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Abstract

All an animal can do to infer the state of its environment is to observe the
sensory-evoked activity of its own neurons.These inferences about the pres-
ence, quality, or similarity of objects are probabilistic and inform behavioral
decisions that are often made in close to real time. Neural systems employ
several strategies to facilitate sensory discrimination: Biophysical mecha-
nisms separate the neuronal response distributions in coding space, compress
their variances, and combine information from sequential observations.We
review how these strategies are implemented in the olfactory system of the
fruit fly.The emerging principles of odor discrimination likely apply to other
neural circuits of similar architecture.
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Stimulus–conditional
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divergence [of
P(R|A) from
P(R|B)]: average
information that a
single neuronal
response to stimulus A
provides against B
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INTRODUCTION

Neural systems represent information in time-varying combinatorial activity; like voices in a choir,
different neurons are electrically active or silent at different times. The two main problems of
representation in this, as in any, communication system are how to encode the source data so that
their representations are (a) “far apart in some suitable sense” and (b) “minimal for purposes of
efficiency” (56, p. 2). Here, we consider the first of these problems in the context of olfaction.We
review how a source alphabet of odorous chemicals is converted into a code alphabet of bioelectric
signals, explore perceptual limits that can arise from this encoding, and reveal biophysical mecha-
nisms that extend these limits. We do not touch on the problem of how to represent information
efficiently, itself a vast and important topic in neuroscience (4, 127).

Because neurons are inherently noisy and repeated presentations of the same stimulus produce
different responses even under identical conditions, the relationship between sensory stimuli and
neuronal responses is probabilistic: Associated with every stimulus S is a conditional probability
distribution of possible responses R, the encoding dictionary P(R|S). The mutual information
between S and R provides a global description of this dictionary (8, 28, 56, 115). It quantifies how
telling, on average, neural responses are about stimuli and places a bound on the maximal number
of stimuli that can be discriminated by observing these responses. The mutual information is
zero if responses reveal nothing about stimuli and maximal (and equal to the stimulus entropy)
if each stimulus produces a uniquely discernible response. In more technical terms, the mutual
information measures the reduction in uncertainty gained by knowing the joint instead of the
marginal probability distributions of stimuli and responses (8, 28, 56, 115). This information gain
is known as the relative entropy, discrimination information, or Kullback-Leibler divergence from
statistical independence (28, 81, 126). The mutual information is large if responses and stimuli are
highly correlated.

Although analyses of perceptual decisions and the neural codes underpinning them are often
framed in terms of the underlying probability distributions, the moment-by-moment actions of a
decision maker must be based on information obtained from individual samples rather than from
knowledge of the full distributions (9, 47, 50, 115). The Kullback-Leibler divergence also plays
an important role in this situation because it quantifies the ease with which distributions can be
discriminated from each other based on samples (8, 28, 126). Imagine that we are shown a series
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(Log) likelihood
ratio: (logarithm of
the) ratio of
probabilities that a
response was produced
by stimulus A or B

ORN: olfactory
receptor neuron

of neuronal responses Rn and have to determine which of two stimuli, A or B, evoked them. [In
other words, we have to compare the likelihood that the responses have come from the encoding
dictionaries P(R|A) or P(R|B).]Without rehashing formal arguments found elsewhere (8, 28, 126),
we note that the corresponding log likelihood ratio grows linearly with the number of samples n
and thus describes a process of accumulating evidence in favor of A over B.

The asymptotic rate of evidence accumulation is the Kullback-Leibler divergence of P(R|A)
from P(R|B) (8, 126). For the special case of two Gaussian distributions with different means and
identical variances, the divergence is proportional to the square of their discriminability, which is
the distance between the means in units of the common standard deviation.Discrimination is thus
aided by mechanisms that move the stimulus–conditional response distributions apart from one
another, tighten their variances, or enable repetitive sampling.We illustrate these mechanisms in
the olfactory system of Drosophila, where relative numerical simplicity (130), a well-defined front
end (54, 55), a growing understanding of deeper synaptic layers (2, 41, 67, 150), genetic access to
many of the relevant circuit elements, and an ability to control these elements during odor dis-
crimination (25, 86, 96) have aligned to make mechanistic ideas precise and testable. Although we
rely on particulars of the sensory modality and the organism to ground these ideas in biological re-
ality, we hope to expose general principles and highlight parallels to—or differences from—other
systems where limitations in space or our knowledge allow. We occasionally refer to studies in
other insects and generally do not differentiate between odor identity and intensity discrimina-
tion, recognizing that they are based on representations in a common code (54, 102, 131, 142).

