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Abstract

The function of fitness (or molecular activity) in the space of all possible
sequences is known as the fitness landscape. Evolution is a random walk on
the fitness landscape, with a bias toward climbing hills. Mapping the topog-
raphy of real fitness landscapes is fundamental to understanding evolution,
but previous efforts were hampered by the difficulty of obtaining large, quan-
titative data sets. The accessibility of high-throughput sequencing (HTS)
has transformed this study, enabling large-scale enumeration of fitness for
many mutants and even complete sequence spaces in some cases.We review
the progress of high-throughput studies in mapping molecular fitness land-
scapes, both in vitro and in vivo, as well as opportunities for future research.
Such studies are rapidly growing in number. HTS is expected to have a pro-
found effect on the understanding of real molecular fitness landscapes.
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Fitness: quantitative
measure of
evolutionary
favorability,
corresponding to
reproduction and
survival in vivo; can be
defined in multiple
ways in vitro

Sequence space:
the set of mN possible
sequences with N
variable positions,
given an alphabet size
of m

Fitness landscape:
function of fitness over
sequence space

Alphabet: the set of
chemical monomers
(“letters”) used in the
construction of a
biopolymer such as
DNA or protein

High-throughput
sequencing (HTS):
sequencing technology
that reads 107–1012

bases of DNA;
platforms include
Illumina, 454, PacBio,
Oxford Nanopore,
ABI-SOLiD, and
others

Contents

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. SEQUENCE SPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. SIMPLE MODELS OF FITNESS LANDSCAPES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4. CASE STUDY ON EVOLUTIONARY OPTIMIZATION: NEUTRAL

VERSUS FRUSTRATED NETWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5. MEASURING MOLECULAR FITNESS LANDSCAPES WITH

HIGH-THROUGHPUT TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.1. RNA and DNA: From Microarrays to High-Throughput Sequencing . . . . . . . . . 7
5.2. Beyond DNA and RNA: Exploring New Chemical Space with

High-Throughput Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6. FITNESS LANDSCAPES OF ORGANISMS: RNA, PROTEINS, AND

GENOMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7. ENVIRONMENT AND THE FITNESS LANDSCAPE . . . . . . . . . . . . . . . . . . . . . . . . 12
8. OUTLOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1. INTRODUCTION

Predicting evolution is a key challenge in biological science that not only tests our basic under-
standing but also has real-world ramifications. For example, prediction of influenza virus evo-
lution (61) is used to select vaccine strains. In principle, evolutionary trajectories could be pre-
dicted probabilistically if one knew how any mutation would affect the fitness of the organism
or molecule (as well as knowing other parameters, including population size and mutation rate).
The function of fitness in sequence space is known as the fitness landscape (98, 113). Evolution
can be seen as a random walk (i.e., exploration by mutation) on a fitness landscape with a bias
toward hill climbing (i.e., selection for higher fitness) (50). Despite the importance of mapping
fitness landscapes, the size of sequence space is astronomically large (mN points for an alpha-
bet size m and sequence of length N), which has previously hampered substantial mapping ef-
forts. While experiments in the laboratory can include a large number of biopolymer sequences
(e.g., up to 1017 molecules for in vitro evolution of RNA), analysis is also limited by sequenc-
ing capacity. Therefore, within the last decade, analysis has been transformed by the accessibility
of high-throughput sequencing (HTS), as fitness data can now be collected on millions of se-
quences in parallel. These data form a quantitative framework for addressing classic questions:
How does the topography of the fitness landscape constrain evolution? How repeatable are evolu-
tionary outcomes?What does the topography teach us about the emergence of new structures and
functions?

In this review, we highlight progress that has been made to map fitness landscapes empirically
using high-throughput techniques, focusing on biomolecules. To give an initial context for these
studies, we first introduce simple models of fitness landscapes and their properties. Next, we con-
sider the case study of a classic question, how well selection can optimize fitness on real landscapes,
and the impact of HTS on this problem. We then devote our attention to other ways in which
HTS has deepened our understanding of molecular fitness landscapes, where fitness approximates
functional activity. Finally, we consider organismal fitness landscapes and the importance of the
environment, a combination that is daunting in scope but the source of Darwin’s “endless forms
most beautiful.”
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2. SEQUENCE SPACE

Sequence space is discrete, where the number of dimensions N is equal to the number of variable
monomer sites in a biopolymer (e.g., with no fixed sites,N is the sequence length), and the number
of points in each dimension is the alphabet sizem. Fitness is a continuous variable that describes a
sequence’s evolutionary favorability and can be defined depending on experimental context. Plot-
ting fitness over sequence space gives the fitness landscape of N + 1 dimensions. To gain insight,
one may consider drawings of the space of very small binary sequences, with fitness represented
as a heat map (Figure 1).

