
or particle-separation devices have been developed, and these are grouped into two different cat-
egories: those involving equilibrium and those involving kinetic separation (55). For equilibrium
separation, the performance of cell sorters mainly relies on the accurate focusing of both targeted
and nontargeted cells at distinct locations in the curvilinear microchannels. Separation into 3 dif-
ferent particle sizes (10, 15, and 20 µm) (56) and separation into 4 different sizes (7.32, 9.92, 15.02,
and 20.66 µm) (57) have been reported to have high efficiency (90%) using spiral microchannels
with strategically placed outlets. In one study, Lee et al. (58) employed a spiral system with multiple
outlets to synchronize mammalian cultures and reported relatively high efficiency and through-
put (approximately 15 × 106 cells/h). However, there was a trade-off between throughput and
separation efficiency. When the concentration of cells in the microchannel is increased, cell–cell in-
teractions are normally increased, causing expansion of the focusing band and affecting separation
efficiency. To address this issue and further increase separation throughput, several recent studies
(20, 59, 60) have explored the effect of the shape of the channel cross-section on the performance of
spiral cell sorters. These studies discovered that by using channels with trapezoidal cross-sections
(instead of those with conventional rectangular cross-sections) the distance between the equilib-
rium positions of large and small particles can be increased, thus facilitating better separation. It

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
(a) Separation using deterministic lateral displacement (DLD). Fluorescent micrographs of the trajectories of micron-sized particles
inside a microfluidic DLD system with one input and two outputs (collection and waste) for enrichment of circulating tumor cells
(CTCs). Panel a adapted from Reference 45 with permission from the American Institute of Physics. (b) Principle of hydrodynamic
particle separation. (i–iii ) Schematics showing particle positions at branching points using different flow rates. (iv) Schematic showing
particle concentration and separation into multiple side channels. Panel b adapted from Reference 49 with permission from the Royal
Society of Chemistry. (c) Schematic of particle separation using a spiral microchannel with a trapezoidal cross-section. At the outlet of
the spiral microchannel (the A-A cross-section), CTCs are focused near the inner wall due to the combination of inertial lift force and
Dean drag force at the outlet; white blood cells (WBCs) and platelets are trapped inside the core of the Dean vortex, which is formed
closer to the outer wall. Panel c adapted from Reference 20 with permission from the Royal Society of Chemistry. (d ) Schematic of
particle focusing and separation using inertial microfluidics in straight microchannels. Inertial lift (FL) acting on large particles (red
blood cells) leads to differential migration to equilibrium positions; unfocused small particles (bacteria) exit from all outlets. Panel d
adapted from Reference 19 with permission from Wiley. (e) Schematic of a microhydrocyclone structure, flow profile (Va, Vc, and Vt
are, respectively, the axial, radial, and tangential velocities), and different forces (the centrifugal force, Fc; the drag force, Fd ; and the
buoyancy force, Fb) acting on the particle in a trajectory. The inlet velocity initiates a rotational pattern that creates a downward spiral
in the feed chamber. Centrifugal forces push the cells or particles that have higher specific gravity out toward the cone wall; these are
then ejected at the bottom of the cone under flow. The remainder of the fluid travels upward and exits through the overflow. Panel e
adapted from Reference 74 with permission from the American Society of Mechanical Engineers. ( f ) Schematic of the working
mechanism of a microfluidic counterflow centrifugal elutriator. (i ) Rotation-driven flow containing cells is introduced into the
microchannel. (ii ) In the separation chamber, particles remain at specific positions where the fluidic and centrifugal forces are balanced.
(iii ) Particle recovery is achieved by gradually increasing the fluid density. Panel f adapted from Reference 76 with permission from the
Royal Society of Chemistry.
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has been shown that spiral devices with a trapezoidal cross-section can provide better capacity
for isolating small particles (i.e., they can be isolated near the outer wall where there is a strong
Dean vortex) and achieve higher throughput, making this design ideal for concentrating large
low-abundance target cells from highly abundant, small background cells. One such application is
leukocyte isolation; Wu et al. (59) have demonstrated direct separation of human leukocytes from
diluted blood (1.5% hematocrit) at a throughput of 1.33 × 108 cells/mL with approximately 96%
separation efficiency. In a recent study, the same group employed spiral devices with trapezoidal
cross-sections to enrich CTCs from blood (Figure 2c). They reported successful recovery of more
than 80% of viable cancer cells from 7.5 mL of RBC-lysed blood in 8 minutes, with extremely high
purity (approximately 4 log depletion of WBCs); they also showed 100% positive CTC extraction
from samples (n = 10) from patients with advanced metastatic breast and lung cancer (20).

Equilibrium separation has also been implemented in straight channels by coupling shear-
induced lateral particle focusing with the sterically induced axial alignment of large particles in
a pinched flow. In the work of Bhagat et al. (61), a pinched straight channel that had a pinching
width comparable to the size of a CTC has been used to isolate spiked CTCs from 2% hematocrit
blood at 0.4 mL/min (Reynolds number = 100), resulting in greater than 80% cell recovery along
with a 3.25× 105-fold enrichment over RBCs and 1.2× 104-fold enrichment over leukocytes.

Kinetic inertial separation, however, takes advantage of the differential lateral migration be-
tween desired and undesired particles that occurs due to differences in net lift forces. Particles
migrate and focus to their equilibrium positions only when there is sufficient channel length and
time. Using this principle, Wu et al. (62) removed bacteria from 10% volume/volume (v/v) hu-
man RBCs by capitalizing on the greater lateral displacement of the RBCs caused by a stronger
wall-induced lift effect. Their device was able to offer up to 99% purity with 60% separation re-
covery. However, this device was unable to work with whole blood due to extensive RBC cell–cell
interactions. The flow rate of 2–18 µL/min also meant that processing time might be long for
large sample volumes. Mach & Di Carlo (19) tried to overcome the limitations of sample volumes
by creating a parallelized blood filtration device that had the potential to extend the application
to treat neonatal sepsis (Figure 2d ). The device was able to process 30 mL of 0.5% v/v blood at
8 mL/min.

In addition to a straight microchannel, a spiral channel can also be used to perform kinetic
inertial separation in Dean flow fractionation (DFF). The typical DFF device has a two-inlet
two-outlet configuration. At the inlet region, the input cell mixture is confined to the outer half
of the channel cross-section by introducing a cell-free sheath flow. Due to the Dean drag force, as
cells pass through the curvilinear channel, they follow the streamlines and migrate laterally across
the channel cross-section. For cells that are larger than the critical focusing threshold, lateral
migration stops when they reach their equilibrium positions near the inner wall of the channel;
smaller cells that do not have stable equilibrium positions travel with the Dean flow, displaying a
back and forth lateral movement across the width of the channel. Using a DFF design, Hou and
colleagues (63) developed a novel spiral biochip that is capable of processing blood (approximately
20–25% hematocrit) at a speed of 3 mL/h for isolating CTCs through a two-stage cascade system.
The team also recently reported on a multiplexed version of their biochip, which is capable of
processing lysed blood samples 15 times faster than the earlier version (that is, 7.5 mL blood in
less than 10 minutes) (64). The clinical usability of their multiplexed biochip was demonstrated
when it detected putative CTCs from 100% of blood samples (n = 56) collected from patients
with advanced stage metastatic breast and lung cancer with high CTC purity—that is, a reduced
number of contaminating WBCs were isolated with the CTCs (65).