Perhaps the most striking parallel is how closely the architecture of the olfactory system resem-
bles that of other neural structures, especially the cerebellum and the hippocampus (23, 25, 38, 87,
88, 128, 133). In all these systems, sensory information is first encoded in a dense, high-capacity
format approximating a maximum-entropy code. This compact representation is then decoded
by expansion and sparsening. In all systems, the decoder’s discriminatory power is also used as an
addressing system for associative memory: Each neuron is an address decoder for a discrete data
storage location (25, 73).

THE ENCODER STAGE

Receptors and Communication Channels

Olfactory discrimination in Drosophila begins with the interaction of airborne odorants with ∼50
functional receptors (26, 44, 140) arrayed across ∼50 different types of olfactory receptor neu-
rons (ORNs) (27, 40) (Figure 1a,b). Volatile chemicals, aided by odorant-binding proteins (112),
partition into the liquid lymph surrounding the ORN dendrites and bind to odorant receptors.
In contrast with their mammalian counterparts, which appear exclusively G protein–coupled (14),
insect odorant receptors are remarkably diverse: Whereas some odorant receptors may signal via
cyclic nucleotides (144), most behave like nonselective cation channels (17, 120, 144); some even
share homology with ionotropic glutamate receptors, which hints at an ancestral relationship (6).
With no need for second messengers, signal transduction can be fast, with response latencies of
<2ms after odor contact with the surface of the antenna (135), provided there are no solubilization
and/or diffusion delays (100, 121).

An individual ORN typically expresses only a single functional odorant receptor (27, 40,
141), which defines the neuron’s response spectrum (33, 55) and coassembles with the oblig-
atory coreceptor Orco (83) into a heterotetrameric channel (17). Many odorant receptors are
broadly tuned and bind multiple, not always structurally similar odorants with different affinities
in a concentration-dependent manner (54, 55); others are highly selective, often for social odors,
such as pheromones (82) or the stress odorant CO2 (134); still others fall on a continuum between
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Odor discrimination. (a, b) The olfactory system of fruit flies at macroscopic (a) and circuit scales (b). The encoder stage comprises
olfactory receptor neurons (ORNs, yellow), projection neurons (PNs, orange), and local neurons (LNs, gray) of the antennal lobe. The
decoder stage consists of Kenyon cells (KCs, pink), mushroom body output neurons (MBONs, purple), and lateral horn neurons (LHNs,
blue). The anterior paired lateral neuron (APL, gray) provides feedback inhibition to KCs. Synaptic strengths from KCs to MBONs are
modulated by dopaminergic neurons (DANs, gray). Circles in panel b represent ∼50 neurons; colors symbolize odor-evoked activity;
numbers in parentheses indicate approximate neuron numbers per hemisphere. (c) Behavioral measurements. Odor stream A and odor
stream B converge at the center of a narrow chamber (top). Odor discrimination is analyzed by tracking the position of a fly along the
long chamber axis as a function of time. The fraction of choices in favor of odor A or odor B is an index of naive preference (center) or
trained accuracy (bottom); the time elapsing between entry into and exit from the central decision zone (yellow) is quantified as the
reaction time. The arrowhead in the bottom panel marks an incorrect choice.

these extremes. Binding of ligand stabilizes the receptor in its open or closed conformation (21)
and accordingly increases or decreases the spike frequency of the cognate ORN from a variable
background rate of 1–31 Hz, with an average of 8 Hz (31, 32, 54, 55). This spontaneous back-
ground activity arises from thermal fluctuations of the odorant receptors between their closed
and open states and constitutes the main source of noise in the olfactory system (71). Exchang-
ing receptors between ORN types transfers the odor selectivity, response polarity, transduction
dynamics, and thermal breathing pattern of the donor’s receptor to the recipient cell (33, 55).