For standard RNA or DNA, with an alphabet size of four nucleotides, the size of sequence
space is 4N (≈100.6N). The amount of nucleic acid one might work with in vitro would typically
be <1017 molecules, so sequence space becomes experimentally intractable in the lab for N > 27
if one desires full coverage of the space. For standard proteins, composed of 20 amino acids, the
space 20N (≈101.3N) becomes intractable in vitro for N > 12 at full coverage. For experimental
evolution in vivo (e.g., in microbes), a 1-L experiment might contain 1012 cells, allowing up to
∼20 genome sites to be covered in full. In practice, fitness landscapes can be fully mapped for
relatively short sequences, while fitness landscapes for organisms and larger molecules must focus
on a small number of variable sites or sparsely sample the sequence space.

Although sequence space is exponentially large, it is still a special subset of the larger space of
all possible chemicals. Sequence space for a particular polymer type (biological or artificial) can be
thought of as a sort of filigree in chemical space, defined by its particular bonding patterns, which
is closely apposed to those for similar polymer types (74).

3. SIMPLE MODELS OF FITNESS LANDSCAPES

Experimental investigation of fitness landscapes is difficult owing to the complexity of sequence
space, so a substantial body of work has involved the development of theoretical models of fitness
landscapes. These models can be applied to biological data as a way to represent complex patterns
with a small number of parameters. Although theoretical models for fitness landscapes have been
reviewed elsewhere (17, 66), we introduce here two simple and influential models [Mount Fuji
and NK (number of sites, N, and the epistatic degree, K)] and related models (rough Mount Fuji
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Figure 1

Mock fitness landscapes of small binary sequences, depicted as a projection of the N-dimensional hypercube. Landscapes are drawn
with m = 2 and (a) N = 2, (b) N = 3, (c) N = 4, (d) N = 5, and (e) N = 8. The fitness of each point in sequence space is represented by
color (see legend) according to a smooth so-called Mount Fuji landscape (e.g., fitness related to the number of 1s). As N increases, the
number of points and neighbors increases exponentially, making a full representation of the fitness landscape difficult to interpret at
higher N. Figure adapted from Reference 113. Abbreviations: m, alphabet size; N, number of dimensions (i.e., sequence length).
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Epistasis: interaction
of sites where a
mutation’s fitness
contribution depends
on genetic background
(e.g., difference
between observed
fitness and additive
expectation)

Reciprocal sign
epistasis: sign epistasis
in which mutations
that are separately
advantageous became
jointly unfavorable (or
vice versa)

Ruggedness: property
describing an epistatic,
uncorrelated fitness
landscape of many
local peaks and valleys;
can be estimated
quantitatively in
multiple ways

Neutral mutation:
mutation with little or
no effect on fitness

and house of cards) to develop some understanding of possible topographies and their possible
mechanisms of origin.

The simplest theoretical model is the Mount Fuji landscape (3), named after Japan’s highest
mountain because it is a smooth, single-peak landscape. Mount Fuji landscapes are defined as
those in which every point on the sequence space—other than the global optimum—has at least
one neighbor sequence (one mutational step away) of higher fitness. The simplest Mount Fuji
model corresponds to a perfectly smooth, monotonic climb along any path toward the center.
This topography can be created if the effect of individual mutations is additive [the effect of each
site does not depend on the others (i.e., there is no epistasis)]. The absence of local optima on
Mount Fuji–type landscapes allows good reconstruction of the topography even when incomplete
random sampling is performed.Under conditions of strong selection and weak mutation (SSWM)
(38), evolution on Mount Fuji–type landscapes results in the optimal sequence.

Most empirical landscapes exhibit certain epistatic interactions that theMount Fuji model can-
not emulate. In particular, Mount Fuji–type landscapes cannot describe reciprocal sign epistasis,
in which the presence of one mutation a changes if another mutation b is beneficial, and vice
versa, creating multiple optima (78). These nonadditive effects disrupt the smoothness of a land-
scape, creating a need for models with tunable ruggedness. A popular model of this type is theNK
landscape (50, 51), in which the system can be solely described by two parameters: the number
of sites, N, and the epistatic degree (the number of other sites influencing the effect of a given
site),K.When K = 0, the NKmodel gives a Mount Fuji landscape. As K increases, the ruggedness
of the landscape increases and local optima arise, although a global optimum is still present. In
its most rugged incarnation (K = N − 1), the fitness contribution of a single position is affected
by mutations at every other position in the sequence. In this case, the landscape is dominated
by high-order epistasis, leading to a completely uncorrelated landscape with an average number
of local optima [2N / (N − 1)] that scales roughly exponentially with N (Figure 2). A landscape
in which the fitnesses of related sequences are totally uncorrelated is also known as the random
house of cards model, because pulling a card (i.e., a mutation) from the house results in its collapse
(i.e., complete change of the fitness landscape); the house then needs to be entirely rebuilt from
a reshuffled genomic deck (53). Although interesting as a theoretical limit, the completely uncor-
related landscape probably does not occur in reality. Whether incomplete sampling of sequence
space can result in a reasonable representation of the topography depends on the ruggedness of
the landscape and the properties to be analyzed.