In general, inertial cell sorters are the simplest microfluidic platforms that can separate cells
with high throughput and with negligible effects on cell viability, genomic profile (66), and
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immunophenotype (59). Although inertial microfluidics has inherent limitations in throughput
arising from the defocusing phenomenon that occurs as a consequence of interparticle interac-
tions, its high operational, volumetric flow rates mitigate this limitation. Moreover, the simplicity
of the channel architecture and the ability to operate independently from external force fields
facilitate the parallelization and stacking of microchannels, thus boosting the throughput. The
resulting throughput surpasses that of most other techniques by orders of magnitude and could
reach a value comparable to that of conventional bulk-scale cell-separation methods, thus giving
inertial cell sorters the ability to rapidly screen large sample volumes (67–69).

2.2.4. Centrifugal methods (operation at high Reynolds numbers): hydrocyclones, counter-
flow centrifugal elutriation, and disk microfluidics. Hydrocyclones are important macrode-
vices used to separate solid–liquid suspensions in many mining and industrial processes (70).
Without any moving parts, hydrocyclones separate suspended particles from fluid via centrifugal
sedimentation (Figure 2e); they have low capital costs and low maintenance costs (71). Hydrocy-
clones have been proposed recently as a means for separating cells in perfusion bioreactors (72)
or during alcohol fermentation by yeast cells (73). However, these applications have precipitously
worsened the separation efficiency for particles below certain sizes (approximately 10–15 µm).
Since this size range covers several important cell types, recent efforts have been directed toward
optimizing hydrocyclones to enable them to separate smaller particles. Bhardwaj and colleagues
(21, 74) developed a microfluidic microhydrocyclone for separating micron- and submicron-sized
solid particles. The effects on isolation efficiency related to parameters such as the diameter of the
vortex finder and particle size were also investigated. Hwang et al. (75) studied particle sorting in
hydrocyclones using mathematical models, and presented evidence that using a cone-shaped top
plate could reduce the fine-particle circulation area and increase the efficiency of isolation.

Hydrocyclones are able to offer continuous particle separation at high throughput (that is,
in liters per hour), which is much faster than any other described microfluidic particle-sorting
technique. Due to their larger dimensions, hydrocyclones are also less prone to clogging, and,
hence, provide a more reliable sorting technique. Nonetheless, the fabrication and operation of
small-scale microhydrocyclones remain challenging. In addition, this technology relies on density
differences between particles and fluid, limiting its applications to certain sizes of particles and
cells.

Counterflow centrifugal elutriation (CCE) is another particle-sorting technique that was de-
scribed as early as 1948 by Lindahl (77) for use in applications such as sperm sorting (78). This
method exploits the balance between a centrifugal force and a counterflow drag force to sepa-
rate particles based on differential sedimentation properties. Briefly, when particles first enter the
CCE chamber, they are subjected to centrifugal force, and, thus, stay near the boundaries of the
chamber. A buffer solution introduced in the opposite direction of the centrifugal force provides
a varying counterflow drag force, based on its flow rate, to push the particles toward the center
of the chamber. When the drag force becomes stronger than the centrifugal force (due to the
increasing rate of the buffer’s flow), the particles or cells exit the chamber, with smaller particles
or cells exiting before larger ones.

CCE has become well established for particle sorting and cell-cycle synchronization. Read-
ers can refer to reviews by Grosse and colleagues (79) for information about macroscale CCE
applications. Banfalvi (80) has used CCE for cell synchronization because CCE does not disturb
cell-cycle progression, and highly synchronized cell populations can be obtained especially in the
G1 phase, and early and mid-S phase. Although this technique has been extensively used in the
macroscale, microfluidic CCE was recently used by Morijiri et al. for Jurkat cells (76) and blood-
cell separation (81). The team modified the conventional CCE method to isolate particles, but
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included two types of fluid with different densities for stepwise elution of particles; they also used
a branched loading channel to minimize clogging and improve particle focusing to the center of
the CCE chamber (Figure 2f ). Using the device, Morijiri and coworkers were able to isolate 98%
of RBCs from WBCs (81). The authors also concluded that cell size is the most important factor
in their separation processes when compared with other parameters, such as shapes and densities.
Nonetheless, a 10× dilution of blood was necessary to improve separation resolution. In addi-
tion, the introduction of fluids with different densities also necessitated two different reservoirs,
making the entire system more complex to fabricate. Similar to the hydrocyclone, CCE is also a
label-free separation technique that is based on the inherent physical properties of samples such
as size and density. However, miniaturized CCE systems cannot be employed for large-volume
sample processing due to physical restrictions necessary in the design (i.e., for optimum operation)
and the concentration of the input sample (82, 83).

Centrifugal microfluidics is a new class of miniaturized systems that has been used in cell-
based applications for molecular separation, mixing, reaction, and detection. This technique is
also referred to as rotational centrifugal microfluidics because unlike the flow in spiral channels,
centrifugal forces are induced not by bends in the channels but by the actual rotation of the
platform (84). [Ducrée et al. (85) provide additional detail on the physics of centrifugal particle
focusing.] Centrifugal microfluidics has proven to be a suitable blood-separation technique because
it exploits the higher density of blood cells compared with the density of plasma. For example,
Haeberle and colleagues (86) extracted 2 mL of plasma with 99% purity from 5 mL whole blood
in 20 s using a centrifugal microfluidic platform. They also found that the purity of the plasma was
unaffected by the frequency of rotation, thus increasing the robustness of this plasma-extraction
system. Zhang et al. (87) created a centrifugal microfluidic platform with a curved geometry to
induce additional centrifugal effects to obtain cell-free plasma. In this system, RBCs, which have
a higher density, migrate away from the center of the microchannel toward the outer curved wall.
The team achieved an RBC separation efficiency of 99% with an input blood sample with 6%
hematocrit and 65% with a 48% hematocrit input; the differences were due to differences in blood
viscosity and cellular interactions. However, the efficiency of plasma collection was approximately
24% and throughput was only 15–30 µL/min. The same team then improved the design of the
platform by incorporating an out-of-plane microvalve (88) to prevent blood cells from diffusing
from the sedimentation reservoir to the plasma reservoir at a critical rotational speed, and achieved
99.9% plasma purity with 96% plasma yield with their new design. Shiono and colleagues have
also applied centrifugal devices to isolate different types of blood cells, such as nucleated blood
cells from RBCs (89), lymphocytes from neutrophils, cultured human mast cells from fibroblasts
(90), and human hematopoietic progenitor cells from peripheral and umbilical cord blood (91).
Their devices are made up of six parallel fluid streams, and cell separation occurs owing to the
differential densities of the cells.