Although ORNs expressing the same functional receptor gene appear scattered across the sen-
sory surface, their axons establish a precise one-to-one correspondence with ∼50 different types
of excitatory projection neurons (PNs) in the antennal lobes (45, 70, 141) (Figure 1a,b). The
centerpiece of each of these parallel communication channels is a morphologically identifiable
synaptic relay, termed a glomerulus (130), where the bilaterally projecting axons of 20–200 ORNs
are matched in an all-to-all fashion with the dendrites of an average of 3 strictly unilateral exci-
tatory PNs (70, 75). All PNs innervating the same glomerulus thus receive input from at least a
tenfold larger ORN population. Because the members of this population have identical receptive
fields but spike independently of one another (75), input pooling improves the signal-to-noise
ratio of PNs and allows them to detect small odor-evoked firing rate changes in a noisy barrage
of spontaneous ORN activity (68). Reciprocal dendrodendritic connections between sister PNs
innervating the same glomerulus enhance activity correlations further, perhaps to aid synchrony-
based decoding downstream (68, 75).
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Adaptation

As the concentration of an odor rises, the number of active glomerular channels and the ORN
firing rate modulation from baseline grow (54, 102, 131, 142). This odor-evoked activity quickly
alters the sensitivity of the ORN through Ca2+-mediated negative feedback that causes the de-
phosphorylation of the odorant receptor (53, 132): Epochs of strong excitation attenuate subse-
quent odor responses, whereas periods of inhibition boost them (31, 100). The consequences of
this cell-autonomous adaptation are twofold.

First, ORNs can adjust their coding strategy to the statistics of their input signals and repre-
sent a wider range of stimuli than their available dynamic range of approximately two orders of
magnitude in odor concentration would allow (49). The price of any adaptive code, however, is
ambiguity: Because ORN responses adapt, they reflect not only the current olfactory environment
but also its recent history. To resolve this ambiguity and discern odors irrespective of concentra-
tion (94), distinguish different intensities of the same odor (12, 29, 35, 94), or detect a salient cue in
the presence of a high level of distractor (29), flies must encode this context. Motion-sensitive H1
neurons in the visual system solve an analogous problem by multiplexing instantaneous and con-
textual signals in the same spike train at different timescales (37). Whether olfaction has evolved
a similar solution is unknown.

A second consequence of adaptation is that long presentations of an odor cause spike rates to
peak and then decay to a plateau above baseline (7, 76, 100). In other words,ORNs are differential-
proportional sensors whose activity maxima emphasize changes in odorant receptor occupancy.
The pronounced short-term depression of ORN-to-PN synapses (74)—a property tied to their
high release probability—further accentuates change relative to the steady state. The effects of
these differentiating filters are evident also in the odor responses of second-order (7, 77) and
third-order (51) olfactory neurons.

Combinatorial Odor Encoding

In the most simplistic view, a glomerular odor representation consists of a combination of inac-
tive and active channels, written as an ordered list of ∼50 zeros and ones. Counting the number
of positions at which two lists differ yields a measure of their dissimilarity, the Hamming dis-
tance (56, 102). The average Hamming distance in an ensemble of binary code words of the same
length is maximal—and the capacity of the corresponding code is therefore largest, or the task of
discriminating a fixed number of messages in this code is easiest—if zeros and ones occur with
equal probability. Depending on chemical identity and concentration, natural or naturalistic odor
blends, as well as monomolecular odorants, elicit responses from 5% to 95% of all odorant recep-
tors or glomerular channels; the mean response rates of 24 receptors and 16 glomeruli, averaged
over some 130 odors and odor concentrations tested, range from 38% to 69% (54, 55, 102, 146)
(Figure 1b). These empirical response rates are sufficiently close to the theoretical optimum of
50% to suggest that odor representations at the encoder stage of the olfactory system approach a
state of maximum entropy (102, 128, 129).

A more realistic view of odor encoding will take into account not only the number of active
channels but also the level of activity within them. Instead of a list of zeros and ones, a glomerular
odor representation then becomes a vector with ∼50 components (one for the spike frequency in
each channel), and taxicab, Euclidean, and cosine distances replace Hamming distances as pairwise
dissimilarity metrics (80, 110). The taxicab distance has an intuitive interpretation: It represents
the summed activity differences in all channels.The Euclidean distance measures the length of the
line segment connecting the tips of two activity vectors, whereas the cosine distance quantifies the
angle between them; it ranges from amaximum of one when the vectors are orthogonal (indicating
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Reducing the separation between the stimulus–conditional neuronal response distributions of odors impairs
their discriminability (schematics on the left and right). The central plot shows the naive preferences of flies
discriminating two odors as a function of the Euclidean distances between the corresponding projection
neuron activity vectors (means ± SEM, n = 30–40 flies per data point). Colored arrows denote changes in
Euclidean distance and preference caused by silencing transmission in four of the ∼50 glomerular channels;
the solid gray line indicates wild-type performance. The central panel was adapted from Reference 110.
Abbreviation: spikes/s, spikes per second.

little overlap in neural activity) to a minimum of zero when the vectors are parallel (and the activity
patterns are similar in structure but not necessarily inmagnitude).Taxicab and Euclidean distances
are therefore sensitive to overall activity levels, whereas cosine distances are not.