Two modifications to the NKmodel can be introduced to increase its realism. First, since pro-
teins are often modular (e.g., composed of independent domains), the NK model can be adapted
to include different degrees of correlation on the landscape (70). In the block (or domains) model,
mutations in one block affect only the contribution of that block to the overall fitness of the pro-
tein, and each independent block can have different values of K. Blocks need not correspond to
structural domains from the primary sequence but could represent amino acids that interact in
the protein’s tertiary structure. Second, although the original NK model does not account for the
presence of neutral mutations (i.e., mutations that do not change the fitness value), two different
adaptations of the model incorporate this feature: the NKP model, where a fraction P of the fit-
ness contributions have a value of zero, and the NKQ model, in which each fitness contribution
can take only one ofQ possible values. In the limits P→ 0 andQ→ ∞, theNKP andNKQmodels
correspond to the original NK model (10, 37).

Since its initial application to the maturation of the immune response (51), the NK model
has been used to describe experimental protein and DNA fitness landscapes (30, 39, 88). Rugged
regions in a landscape are described by high values of K, which can be estimated from the data, for
example, by calculating the autocorrelation function for different values of K and comparing it to
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Sign epistasis:
epistasis in which one
mutation has the
opposite effect on
fitness when in the
presence of another
mutation
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Figure 2

Epistasis and ruggedness on a fitness landscape. (a) For the simplest possible case (m = 2,N = 2), a smooth landscape can be climbed
upward from 00 to 11 (peak). Sign epistasis prevents passage over one trajectory, and reciprocal sign epistasis blocks both pathways
(111). Fitness increase or decline is indicated by blue or red arrows, respectively. (b) A similar pattern can be seen for m = 2,N = 4
(refer to Figure 1c). (c) A conceptual three-dimensional depiction of fitness landscapes with varying ruggedness; horizontal axes
correspond to sequence space and the vertical axis corresponds to fitness values. (d) Random sampling (red dots) can yield a better
representation of smooth landscapes than of rugged ones. (e) Representation of frustration (or lack of ) in a geometrical lattice of spins.
With a smooth landscape, conditions leading to maximum fitness can be satisfied simultaneously. At high K, conditions leading to
maximum fitness (or minimum energy) conflict with one another and frustrate optimization. Abbreviations: K, epistatic degree; m,
alphabet size; N, number of dimensions.

the experimental system (30, 88). It is important to note that, since regions of the fitness landscape
that are populated with closely related sequences of low fitness are described by K ≈ 0, attempts
to fit the NK model to landscapes over wide regions might result in artificially low values of K
owing to averaging over dissimilar regions of the landscape. Different parameters have also been
proposed to measure epistasis in fitness landscapes (e.g., number of peaks, ratio of the roughness
over additive fitness, or fraction of sign epistasis). Ferretti et al. (23) recently proposed a new
measure more directly related to epistasis—namely, the single-step correlation of fitness effects
for mutations between neighbor genotypes, which can also be used in landscapes with missing
data. A summary of calculations of this measure for different theoretical landscapes can be found
in Reference 23.

Tunable ruggedness can also be introduced into the Mount Fuji model (4, 64). The rough
Mount Fuji model is the addition of a Mount Fuji–type landscape and the uncorrelated house of
cards model.This model can include sign epistasis, in which the effect of a single mutant is positive
or negative depending on the presence of another mutation (e.g.,Figure 2a), provided there exists
a different single mutant that is more fit than the double mutant. The ruggedness is tuned by
varying the proportion of additive and random fitness components. Examples of landscapes with
varying ruggedness are given in Figure 2.

www.annualreviews.org • Molecular Fitness Landscapes 5
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Neutral network:
a network of
evolutionary pathways
in which fitness
changes are negligible

Frustration: property
describing a system
that cannot
simultaneously satisfy
constraints of
maximum favorability
for each variable
component