There are other uses of centrifugal microfluidic platforms in particle sorting. For instance,
Martinez-Duarte and coworkers (92) made use of carbon electrodes to induce dielectrophoresis
(DEP), and then combined this with a centrifugal compact disc (CD) platform to separate yeast
cells from latex beads with 100% efficiency at a flow rate of 5 µL/min.

The advantages of using a centrifugal microfluidic platform are that such a system requires
minimal instrumentation to perform fluid propulsion because only rotational motion is needed,
and there is no need for external syringe pumps. The absence of external interconnects also creates
a complete fluidic network, thus minimizing the formation of bubbles that typically perturb the
flows in inertial microfluidic platforms. It is equally important to note that centrifugal pumping
is not strongly affected by the physicochemical properties of fluids, such as ionic strength and pH
(93), and does not require high voltage for operation (94). Through experimental validation, it
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has also been found that flow rates for different types of biological fluids, such as urine, blood,
and plasma, can range from 5 nL/s to 0.1 mL/s, with a rotational speed ranging from 400 to
1,600 rpm, channel widths from 20 to 500 µm, and channel heights from 16 to 340 µm (95).
These advantages of centrifugal microfluidic platforms lend these systems to a wide range of
biomedical particle-sorting applications.

2.3. Affinity-Based Techniques (Magnetophoresis)

Affinity-based cell sorting generally refers to the commonly used techniques of fluorescence-
activated cell sorting (FACS) and magnetic-activated cell sorting (MACS), both of which make use
of antibodies specific to targeted cells to isolate them (positive enrichment) or unique to unwanted
cells to remove them (negative enrichment). FACS separation is achieved using laser excitation
of fluorophores bound to the desired cells, with excitation above a threshold level signaling the
cell to be separated (10, 96). FACS has been the workhorse of the biological and pharmaceutical
industries due to its mature development, sensitivity, throughput (approximately 100,000 cells/s),
and ability to track multiple parameters (97). Recently, researchers have tried to incorporate FACS
into microfluidic platforms (i.e., FACS-on-a-chip). However, the throughput of microfluidic flow
cytometers is not high enough to compete with the throughput of commercial systems (98).

In MACS, immunomagnetic isolation is usually performed using magnetic microbeads coated
with monoclonal antibodies or ferrofluids. A strong magnetic field is then used to isolate the
magnetic beads that are attached to the desired cell population. In contrast to FACS, magnetic
cell sorting can be operated in either a serial or a parallel manner, resulting in remarkably high
throughput. Enrichment of up to 1011 cells in less than 30 minutes has been reported (10, 99).
In the context of microfluidics, MACS has been employed widely by many researchers for high-
throughput cell separation (100). For example, Hoshino et al. (22) presented an immunomagnetic
microchip (Figure 3a) in which magnetically tagged CTCs were captured inside a magnetic-field
gradient in microfluidic channels. They reported up to a 90% capture rate, even with a flow rate
of 10 mL/h.

IsoFlux (Fluxion Biosciences, South San Francisco, CA) is a newly developed microfluidic
platform (101) that has microfluidic channels in which cells tagged with magnetic particles are
exposed to highly uniform and concentrated magnetic fields that enable more efficient recov-
ery of the target cells. Also, Kang and colleagues (102) have reported on the development of
a microfluidic–micromagnetic cell-separation device that has been developed to isolate, detect,
and culture CTCs from whole blood. In addition to isolating cancer cells, the same group used
immunomagnetic microbeads and microfluidics to cleanse extracorporeal blood (Figure 3b) to
selectively remove pathogens from contaminated blood with an efficiency of around 80% at a flow
rate of 20 mL/min (103).

Given the lack of agreement on CTC surface markers (104), negative enrichment platforms
that remove unwanted subpopulations, such as leukocytes, have been developed to avoid losing
CTCs that lack conventional CTC markers [e.g., CTCs without epithelial cell adhesion molecules
(EpCAMs)] (105, 106). In a recent study, Chen et al. (107) demonstrated the use of a microfluidic
disk-based separation device for enriching CTCs using immunomagnetic negative selection with
a multistage magnetic gradient on the disk. Their device recovered more than 60% of spiked
cancer cells and removed more than 99.96% of WBCs.

Another example of an affinity-based particle sorting technique uses supermacroporous cryo-
gels (108). These gels have large interlinking pores, with dimensions in the range of 10–100 µm.
Ligands specific to cells may be added to the gels, allowing the targeted cells to be isolated while
other cells flow through the cryogel column without being retained. Owing to the high elasticity
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(a) Schematic of a microfluidic chip for immunomagnetic detection and separation of circulating tumor cells (CTCs). CTCs in blood
are labeled with magnetic particles functionalized with EpCAM (epithelial cell adhesion molecule), and captured by the magnetic field
as the blood flows through the microchannel at a rate of 2.5–10 mL/h. Panel a adapted from Reference 22 with permission from the
Royal Society of Chemistry. (b, top) Optical image of a micromagnetic–microfluidic blood-cleansing device made from
polydimethylsiloxane (PDMS). (Bottom) Schematic illustrating the mechanism of operation. The modified immunomagnetic
microbeads are used to cleanse Candida albicans fungi from flowing human whole blood (hWB); the fungi are a leading cause of
sepsis-related deaths. The device generates magnetic-field gradients across vertically stacked channels to enable continuous separation
of fungi from flowing whole blood. Panel b adapted from Reference 103 with permission from the Royal Society of Chemistry.
(c) Schematic illustrating the principles of acoustic separation using standing surface acoustic waves (SSAWs). The acoustic forces are
generated using interdigital transducers (IDTs); these forces reposition the larger cells closer to the center of the channel and smaller
cells farther from the center, thus allowing continuous separation at the outlets. Panel c adapted from Reference 112 with permission
from the Royal Society of Chemistry.
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of the cryogels, absorbed cells can be detached using mechanical compression. Detached cells have
also been shown to be highly viable and able to be cultured. In addition to blood cells, bacteria
such as Escherichia coli have also been shown to adsorb onto cryogels. These bacteria can also be
detached from the matrices for culturing (108, 109). However, some common problems with this
technique are fouling of the column, nonspecific adsorption, and possible damage to cells due to
the high shear rate from the high flow rate (110). The surface area of the binding beads, as well as
the strength of the binding, may also limit the effectiveness of cryogels.