Activity differences provide a natural currency for the analysis of sensory discrimination. A
typical behavioral experiment asks whether differences in odor-evoked activity are large enough
to be perceived by an animal as it moves from one olfactory environment to another (Figure 1c).
The experiment therefore does not probe the animal’s ability to pinpoint the exact identity and
absolute concentration of an odor in a vast set of possible alternatives but poses a much simpler
question: Judging from the neural activity patterns they elicit, are two odors the same, or are they
different? In theory, this classical signal detection problem is solved by inspecting the stimulus–
conditional response distributions (also known as the likelihood functions) and finding the activity
threshold that achieves the best trade-off between discrimination failures and false alarms (50).
Consider a hypothetical olfactory system with a single glomerular channel that responds strongly
to odor A, more weakly to odor B, and barely to odor C. Because the means of the likelihood
functions P(R|A) and P(R|C) are so widely separated, the brain can easily set a threshold that
achieves accurate discrimination between odors A and C (Figure 2). The situation is different for
odors A and B, whose discriminability is lower owing to their overlapping likelihood functions.
Here, as in general, the decision rule generating the fewest overall errors is based on likelihood
ratio (50): if, for a given activity level R in the glomerular channel, P(R|A)/P(R|B) > 1, decide A;
otherwise, decide B. This flexible rule, whose criterion can be adjusted to accommodate unequal
prior probabilities or unequal rewards or penalties for correct or incorrect responses (47, 123),
produces a logistic (sigmoidal) psychometric function.

Logistic relationships between stimulus contrast and performance appear commonly in two-
choice sensory discrimination tasks (13, 50, 97, 101, 116, 139). Their characteristic shape arises
from a logit link between (a) physical stimulus attribute(s) and choice probability, consistent with
the idea that the brain uses the weight of evidence or log likelihood ratio to decide (46, 48). Odor
identity discrimination by flies is no exception: A logistic function of contrast in the glomerular
transmission line places an upper bound on performance (110) (Figure 2). To estimate the con-
trast available to the decoders that read PN signals, the mean firing rates of the 24 ORN classes
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with empirically determined odor response spectra (54, 55) were computationally converted to
the corresponding PN firing rates. The conversion took into account the effects of short-term
depression of ORN-to-PN synapses (74) and the relative refractory period of PNs, which con-
spire to cap transmission rates, and a gain control mechanism at the level of the antennal lobes
(see below) (106). Although the 24-dimensional PN activity vectors cover only a subspace of the
∼50-dimensional coding space, their distances predict the ability of flies to distinguish odor pairs
(110), suggesting that the partial vectors are representative of the encoder as a whole. Flies show
little or no behavioral bias when the distance between the representations of two odors is small,
achieve saturating levels of bias when the distance is large, and tend to display intermediate bias
in the transition region between plateaux. The inflection point of half-maximal discrimination is
located at a taxicab distance of ∼850 PN spikes per second (which extrapolates to an activity dif-
ference of ∼1,750 PN spikes per second in all channels), a Euclidean distance of ∼220 PN spikes
per second (Figure 2), or a cosine distance of ∼0.3. These distances appear large, even against a
background of ∼1,500 PN spikes per second that arises from the bombardment of the antennal
lobes by ∼20,000 spontaneous ORN spikes per second (31, 32).

It is important to stress that the sizeable activity differences needed for innate odor discrim-
ination reflect inefficient decoding of PN activity by the default decoder, the lateral horn of the
protocerebrum (Figure 1a,b), rather than lossy encoding or transmission of sensory informa-
tion: A different decoder, the mushroom body (Figure 1a,b), which is engaged after training (59),
achieves much finer discrimination of odors from the very same PN spike trains. Trained flies
have no difficulty discriminating the odor pair separated by the shortest distance among the 5,995
possible combinations of the 110 characterized monomolecular odorants (110), and experimental
animals with only a single functional glomerular channel—the hypothetical situation we consid-
ered when discussing likelihood ratio—can be trained to pick up on inferred activity differences
as small as 216 versus 234 PN spikes per second in that channel (30). Flies, like other species (42),
likely exploit temporal structure in the odor-evoked activity to aid discrimination. For example,
if the response to one odor peaked well before the other, the odors should be distinguishable in
different temporal windows after stimulus onset.