Fitness peak: family
of related sequences
with elevated fitness

4. CASE STUDY ON EVOLUTIONARY OPTIMIZATION:
NEUTRAL VERSUS FRUSTRATED NETWORKS

An important property of any fitness landscape is the ease with which evolution can optimize
fitness. Whether this is feasible depends on the ruggedness of the landscape and specifically on
whether viable evolutionary pathways (i.e., uphill climbs under SSWM) allow access to the global
optimum from distant areas of sequence space. Early computational work investigating this prob-
lem studied whether viable paths could be found connecting unrelated RNA sequences that were
predicted to fold into the same secondary structure. These simulations, which took advantage of
the high accuracy of RNA secondary structure prediction (56), required conservation of the fold
to define a viable path. These simulations revealed two related insights. First, they predicted that
almost all common folds occur within any small region of sequence space (26). Second, for com-
mon folds, the large set of sequences that share a given fold would form an evolutionary network
throughout sequence space (27, 46, 95, 102). The fact that this set is large is important; if the
fraction of sequence space that adopts the desired fold is low, then the folded sequences repre-
sent isolated regions in the space. However, if the fraction reaches a critical percolation threshold
(∼1/N), the islands become connected and the landscape as a whole exhibits a neutral network
(34). A neutral network could be conceptualized as a fitness landscape topography that is full of
“holes,” emphasizing the fact that high-dimensional sequence space has a nonintuitively vast num-
ber of potential connections (35). These computational and theoretical considerations gave rise
to the attractive hypothesis that neutral networks might characterize molecular fitness landscapes,
allowing evolutionary optimization over large distances.

In contrast to this view of neutral networks, many empirical examples of epistasis are known in
local sequence space, and one might expect that the extension of epistasis through the landscape
(i.e., widespread ruggedness) would result in frustrated optimization during selection. This phe-
nomenon can be mimicked in theNKmodel, which can be interpreted as a superposition of p-spin
glass models (99) (Figure 2e). In spin glasses, the Hamiltonian of the system exhibits frustration
when no spin configuration can simultaneously satisfy all couplings, leading to a state of mini-
mum energy. Since there is no single lowest-energy configuration, the energy landscape contains
several metastable states separated by a distribution of energy barriers. The parameter p (number
of interacting spin glasses) tunes the ruggedness of the energy landscape, much like K in the NK
model. In the limit p → ∞, it becomes impossible to satisfy all spin constraints and the system
has an extremely rugged, uncorrelated potential surface, equivalent to Derrida’s random energy
model (18), which is an analog of the random house of cards model. Similarly, in the NK model,
as K increases, configurations leading to the highest fitness contribution for certain positions be-
come mutually incompatible, leading to blocked evolutionary paths over which optimization by
selection is frustrated.

Ideally, experimental detection of a neutral versus frustrated network would involve mapping
the topography of a complete fitness landscape. However, owing to the large size of sequence
space for even small folded RNAs and the limits of sequencing throughput at the time, early work
related to this question focused on construction of a viable evolutionary pathway between two
nucleic acid sequences with different functions (15, 41, 94). Several examples of protein evolution
to produce new or altered function were also known (e.g., 40). These efforts were surprisingly
successful, suggesting that different functions could be nearby in sequence space; in other words,
fitness peaks for different functions can overlap.

Nevertheless, investigating evolutionary optimization on a single fitness landscape requires
identification of a very large number of functional sequences, and thus substantial progress had
to await the advent of HTS. The first complete fitness landscape for short RNA sequences
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Ribozyme: RNA
sequence that catalyzes
a specific reaction

Aptamer: an RNA (or
DNA) that binds to a
specific ligand

In vitro selection (or
evolution): laboratory
evolution of
biomolecules that
selects sequences from
a pool of variants based
on ability to carry out
a specific function

(N = 21) revealed very few viable evolutionary paths between different functional families (48).
Although this approach cannot be easily extended to much longer lengths, one attempt to evolve
an RNA polymerase ribozyme (N = 168) at a high mutation rate did not find a new optimum
(71). Although this careful study was able to relate the results of the selection to the topography
of the fitness landscape, it is possible that similar results in other systems are underreported in
the literature. These studies hint that frustration may characterize evolutionary optimization of
a particular function for RNA for a relatively fixed landscape. Given the contrast between these
frustrated cases and the apparent ease of evolving certain new functions, it is tempting to specu-
late that optimization of a single function might have quite different evolutionary properties than
evolution of a new function.