Although affinity-based techniques, using either positive or negative selection, are well es-
tablished and widely practiced, it is important to understand the inherent limitations of these
techniques. For example, there are often limits to using cells captured by positive selection for
downstream assays, especially functional assays, such as colony formation or culture. Also, the effi-
ciency of separation is almost solely determined by the quality of the capture agent used, requiring
reliable high-quality capture agents, such as antibodies. And, especially for applications requiring
high-volume processing, the cost of capture agents could be significant and prohibitively high.

2.4. Acoustophoresis

Acoustophoresis uses high-intensity acoustic radiation to separate particles (111). It has long been
known that particles, such as cells suspended in fluid, can be manipulated using high-intensity
standing waves of sound, which are often produced using acoustic resonators. Particle or cell
separation can be performed by creating standing waves over the cross-section of a microfluidic
channel (112). The radiation force causes the particles to move toward either the pressure nodes or
the antinodes of the standing wave. There are comprehensive and insightful reviews of using bead-
based immunoassays with acoustophoresis (113), of creating microscale systems for particle sorting
using standing waves (50, 114), and of clinical applications for this particle-sorting technique (115).

Petersson and colleagues (116) used free-flow acoustophoresis to separate differently sized
beads (2–10 µm) as well as to separate blood into platelets, RBCs, and WBCs. Several groups also
have provided suggestions about ways to improve acoustophoretic particle sorting in microfluidic
channels (50). A stronger acoustic radiation force can be generated in microscale, leading to better
performance of particle separation. In one study, Persson et al. (117) also used acoustic radiation
forces to demonstrate the automatic selection of bacteria from libraries. Lenshof and colleagues
(118) developed an integrated system combining acoustophoresis and a microarray chip coated
with prostate specific antigen to remove blood cells. Their system generated 12.5% clean plasma
by volume (55–60% of total blood is plasma), with approximately 99.99% depletion efficiency
for RBCs. Dykes and coworkers (119) managed to utilize ultrasonic standing waves to remove
platelets from samples of peripheral blood progenitor cells. Thévoz et al. (120) reported using
acoustic radiation forces for cell synchronization. Their device exploits the differential cell sizes
present during different cell cycles. The team achieved 84% synchrony in the G1 phase and a
throughput of 3 × 106 cells/h per microchannel. Augustsson and team (121) demonstrated that
sorting fixed and viable cancer cells is possible by creating ultrasonic resonances in temperature-
stabilized microchannels. In their work (121), prostate cancer cells were isolated from WBCs with
a recovery rate of up to 93.9% and a purity rate of up to 99.7%. The isolated cancer cells were
viable and could be cultured. Similarly, Yang & Soh (122) isolated MCF-7 cells from a mixture of
viable and nonviable cells (106 cells/mL) using acoustic radiation forces at flow rate of 12 mL/h.

In addition to medical applications, acoustophoresis has been useful in industry as well. Shi and
coworkers made use of standing surface acoustic waves (SSAWs) that are able to separate particles
based on differences in volume, density, and compressibility (112, 123). Their device was able to
achieve 80% efficiency in separation (Figure 3c). Grenvall et al. (124) created a microfluidic device
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that uses a multinode standing wave to concentrate lipid emulsions from raw milk samples, and,
thus, preconditions the sample for downstream analyses of the protein and lipid contents. A lipid
depletion efficiency of approximately 90% has been achieved using their system. Ultrasonic sorters
have also been used widely in the pharmaceutical industry to separate and recycle mammalian cells
for use in bioreactors (125).

Acoustophoretic particle sorting can be performed without labels and physical interactions.
This minimizes physical and biochemical damage to cells (e.g., damage to gene-expression pro-
files). Acoustophoretic particle sorting can also be extended to the separation and concentration
of bacteria and even nanoparticles (126). However, the presence of external elements, such as a
resonator and function generator, makes their fabrication and use complicated. It is also crucial to
note that this technique depends strongly on the size, volume, and density of the particle, which can
be confounding factors for harvesting target cells of similar phenotypes but with slightly different
sizes (127).

2.5. Biomimetic Separation

Biomimetic separation uses naturally occurring hemodynamic phenomena in microvasculature,
such as plasma skimming and cell margination, to separate various blood components. Even
old ideas about hemodynamics can be further engineered in a microfluidic platform to provide
enhanced or novel functionalities by modifying the geometry and increasing the flow rate. These
mechanisms typically use raw, undiluted blood (40–50% hematocrit), and, therefore, achieve high
cell-processing rates and allow direct processing of raw blood, both of which are ideal features for
applications in blood diagnostics and therapeutics.

At the heart of these mechanisms are the unique viscoelastic properties of RBCs, the major
fluidic component of blood. In these techniques, RBCs are placed under a shear gradient typically
found in blood microvessels, and this drives them toward the axial center of the channel or vessel,
creating a cell-free layer near the vessel wall and reducing effective fluidic resistance (known
as the Fåhræus–Lindqvist effect) (128). Such a cell-free layer can be harvested at bifurcation
points in blood vessels or microchannels (the Zweifach–Fung effect), and potentially used for
plasma and cell separation. Geng et al. (129) combined the bifurcation law, centrifugation, and
the diffuser-nozzle effect to isolate plasma with an efficiency of 95%. Nevertheless, the flow rate
was only 0.06 µL/s even after the blood had been diluted to 20 times the original volume. Jäggi
and coworkers (130) then tried to improve the flow rate to milliliters per minute by extending
the height of the channel. The team also investigated the critical flow rate needed to obtain a
pure plasma stream at various hematocrit levels. They found that at higher hematocrit levels
(i.e., 45%, which is a physiological level), the separation efficiency of their devices decreased
significantly, falling to approximately 30%. This effect, often referred to as plasma skimming,
is an ideal method for harvesting cell-free plasma, which is required for many blood-based tests
used to detect biomarkers. Yang et al. (131) created a microfluidic device with a high ratio of the
flow rate in the main channel to the rate in the branch channel (>6:1), and collected 15–25%
of the plasma volume. The device was able to function when used with whole blood and caused
minimal hemolysis due to the low flow rate of 10 µL/h. Faivre and colleagues (132) also used in
vitro plasma skimming to create cell-free plasma. They reported that sudden channel expansion
could enhance the cell-free layer and lead to isolation of close to 24% of the initial plasma
volume. Sollier et al. (133) managed to isolate 10.7% of plasma from 20× diluted blood at a flow
rate of 100 µL/min. The purity was also comparable to that of methods such as centrifugation.