5. MEASURING MOLECULAR FITNESS LANDSCAPES WITH
HIGH-THROUGHPUT TECHNIQUES

5.1. RNA and DNA: From Microarrays to High-Throughput Sequencing

Whenmeasuring fitness landscapes, functional nucleic acids present certain advantages compared
to more complicated evolvable systems. In particular, an alphabet of only four nucleotides allows
far higher coverage of random sequence libraries. Predominantly in silico approaches have shown
some utility in predicting activity, such as in the generation of an effective anti-HIV aptamer (an
RNA-based affinity reagent) (91), but such studies are relatively uncommon.On the experimental
side, HTS for studying fitness landscapes can be seen as the successor high-throughput technique
following microarrays, paralleling the trend in genomics applications. Approximately 105–106 se-
quences can be studied in reasonable copy number with a single HTS run (or microarray assay),
equivalent to full coverage of sequence space with N = 10. Nucleic acid microarrays have been
used to investigate double- and triple-mutational scans of aptamers (49), used with rational trunca-
tion to investigate the importance of structural constraints on aptamer activity (25) and combined
with in silico approaches to interrogate large local evolutionary spaces in array-based directed evo-
lution (54). A 2010 study (88) was able to use array techniques to measure DNA–protein binding
over all possible 10-nucleotide sequences, showing that although the fitness landscape contained
only a single conserved active motif, the landscape contained sufficient ruggedness to produce
many separate local fitness optima.

But microarray approaches have been somewhat limited in their scope and adoption for multi-
ple reasons, including their reliance on reactions or binding events producing a fluorescent signal
and limitations stemming from attachment of the nucleic acid to a surface. Instead, HTS-based
approaches have increasingly come to dominate RNA and DNA fitness landscape studies (7). In
2010, Pitt & Ferré-D’Amaré (77) demonstrated the ability of HTS to measure sequence enrich-
ment during in vitro selection as an estimate of sequence fitness, generating a local landscape of
approximately 107 mutant variants of a ligase ribozyme (catalytic RNA; Figure 3). The increas-
ing scale and affordability of HTS technology has made such measurements an accessible option.
Further development of HTS measurement of fitness landscapes has focused on techniques to
improve either landscape coverage or measurement of fitness.

To improve landscape coverage and interrogate larger sequence spaces, the limitation is not
pool size (typically 1014–1016 molecules) but analytical capability [i.e., sequencing throughput (typ-
ically 106–108 reads)]. It is possible to overcome this limit with in vitro selection—if selection can
isolate nearly all of the high-activity sequences, complete mapping of an RNA fitness landscape
becomes possible for short sequences. When studying molecular fitness landscapes in vitro, the
interpretation of negative information can be powerful (48). This requires a well-defined initial
pool but potentially expands the analysis, as it is no longer limited by the sequencing throughput

www.annualreviews.org • Molecular Fitness Landscapes 7
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Figure 3

Stereo view of the structure of the class II ligase ribozyme (76) PDB ID: 3FTM; image created with Visual
Molecular Dynamics (45).

but by the complexity of the initial pool, which is larger by several orders of magnitude. Although
detailed information cannot be obtained about lost mutants, their disappearance indicates low fit-
ness. It should be noted that epistasis and other studies should be interpreted with respect to the
mutants analyzed. For example, if the mutants are not selected at random (e.g., survived a selec-
tion), epistasis values for that subpopulation would likely underestimate those for randommutants
unless negative information is taken into account. At the same time, sparse random sampling can
also lead to inaccurate estimation of epistasis and ruggedness (68), and the prevalence of indirect
evolutionary pathways that bypass local valleys (114) could lead to underestimates of evolvability
if the explored space is too small. However, depending on the hypothesis or question being inves-
tigated, in vitro selections from a large, random pool that only sparsely covers sequence space can
still provide insights into general underlying trends in the larger, unmeasurable spaces (77, 79).

For in vitro selection experiments, fitness is taken to reflect chemical activity and can be esti-
mated (or defined) in multiple ways, such as abundance at the end of selection, enrichment over
a single round, or functional activity under selection conditions. Ideally, all of these should be
correlated, as they are related to the true chemical activity of a given selected species. Abun-
dance, however, can be surprisingly poorly correlated to chemical activity (48, 79), likely owing to
experimental noise and biases related to sequencing (e.g., polymerase chain reaction). Thus, new
approaches use HTS to perform direct activity screens (19, 47, 55). Furthermore, fitness estimates
can be notably improved by considering multiple rounds of selection (79).
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High-throughput techniques are also being applied to measurement of RNA and DNA speci-
ficity. While these experiments often address different scientific questions than single-function
fitness landscapes, they use similar techniques and analyses. HTS techniques were used to charac-
terize the DNA binding landscapes of over a thousand transcription factors (TFs) (2). These data
enabled mapping of DNA–TF binding energy over large sequence spaces (57), again illustrating
the power of applying HTS to traditional questions.