Margination describes another in vivo process in which less deformable cells are crowded out
toward the periphery of the microvasculature as a result of the more deformable (or fluid-like)
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RBCs concentrating at the center of the vessel. Shevkoplyas et al. (134) made use of this
phenomenon to isolate leukocytes from RBCs. Their device was able to enrich leukocytes by
34-fold over the RBC count. The use of a combination of multiple symmetric and asymmetric
channels improved the leukocyte count from 4,300/µL to 42,300/µL. Hou and colleagues (24)
also used margination to isolate malaria-infected RBCs from whole blood. Infected RBCs are
known to be less deformable than uninfected RBCs, and, therefore, the infected RBCs migrate
to the peripheral outlets where they can be collected for downstream analyses (Figure 4a). Using
the same phenomenon, the team developed a novel microfluidic device to enable label-free
removal of both microbes and inflammatory cellular components (platelets and leukocytes) from
whole blood. Using a cascading system, they have shown a flow rate of up to 6 mL/h (135).

2.6. Integrative Systems

Integrative systems capitalize on the advantages of different particle-sorting techniques. For in-
stance, Sollier and coworkers (138) recently reported on a high-throughput microfluidic device
that can be used for ultrahigh-throughput separation of CTCs (20 minutes to process 7.5 mL
of whole blood) and uses a combination of inertial focusing and vortex technology, capitalizing
on previous findings by Hur et al. (136). The straight channel that is upstream from the vor-
tex reservoir focuses cells to their equilibrium positions. Upon entering the vortex reservoir, the
wall-induced lift forces become negligible and the stronger, shear-gradient lift forces cause larger
particles to be trapped in the vortices in the reservoir (Figure 4b). Small particles are removed by
washing, and large particles are released by slowing the flow rate. Wang et al. (139) made use of
similar principles to isolate polystyrene beads for particle sorting and blood fractionation. Song
& Choi (140) also provided a proof of concept by combining hydrophoretic and inertial effects
to show that particles can be sorted based on size in a label-free sheathless system using relatively
high flow rates (106 cells/h per channel). Adams et al. (141) demonstrated that acoustic and mag-
netic particle sorting can achieve a throughput of 20 mL/h. Liu and colleagues (142) combined
DLD and an affinity-based technique to isolate breast cancer cells with 90% efficiency at a flow
rate of 9.6 mL/min. Seo and colleagues (143) have shown that combining magnetophoresis (i.e.,
by employing the magnetic properties of blood cells) with hydrodynamics (using the momentum
of particles) can be useful for label-free cell separation (0.5 mL/min). In an interesting study, Hur
et al. (66) made use of the balance between deformability-induced lift force and inertial lift forces
to classify cells. The size, elasticity, and viscosity of particles affected their lateral displacement as
they flowed through a microchannel. Remarkably, the lateral equilibrium positions of malignant
MCF-7 cells could be clearly distinguished from those of benign MCF-7 cells, hinting at the
possibility of determining cancer-stage progression.

Another excellent example of an integrative system is the CTC-iChip (Figure 4c), which
combines DLD, inertial focusing, and magnetophoresis to sort rare cells (25, 144). The device
made use of anti-CD45-covered superparamagnetic beads to remove WBCs via the negative-
depletion principle. There are two stages of separation in this technique: DLD is used in the
first stage to separate CTCs from WBCs, and this is followed by the second stage in which
inertial focusing and magnetophoresis are used to remove WBCs. The CTC-iChip offered up
to 97% yield of CTCs, with a processing speed of 8 mL of whole blood per hour. In another
interesting study, Moon et al. (137) successfully combined multi-orifice flow fractionation (MOFF)
and DEP cell separation techniques in a serial manner to enrich MCF-7 cells at a flow rate of
126 µL/min. MOFF allowed for high-throughput separation while DEP enhanced the efficiency
of the separation. RBCs and WBCs were depleted with efficiencies of 99% and 94%, respectively
(Figure 4d ).
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3. CASE STUDIES OF LARGE-VOLUME MICROFLUIDIC DEVICES:
DIAGNOSTICS AND THERAPEUTICS

3.1. Rare-Cell Enrichment and Analysis of Large Sample Volumes

The ability to isolate low-abundance target cells (those occurring at <1,000/mL) from a pool
of heterogeneous nontarget cells, and the subsequent characterization of those cells, are highly
valuable in many applications, such as prenatal diagnosis (e.g., enriching fetal cells in maternal
blood), cancer research (e.g., isolating CTCs from peripheral blood to perform a liquid biopsy),
and stem cell therapy (e.g., separating stem cells from peripheral or cord blood, or bone marrow)
(145). Microfluidic platforms are ideally suited for handling and analyzing a small number of cells,
and offer precision that is not possible with conventional fluid-handling systems (e.g., microwell
plates and pipettes). Yet, in order to isolate a sufficient number of target cells from these samples,
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it is necessary to process a large volume (approximately 1–20 mL or even more) of raw sample, a
capability that became available in the field of microfluidics only recently.

In the context of cancer research, CTCs have attracted extensive attention, and functional
analyses of CTCs have been used for real-time liquid biopsy in cancer management (146). The
detailed characterization of CTCs holds the promise of enabling the optimal therapy to be chosen
for individual patients during the course of their disease. However, sufficient numbers of CTCs are
required to obtain a representative picture. Although most clinical studies are performed using
just 7.5 mL of blood from a patient, recent studies have shown that it is necessary to process
larger volumes of blood to obtain enough cells for reliable enumeration and assessment of their
proteomic and genomic profiles to help select an effective therapy for particular patient. Although
in vitro expansion of CTCs (147) could alleviate this issue, there is a concern that such expansion
might also change the original biochemical and phenotypic states of the original CTCs obtained
from the patient.

Although increasing the volume of a sample is clearly one of the most effective ways to enrich
more putative CTCs, clinical considerations about patients’ health impose an upper limit in
the amount of blood that can be extracted from one patient. Isolating CTCs in vivo provides
an elegant way of bypassing this limitation. Saucedo-Zeni et al. (148) recently developed an in
vivo CTC detector by functionalizing the surface of a gold-plated Seldinger guide-wire with
anti-EpCAM-engrafted polycarboxylate hydrogel. By inserting the detector into the patient’s
cubital vein, up to 1.5 liters of blood could pass through the 2-cm-long functionalized area of the
detector within 30 minutes, thus capturing a significantly higher number of CTCs. Moreover, the
gold galvanization and hydrogel coating on the detector’s surface greatly improved the specificity
of CTC detection by minimizing the nonspecific binding of other blood components. Currently,
a multicenter clinical trial is being undertaken to verify the applicability of this technique for
patients with high-risk prostate cancer (European Research Area Network on Translational
Cancer Research). The performance of this type of positive-selection CTC capture relies heavily
on the choice of capture marker (or markers) and the quality of the capture agents. Thus,
EpCAM-based methods of CTC capture could result in target cells escaping if CTCs are under-
going epithelial-to-mesenchymal transition, along with a coincident loss of EpCAM expression