5.2. Beyond DNA and RNA: Exploring New Chemical Space
with High-Throughput Sequencing

Recent forays into the chemical space of nucleic acids with altered backbones (XNAs) or mod-
ified bases raise the prospect that, with modern knowledge and techniques, parallel molecular
biology could be developed for these alternative nucleic acids in a relatively short time (74). Alter-
native nucleic acids raise many fundamental questions about fitness landscapes, from biologically
inspired issues such as the uniqueness (or lack thereof ) of RNA and DNA to more abstract prob-
lems, such as the shape of the larger fitness landscape in chemical space. While chemical study
of alternative nucleic acids dates back to Eschenmoser’s pioneering work (22), investigations into
their functional capacity began with altered bases—namely, in vitro selection on reduced alpha-
bets. Remarkably, ribozymes could be made from alphabets of only three (85, 86) or even two
letters (82). In both cases, reduction in alphabet size led to selected ribozymes with lower activ-
ity than their larger-alphabet counterparts. In contrast, artificially expanded genetic information
systems (AEGISs) employ additional letters (96, 116) and have been used to identify six-letter ap-
tamers with greater affinity than those selected containing four letters. While AEGIS currently
poses some complications requiring probabilistic decoding of HTS data, HTS may still be ap-
plied to increase throughput compared to Sanger sequencing. Further advances to functionality
are aided by a wider exploration of bases. For example, the incorporation of unnatural hydropho-
bic nucleobases [e.g., 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds), SOMAmers, click-SELEX] result
in increased binding affinity to their protein targets (36, 52, 105).

For some functions, the activity of functional DNA molecules is comparable to that of
RNA molecules (97). On some occasions, the sequence of a functional RNA can be simply
synthesized as DNA and retain functionality (106, 109), sometimes requiring additional evolu-
tion (69). These exceptional cases may arise if the major interactions are electrostatic or non-
specific stacking interactions. XNAs made from nonnatural backbone alterations (Figure 4)
have been selected for binding and catalytic activity, with activities similar to those seen
in natural nucleic acids (75, 103, 115). Introduction of phosphorodithioate linkages can im-
prove aptamer binding (108), with a single modified linkage increasing affinity by ∼1,000-fold
in one case (1). Another aspect of fitness is the chemical and physiological stability of the
molecule; for example, many backbone modifications confer resistance to ribonuclease degra-
dation (14). Other modifications, such as 2′-fluoro and 2′-amino RNA, provide both added sta-
bility (73) and sometimes increased functionality (104). The employment of chemical modifi-
cations to improve nucleic acids has been reviewed in more detail in References 21, 65, and
87.

The application of HTS to alternative nucleic acids is not trivial because of the need for en-
gineered polymerases to accept the template and read it out in a decodable way. Still, these chal-
lenges are being overcome by ingenious strategies (75, 96, 103). Although XNA fitness landscapes
are largely unstudied at the moment, it seems inevitable that some may demonstrate different or
higher fitness peaks. Whether these changes will lead to new evolutionary properties is currently
a fascinating unknown.

www.annualreviews.org • Molecular Fitness Landscapes 9
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Expanded chemical space of functional nucleic acids. (a) The modified bases Ds [7-(2-thienyl)imidazo[4,5-b]pyridine] and EU
(C5-ethynyl-uracil), which is utilized in click-SELEX. (b) Chemical structures for RNA, DNA, 2′-F RNA (2′-fluoro RNA), ANA
(arabino nucleic acid), FANA (2′-fluoro ANA), PS2 RNA (phosphorodithioate RNA), TNA (threose nucleic acid), CeNA (cyclohexenyl
nucleic acid), and HNA (1,5-anhydrohexitol nucleic acid).

6. FITNESS LANDSCAPES OF ORGANISMS: RNA, PROTEINS,
AND GENOMES

Complete coverage of sequence space for an organismal genome—or even a single gene—is in-
tractable owing to the size of sequence space involved.However, local sampling around functional
proteins (or random sampling of genomic mutants) still provides a rich source of data about the lo-
cal landscape of the protein or the organism as a whole. Some examples of ways to represent HTS
data are shown in Figure 5. Fitness landscape studies on sequences in vivo access fewer individuals
(∼1012 cells in 1 L) compared to in vitro studies.While this limits the diversity of the starting pool,
it does not directly affect the number of mutants that can be assayed, since sequencing throughput
is still limiting.

The in vivo fitness landscapes of small functional (noncoding) RNAs [tRNA (transfer RNA)
and snoRNAs (small nucleolar RNAs)] in yeast have been investigated using HTS to study all
single and double mutants. Because these cellular RNAs have smaller sequence spaces than pro-
teins, such experiments can be done at higher mutational coverage, providing a good system for
exploring in vivo fitness landscapes. In these cases, coverage of the local area around the wild-type
sequence indicates that epistatic effects of mutation tend to be negative, with loss of fitness often
corresponding to predicted disruption of RNA folding (59, 80). As more RNA fitness landscapes
are examined, it will be interesting to compare landscape characteristics of highly evolved biolog-
ical RNAs versus RNAs evolved in vitro to understand how >3.5 billion years of natural selection
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Representing high-throughput sequencing data of fitness landscapes. (a) A fitness peak with sequence space collapsed onto one
dimension representing the edit distance (i.e., number of mutations) from the optimum sequence. Panel a adapted from References 48,
77, and 88. (b) Evolutionary pathways between one local optimum and other nearby local optima, with sequence space collapsed as in
panel a. This representation illustrates fitness valleys and ruggedness. Panel b adapted from References 48 and 88. (c) Heat map
representing combinations of mutants, revealing epistatic interactions along the length of a sequence. Panel c adapted from References
12 and 80.

has shaped the landscape itself. Furthermore, the introduction ofmodified bases into cells (62) sug-
gests the intriguing possibility of measuring fitness landscapes of alternative nucleic acids in vivo.

The study of protein fitness landscapes, which began with mutational analysis (e.g., alanine
scanning) and combinatorial studies of selected mutants, has been greatly impacted by HTS. Both
m and N are substantially greater for proteins than RNA (e.g., the number of single-mutant vari-
ants to be tested would be ∼6,000 for a typical single-domain protein of length of ∼300 amino
acids, compared to ∼150 single-mutant variants tested for a typical ribozyme with a length of
50 nucleotides). The jump from Sanger sequencing to HTS has increased the number of mutants
that can be analyzed by at least 4 orders of magnitude.

In an HTS technique known as deep mutational scanning (DMS), the activity of a mutant
library is linked to organismal (cell or virus) fitness (5) [e.g., by cell sorting or simply by repro-
duction and survival for influenza variants (72)]; DMS has been further reviewed (29, 100). The
survival of cells (or viruses) harboring the mutant library is measured by HTS, allowing assay of
the fitness effect of 105–106 protein variants.DMShas proven effective for creating high-coverage,
highly local fitness landscapes centered around a wild-type protein and can identify sites of con-
served function (28). The local fitness landscape of the green fluorescent protein, measured over
thousands of derivative genotypes, was found to be quite narrow, with the majority of single mu-
tants showing reduced fluorescence (92). In contrast, DMS of a complete 9–amino acid region of
Hsp90 showed that the distribution of fitness was bimodal, with one mode consisting of nearly
neutral mutations and the other of deleterious mutations (43). On a practical side, DMS results
within yeast were used to optimize protein engineering, resulting in a new protein (with five point
mutations) with a 25-fold increase in binding affinity to the influenza virus hemagglutinin (112).

DMS is well poised to measure local epistasis of a protein, since the fitness effect of many com-
binations of mutations can be measured. Even so, analysis of epistasis on in vivo protein landscapes
is generally limited to a small number of peptide sites, a limited library of amino acid substitutions,
or one specific set of evolutionary paths (17).Weinreich et al. (110) compiled a comprehensive re-
view of these studies, showing that in these limited-landscape cases, in vivo protein epistasis tends
to be primarily dominated by low-order epistatic effects of only a few loci, although higher-order
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epistasis was notable in some cases. A local fitness landscape for four positions in protein GB1
revealed a very interesting feature: Although many direct evolutionary pathways were blocked
by reciprocal sign epistasis, these evolutionary dead ends could be avoided by following indirect
paths in the sequence space (114). Limited epistasis and evolutionary detours suggest short neutral
pathways; whether these could combine over larger sequence space to form a neutral network is
still unknown.However, sequencing technology continues to improve and may allow study of this
question to be taken further in the future.

Although the theoretical models described earlier are highly simplified, one may ask whether
empirical fitness landscapes can be fit to them. One 2013 meta-analysis found general trends in
ruggedness and epistasis across a number of such studies, with many showing reasonable agree-
ment with patterns expected from a rough Mount Fuji model (101). Efforts to connect empirical
data to these models are important for gaining an intuitive grasp of the topography of fitness land-
scapes. It remains an open question whether these models can also describe effects over organis-
mal fitness landscapes of a larger scale, multiple peaks, or covering evolutionary sites on multiple
genes.