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 4
(a, i ) Schematic of a biomimetic microfluidic chip for separating malaria-infected red blood cells (RBCs) from healthy cells in a
continuous fashion. (a, ii ) Schematic of the cross-sectional and top views of the device showing the separation mechanism. The
randomly distributed infected RBCs (blue), which are less flexible than normal RBCs, migrate to the channel’s side walls as the flow
reaches the outlet; they are then filtered out using a three-outlet system. Panel a adapted from Reference 24 with permission from the
Royal Society of Chemistry. (b) Schematic of a high-throughput microfluidic system for cell separation that uses inertial and vortex
technologies. The device consists of 8 parallel, straight channels (50 × 70 μm) with a high aspect ratio; each channel has 10 cell-
trapping reservoirs (400 × 400 × 70 μm). Larger cells are trapped in the reservoirs while smaller cells freely pass through due to
differences in lift forces (the wall-induced lift force, FLW ; the shear-induced lift force, FLS), and are separated at the end of the process.
U is the fluid velocity, and Xeq is the equilibrium distance of particles from the channel’s side wall. Panel b adapted from Reference 136
with permission from the American Institute of Physics. (c) Schematic of circulating tumor cell (CTC)-iChip. This hybrid chip is
composed of a deterministic lateral displacement section at the entrance that isolates nucleated cells from whole blood using size-based
exclusion; this section is followed by an inertial focusing section that is used to line up cells to prepare for precise separation by a
magnetic field. Panel c adapted from Reference 25 with permission from Nature Publishing Group. (d ) Schematic illustrating the
working principles of a hybrid microfluidic chip combining dielectrophoresis (DEP) and inertial focusing to separate cancer cells from
blood. (d, i ) In the first separation region, inertial forces are used to separate the relatively larger cancer cells from blood cells (although
separation efficiency is not 100%); the cancer cells then enter the wider zone, which is embedded with electrodes; in this area, the cells
are subjected to positive DEP, which further separates the cancer cells from contaminated blood cells. (d, ii ) Optical image of the
fabricated device. Panel d adapted from Reference 137 with permission from the Royal Society of Chemistry.
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(104). Additionally, the types of downstream assays that can be used on captured CTCs are often
limited, and results might be skewed due to the strong interaction between CTCs and the capture
agents. An alternative approach is to isolate CTCs through extracorporeal blood salvage so that
CTC-free blood, particularly RBCs, is returned to the patient. Eifler et al. (149) investigated the
applicability of using a sequential process of leukapheresis followed by elutriation to isolate CTCs
from high-volume samples ex vivo. First, the authors harvested mononuclear cells from 10 liters of
blood using leukapheresis; they then spiked in the cancer cells at a frequency of 26 cancer cells
per 106 blood cells. Subsequently, they isolated the larger cancer cells via elutriation, and this was
followed by antibody-based detection of cancer cells using FACS. The authors reported 66% ±
8% recovery and 58% ± 21% purity for the spiked cancer cells; they also reported recovery of
more than 90% of mononuclear cells during the elutriation step. In a recent, comprehensive study,
Fischer and colleagues (150) screened leukapheresis products generated from up to 25 liters of
blood per patient in order to monitor CTCs; they successfully detected CTCs in more than 90%
of samples from patients with nonmetastatic breast cancer, and found a median of 7,500 CTCs
per patient. Although this approach may be useful for isolating CTCs that are present in high
numbers, a high level of background WBC contamination (of approximately 105 to 106 WBCs
per CTC) could compromise downstream analysis. Given this issue, Warkiani et al. (20) recently
reported on an ultrahigh-throughput microfluidic system that can enrich putative CTCs from
7.5 mL of lysed blood in less than 8 minutes with very high purity (99.99% removal of WBCs).
The same biochip also works for processing whole blood. Using a multiplexed version of the
same biochip, one could easily process larger blood volumes with a throughput of approximately
50–100 mL/min with more than 90% recovery of CTCs (65). This elegantly demonstrates
that a properly engineered microfluidic system can overcome the shortcomings of traditional
cell-separation techniques and match or outperform traditional techniques in terms of throughput
of volumetric flow. A European consortium, known as the Circulating Tumor Cells Therapeutic
Apheresis group (or CTCTrap), is currently exploring new ways to enrich CTCs from peripheral
blood by combining immunocapture and size-based separation techniques (Figure 5a) (151).

3.2. Intraoperative Blood Salvage

Intraoperative blood loss is a dreaded complication of cancer surgery (152). An average of 2 liters
of blood is lost during bone cancer surgery (153). Currently, this loss is replenished by allogeneic
blood transfusion, which places an enormous burden on blood banks as well as exposing patients
to risks related to blood transfusion, namely infection, immunosuppression, tumor progression,
and transfusion reactions (154, 155). The alternative method for replenishing blood loss is intra-
operative cell salvage (IOCS), a system in which blood lost during surgery is salvaged and returned
to the patient instead of being discarded (156).

IOCS has not been used in tumor surgery because of the theoretical concern about returning
CTCs to patients; however, for the past three decades there has been no concrete evidence that
this occurs. On the contrary, a number of studies have supported the effectiveness of IOCS,
especially when it is used in combination with leukocyte filters during tumor surgery or during
other surgeries, including hepatobiliary, gynecological, gastrointestinal, and urological operations
(157, 158). Despite evidence of the efficacy of using IOCS with leukocyte filters in cancer surgery,
there are drawbacks to using these filters for blood salvaged during these procedures—that is,
the filtered blood is rich in RBCs but may be devoid of WBCs. Theoretically, there would be a
definite advantage to preserving WBCs to provide patients with immunogenic cells to fight against
infection. Therefore, the need to develop an alternative low-cost technology for intraoperative
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blood salvage that has the ability to deplete putative CTCs while returning the majority of blood
cells (platelets, RBCs, and WBCs) is urgent, and opens up a new opportunity for the use of
high-throughput microfluidic cell-separation techniques.

3.3. Extracorporeal Blood Purification for Sepsis Therapy

Cell separation for therapeutic interventions is another major field that requires an efficient, reli-
able, and high-throughput system in which microfluidic methods may offer great benefits. Sepsis
therapy provides a typical example of the need to remove pathogens and even immune cells (159).
Sepsis, systemic inflammation caused by severe microbial infection, is the leading cause of death
in US intensive care units (160). To attenuate the overwhelming inflammatory response of the
host, efforts have been invested in improving the outcomes of septic patients by using extracor-
poreal blood purification to remove cytokines and endotoxins. Although many extracorporeal
blood-purification techniques have demonstrated efficacy in clearing these molecular targets from
plasma, clinical studies have reported limited success in using molecularly targeted blood purifi-
cation (159). However, it has also been proposed that blood-purification therapy should be used
for a broader spectrum of targets, including microbial pathogens and host immune cells (161).

Recently, a number of microfluidic approaches have aimed to implement size-based and affinity-
based removal of pathogens. In the former case, researchers took advantage of the size differences
between typical microorganisms (approximately 1–3 µm) and human blood cells (>6 µm) to
remove pathogens from the blood. Currently, the highest throughput reported for size-based
separation of pathogens from blood cells is 240 mL/h with 0.5% v/v blood spiked with E. coli; this
was obtained using a parallelized, inertial, microfluidic system (19). Despite the high throughput
and high efficacy of pathogen removal (>80%), the necessary blood dilution prior to processing
demands the use of a downstream hemoconcentrator, thus complicating the actual operation of this
system. As an alternative approach, Yung et al. (103) developed an affinity-based system in which
microbes were captured by magnetic microbeads coated with antibodies; these were then removed
from the blood by magnetically pulling the beads into a waste stream flowing parallel to the blood
sample. Using a multiplexed system, the authors reported pathogen clearance of more than 80%
at 20 mL/h of whole blood in a single pass. The team claimed that higher throughput for human
extracorporeal blood cleaning is possible using larger channels and more stacking. Because broad-
spectrum pathogen removal is desired during sepsis treatment, researchers at the Wyss Institute
have developed a capture agent similar to the human mannose-binding lectin (MBL), which is
present naturally in the circulatory system and binds to almost all microbial classes (162). It is
highly plausible that low-cost MBL-coated magnetic nanobeads could be used to cleanse whole
human blood of infectious pathogens. However, caution must be exercised when considering the
safety of this approach, particularly issues that may arise from the imperfect removal of magnetic
nanobeads from patients’ circulation.

Similarly, extracorporeal blood-purification platforms aimed at immune-cell removal have
been developed mainly using affinity-based approaches that employ sorbent polymer (163) or
synthetic biomimetic membrane (164). Rimmelé et al. (161) have shown that leukocytes together
with cytokines can be adsorbed onto CytoSorb (CytoSorbents, Monmouth Junction, NJ), a type of
polystyrene divinylbenzene copolymer bead. By passing blood through columns of CytoSorb beads
for extracorporeal blood purification, the authors demonstrated reduced inflammatory factors,
circulating neutrophils, monocytes, and platelets in an ex vivo study. However, most of these
affinity-based blood-cleansing systems suffer from nonspecific binding and, more importantly,
an increase in the local release of certain cytokines caused by enriching immune cells at capture
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sites (163). Alternatively, Hou et al. (165) developed a microfluidic blood margination (µBM)
device for the nonspecific removal of inflammatory cells and microbes from whole blood. The
µBM device, composed of straight channels with cascading bifurcations, was inspired by leukocyte
margination, which is explained in Section 2.5 (166). The authors removed approximately 80–90%
of pathogens, with more than 80% removal efficacy for platelets and leukocytes at a throughput
of approximately 1 mL/h per channel. In a separate report using a murine model of sepsis, a
flow rate of approximately 90–150 mL/h has been reported, with similar performance, using a
32-channel parallelized platform, thus demonstrating the feasibility of µBM as a purification
approach in clinical settings (Figure 5b) (167). However, it should be mentioned that in using the
µBM approach, separation was usually accompanied by the loss of approximately 20% of blood
in the waste channels; thus, additional fluid support may be needed during operation.

3.4. Wearable or Implantable Artificial Kidneys

The possibility of providing large-volume extracorporeal hemodialysis and peritoneal dialysis
using miniaturized devices is also a major interest in the field of artificial kidneys, which could
be widely applied as a therapy for kidney failure. Despite increasing evidence favoring prolonged
or frequent dialysis treatment, or both, to ensure better clinical outcomes in patients with acute
renal failure and end-stage renal disease, the use of continuous or long-term treatment with an
artificial kidney is limited to less than 10% of patients with these diseases due to the requirement
for hospitalization and the high financial costs (168). The majority of patients with these diseases
must rely on traditional intermittent in-center dialysis, which greatly affects their quality of life
and results in the periodic accumulation of metabolic wastes and toxins. A wearable or implantable
artificial kidney, with a reasonable cost–effectiveness ratio, holds the promise not only of improving
clinical outcomes in larger patient cohorts via its ability to perform daily or continuous dialysis,
but also in allowing for a better quality of life by enabling home dialysis or even dialysis during
travel. Different approaches have been used to develop miniaturized artificial kidneys, and reviews
are available elsewhere (168, 169). It is noteworthy that artificial kidneys demand high-throughput
processing that allows for input blood flows on the order of 100 mL/min, and many microfluidic
artificial kidneys belong to the category of bioartificial kidneys, in which the biomimetic structure
of renal tubule progenitor cells or epithelial cell culture is enabled by microelectromechanical
system-based tissue engineering.
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Figure 5
(a) Schematic of the circulating tumor cell (CTC) trap design. Up to 5 liters of blood from a patient is circulated through a
functionalized membrane (i.e., coated with a cocktail of antibodies) for continuous large-scale CTC separation and analysis. The
separated cells can be cultured ex vivo in Petri dishes for further characterization. Panel a adapted from Reference 151 with permission
from the Multidisciplinary Digital Publishing Institute. (b, i ) Schematic of a three-channel margination microdevice for separating
bacteria from blood. (b, ii ) Optical image of the prefiltration and bifurcation regions. (b, iii ) Separation at each bifurcation. (b, iv)
Schematic of the closed circuit used for coupling the device to a catheterized mouse using a peristaltic pump. Blood loss (approximately
30%) is compensated for by adding saline to the loop. Panel b adapted from Reference 167 with permission from the Royal Society of
Chemistry. (c, i ) Schematic of, and working principle for, a spiral microfluidic device with multiple outlets for continuous cell
synchronization. Under the influence of inertial lift and Dean drag forces, asynchronous cell populations are fractionated by size to
obtain relatively pure populations of cells in the G0/G1, S, and G2/M phases. The cells in the G2/M phase, due to their larger diameter,
equilibrate near the inner wall of the microchannel; cells in the S and the G0/G1 phases then exit the device from outlets 1, 2, and 3,
respectively. (c, ii ) Distribution of DNA content of sorted human mesenchymal stem cells postsynchronization using a spiral device.
Panel c adapted from Reference 186 with permission from the Royal Society of Chemistry.

www.annualreviews.org • Large-Volume Microfluidic Cell Sorting 23



BE17CH01-Han ARI 31 October 2015 15:13

3.5. Cleansing Banked Blood for Allogeneic Transfusion

Annually, more than 16 million units of stored blood are required for transfusion medicine in
the United States, which places a massive burden on blood banks (170). Allogeneic transfusion
of packed RBCs is the primary method for replenishing blood lost during surgery (171). Careful
control of the quality of stored blood is tremendously important to ensuring positive clinical out-
comes during allogeneic transfusion because the multitude of biochemical and physical changes
occurring in RBCs during ex vivo storage (termed RBC storage lesions) can have lethal clinical
consequences (172, 173). During the course of storage, the shape and function of RBCs can change
significantly, causing serious problems during circulation after transfusion, such as occlusions in
the microcirculation and, eventually, organ failure (101). Generally RBCs can be stored for up
to 6 weeks, according to the United States Food and Drug Administration (174, 175). Sorting
RBCs prior to transfusion could help ensure the quality of transfused blood and mitigate issues
of interdonor heterogeneity by separating functioning, healthier (or good) RBCs from damaged
(or bad) RBCs and their breakdown products. Microfluidic cell-sorting approaches could be par-
ticularly valuable for this purpose, given their portability and the ease of integrating them with
existing blood-transfusion systems. An ideal RBC sorter should have throughput of approximately
100–175 mL/h, which is equivalent to the usual blood transfusion rate of approximately 2–3 h per
unit of packed RBCs (i.e., 300–350 mL).