7. ENVIRONMENT AND THE FITNESS LANDSCAPE

It is nearly impossible to overstate the importance of the environment in determining the topog-
raphy of a fitness landscape (Figure 6). At the microscopic level, molecular fitness depends on the
temperature, water activity, pH, phase, cosolutes, and nearly any other environmental variable.
These effects modulate both basic properties [e.g., RNA stability (33)] as well as sophisticated
functions [e.g., ribozyme activity (8, 31, 93)]. At the macroscopic level, genetic and environmental
effects on traits cannot be simply deconvolved, as the heritability of any trait depends on the
environment and genetic background in which it is measured. Even without environmental
perturbations, the fitness landscape of a metabolizing organism is a continuously dynamic object,
as organisms modify their environment, which changes the fitness landscape. Perhaps the most
well-known example of this comes from the multi-decade experimental evolution of Escherichia
coli, in which changes to the genetic background (potentiating mutations) enabled evolution of the
ability to metabolize citrate (11). The efforts may also be driven by the potential for biomedical
applications as well; for example, DMS of a kinase involved in antibiotic resistance demonstrates
a fitness landscape that varies significantly over changes in both antibiotic concentration and
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Figure 6

The fitness landscape depends strongly on the environment. For molecular fitness landscapes, environments might confer
(a) stabilization of weakly folded structures (chaperoning), (b) exaggeration of fitness differences under stressed conditions, or
(c) completely different structure in a new environment. The illustrations indicate the fitness landscape in one environment (dotted line)
and in a new environment (solid line).
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structure (63). Systematic study of the effect of the environment on the fitness landscape using
HTS represents a major goal for this field.

The importance of the environmental context can be seen even in relatively simple molecular
fitness landscapes for RNA. While most studies of functional RNA occur in vitro, it is clear that
in vivo conditions may differ, sometimes greatly. For example, aptamer-based biosensors evolved
in vitro show significantly lower performance in blood than in buffer (6). Crowded and confined
conditions can modify the structure and function of nucleic acids and proteins (16, 32, 83, 89,
90). High levels of molecular crowding have been shown to stabilize mutations in ribozymes (58),
change the binding mechanism of a ligand to a riboswitch (84), and create a chaperoning effect
to assist in aptamer folding (90). Ribozymes can also modify their environment [e.g., through
cooperation (107)], presenting an attractive future target for mapping more complex fitness
landscapes.

To study the effect of the environment on organismal landscapes, one common method is
to expose the population to a new environment and observe the resulting evolution. In general,
organismal fitness drops after environmental changes but largely recovers through subsequent
evolution and delayed adaptation at the genetic level (24, 44). For example, changes to the fitness
landscape of Hsp90 in Saccharomyces cerevisiae were observed in elevated salinity, with previously
adaptive mutations becoming deleterious in the new environment (42), and the accessible evo-
lutionary pathways in an esterase were shown to change at different growth temperatures (67).
Interestingly, variation in hosts may alter the topology of a viral fitness landscape, which may
drive virus specialization (13). However, whether the fitness landscape of a gene varies in differ-
ent environments seems to depend on the details of the system. In contrast to cellular proteins,
where a gene’s fitness contribution often does vary with environment, studies of tRNA indicate
that mutations influence the gene’s fitness contribution by a fixed proportion independent of the
environment, for four growth environments tested (60). Further work in the yeast tRNA system
also indicates that epistatic effects between loci can vary significantly for the same gene between
different organisms (20). If a mutation has multiple conflicting effects on fitness (antagonistic
pleiotropy), adaptation to a new environment might be limited. Landscape analysis of the yeast
genome shows that many gene variants display some degree of antagonistic pleiotropy in specific
growth conditions (81). The environmental landscape for a single sequence can also be measured,
as was done for a riboswitch in nearly 20,000 different environmental conditions (9). Measure-
ment of such environmental landscapes in conjunction with fitness landscapes is a challenging but
essential goal for which high-throughput techniques are essential.

8. OUTLOOK

High-throughput sequencing has transformed the study of fitness landscapes, expanding the fo-
cus from theoretical models to empirical mapping. Increased sequencing throughput is more
than a quantitative extension, as it allows exploration of fundamentally new areas of science,
from evolutionary networks to environmental landscapes. To maximize the knowledge return
from this exciting growth of data, perhaps two aspects should be kept in mind. First, attention
should be paid to building intuition and understanding, such as by analyzing the fit of data to
idealized model landscapes. Second, while raw HTS data can be submitted to databases such
as the National Center for Biotechnology Information Sequence Read Archive, a dedicated re-
source for submitting and viewing fitness landscape data could facilitate meta-analysis, standard-
ization, and contributions from a greater community of researchers. Regardless, HTS-enabled
mapping of fitness landscapes brings the tantalizing prospect of predicting evolution closer yet to
reality.
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