Recently, a few microfluidic systems have been developed to ensure safer blood transfusions.
A team led by S. Shevkoplyas is currently working on a multiplexed microfluidic system for this
purpose (176). Based on their online news report, it seems that they propose to mix packed RBCs
with saline before passing them through a series of interconnected microchannels, which could
separate good RBCs from bad, based on cell shape, size, and deformability. Although the details
of this system have not been revealed, scaling microfluidic designs for processing larger volumes
is reportedly a major hurdle. The Han group (177, 178) is investigating the applicability of using
the µBM cell sorter to remove bad RBCs from refrigerated blood. Since the µBM device could
separate deformable RBCs from their stiffer counterparts, the rationale for using the µBM device
to improve blood transfusion lies in the fact that RBC aging and damage occurring during ex vivo
storage coincide with a decrease in cellular deformability (179, 180). Through an in vitro study,
Huang et al. (177) examined the evolution of the distribution of heterogeneous deformability
in individual RBCs over storage time, and confirmed the association of RBC deformability with
many clinical features that are important for posttransfusion clearance of RBCs. Specifically,
when compared with deformable RBCs, the stiffer RBCs isolated by the µBM device displayed
higher mechanical retention in the spleen, deteriorated osmotic fragility, and higher microparticle
content. These results are in agreement with previous findings (174, 178, 181) and support the
use of single RBC deformability as a biomarker to separate good RBCs from bad. Additionally,
this margination system has already been tested for higher throughput (approximately 150 mL/h)
using whole blood (167), making it a good candidate for clinical applications.

3.6. Large-Scale Cell Synchronization

Cell synchronization is commonly performed in biology to collect cells that are at the same phase
of the cell cycle to comprehensively study their cellular properties and the genetic mechanisms
involved in the phase prior to division (182). The cell cycle comprises a series of sequential events,
mainly the duplication of DNA (the S phase) and the formation of daughter cells (M phase), along
with two intermittent gap phases (G1 and G2) (80). Currently, there are two distinct strategies
for cell synchronization, namely a chemical approach (known as arrest and release), and physical
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methods (using size, density, and affinity). In the chemical approach, specific chemicals are used in
the culture media to arrest cells at a particular phase (e.g., by inhibiting DNA replication during
the S phase by using hydroxyurea or methotrexate); they are then released in synchrony by using a
second chemical agent (183). A major problem with chemical approaches is the undesirable effect
of disturbing the normal physiology of the cells and causing serious damage to cell growth, as
well as disrupting progression through the cell cycle (58). Another obstacle is the throughput of
chemical approaches, which is usually not high enough for large-scale experiments.

However, physical methods have been reported to cause negligible perturbation to the
growth and progression of the synchronized cells. Of note, FACS and centrifugal elutriation (see
Section 2.2.4) have been used widely in cell biology. Light scattering and the intensity of the
fluorescent signal are two parameters routinely used in FACS for cell synchronization; however,
the impaired viability of the synchronized cells as well as the associated costs are major hurdles
that need to be overcome before large-scale operation is implemented. In centrifugal elutriation,
differences in cell size and in the sedimentation density of living cells are exploited to fractionate
cells during different phases of the cell cycle (80). Although FACS remains the gold standard
in cell biology, and has extremely high throughput, it typically involves labor-intensive sample
preparation and requires a large amount of space.

During the past decades, various microfluidic approaches have been proposed to achieve cell-
cycle synchrony. Some methods, such as DEP (184) and hydrophoresis (185), have demonstrated
good results and achieved high levels of synchrony; however, the insufficient throughput of these
systems (approximately 104–105 cells/h) limits their real-world applications. Thévoz et al. (120)
used acoustophoresis and reported higher throughputs for synchronization of mammalian cells
(3× 106 cells/h per microchannel). Using inertial microfluidics, Lee et al. (186) developed a high-
throughput spiral biochip (Figure 5c) that can efficiently fractionate several asynchronous mam-
malian cell lines, as well as mesenchymal stem cells, into enriched subpopulations with a throughput
of around 15× 106 cells/h. We are currently working on a multiplexed version of our biochip to
be used in industrial applications; it has a throughput of approximately 107 cells/min, comparable
to the yield of centrifugal elutriation systems or even hydrocyclones. This multiplexed system has
distinct advantages over other cell-synchronization methods, including continuous operation and
collection of cells. In addition, the passive nature of the inertial system eliminates the need for an
externally applied field (e.g., an electrical or magnetic field) or even for direct modification of the
cells via molecular labeling, thus further reducing processing time and costs.

4. CONCLUSIONS AND OUTLOOK

The creation of microfluidic particle-sorting systems has facilitated the analysis of small sample
volumes at varying throughput rates. A myriad of microfluidic techniques has been developed,
and reviews commonly classify them as affinity-based versus label-free, biochemical versus bio-
physical, or positive versus negative enrichment. In this review, we have focused primarily on
the throughput of microfluidic particle-sorting methods, particularly those that can handle large
sample volumes. We evaluated the strengths and weaknesses of each particle-sorting technique to
provide a guide for choosing the appropriate technique for different applications. Our rationale
for adopting this approach lies in our interest in capitalizing on the unique advantages provided by
microfluidic cell handling to high-throughput applications, such as intraoperative blood salvage
and extracorporeal blood purification for sepsis therapy, applications in which conventional bulk-
scale processing methods suffer from limitations. Up until now, despite the superior purity and
efficiency offered by microfluidic systems and the rapid growth in the literature about microfluidic
particle-sorting techniques, commercial realization of these technologies remains low, and they
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are mainly limited to point-of-care diagnostic use, partially due to the incompatibility of many
microfluidic systems with large-volume sample-processing systems. The physics of fluid manip-
ulation may be distinctively different at the macro- and microscales, but the successful creation
of microscale counterflow elutriation devices and hydrocyclones demonstrates the possibility of
combining the advantages of both macro- and microscale particle-sorting techniques. Addition-
ally, the processes of parallelization and stacking can also boost the throughput of microfluidic
techniques and enable the handling of large volumes of liquid to achieve biomedical objectives.
We hope that this review offers a new perspective for assessing the suitability of microfluidic
particle-sorting methods for objectives beyond low-volume sample processing.
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