Perhaps because innate odor discrimination is so relatively inefficient, it offers some of
the clearest illustrations of how changing the separation between the means of the stimulus–
conditional response distributions affects behavior. The complete masking of one odor by
another—the holy grail of the air freshener industry—is a striking example. Contrasting an at-
tractant with a powerful repellant, which would be expected to make the pleasant scent even more
attractive, can in fact extinguish all behavioral bias if the neuronal response distributions of the
two odors overlap broadly (110): If an animal cannot distinguish the odors, it cannot express a
preference. Likewise, silencing circumscribed subsets of glomerular channels shrinks the distances
between odor representations whose contrast hinges on activity in themanipulated channels (110).
The behavioral consequences of this intervention depend on the margin of safety in the original
separation of the response distributions (Figure 2): If the separation is large, the distributions can
be moved closer without creating overlap and compromising discrimination; if the initial separa-
tion is marginal, reducing it further causes performance to slide (110).

As appealing as likelihood ratio is as a decision rule, its neural implementation poses a signifi-
cant hurdle (46). In our example of a single glomerular channel that responds strongly to odor A
and more weakly to odor B (Figure 2), the system would need to know the full likelihood func-
tions P(R|A) and P(R|B) and the manner in which these functions change dynamically (7, 42,
49, 76, 77, 100), for instance, as a result of receptor adaptation (53, 132), to decide between A
and B from a single observation R. The hurdle can be overcome by introducing a second pop-
ulation of neurons whose odor responses are the exact opposite of the first; these “antineurons”
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LHN: lateral horn
neuron

(13, 101) thus respond strongly to odor B and more weakly to odor A. The activity difference in
the two channels is then equivalent to log likelihood ratio (46, 47).While it is difficult to imagine
precisely mirror-symmetric neuron–antineuron pairs for all odor combinations that a fly could
possibly encounter, comparisons of activity in differently tuned channels are of course implicit in
distance-based discrimination (110). However, whether this computation can also approximate a
log likelihood ratio test has not been formally explored. In situations where only differences in
odor intensity need to be discerned, cells that fit the strict neuron–antineuron bill rather closely
(by responding antagonistically to increases or decreases in concentration) are found at several
stages of the olfactory system (21, 51, 65, 95).

Gain Control and High-Pass Filtering

Odorant receptor adaptation and the compressive nonlinearity of ORN-to-PN synapses, which
amplifies weak ORN inputs, attenuates strong inputs, and thereby equalizes response magnitudes
across the PN population (90, 99, 106), are the first in a line of buffers that regulate the gain and
offset of the encoder.

Each antennal lobe contains a population of at least∼100 ipsilaterally and∼100 bilaterally pro-
jecting local neurons (LNs) (24) (Figure 1b).Most LNs are inhibitory and release γ-aminobutyric
acid (GABA) (103, 145); a minority are cholinergic (24, 125); some secrete (a) currently unidenti-
fied transmitter(s) (24); and many form gap junctions (63, 148). In contrast with the stereotyped
anatomy of ORNs and PNs in the backbone of the glomerular relay (27, 40, 45, 70, 130, 141),
LNs display an unusual degree of morphological and functional variation. An analysis of 1,489 ip-
silaterally projecting LNs revealed 847 distinct morphologies (24), many more than the number
of neurons per lobe. Most flies’ LN complements must therefore differ from one another. Col-
lectively, however, this motley crew of inhibitory LNs seems to perform the same, invariant task
of covering all glomeruli in a near-uniform blanket of feedback inhibition. The magnitude of this
feedback scales with total ORN activity (106), and its principal targets are the ORN axon termi-
nals themselves (107, 117). Although there is room for added complexities—dendritic release of
acetylcholine by PNs (102) may also drive LN activity (146) (Figure 1b), PN dendrites (145, 148)
and fellow LNs (63, 145, 148) may also be targets of inhibition (Figure 1b), LN output may be
spatially structured (102), and the sensitivity to GABA may differ among glomeruli (117)—their
functional impact seems minor, at least in the context of the rate-code representations of odors we
consider here: Global, uniform, exclusively ORN-driven lateral inhibition alone predicts PN from
ORN firing rates with high accuracy (106). The overall effect of this so-called divisive normal-
ization or input gain control (106) is to decorrelate PN channels and stretch the cosine (but not
the Euclidean) distances between the means of the stimulus–conditional response distributions
(Figure 3a,b). Increased separation, of course, facilitates discrimination.

A remarkably similar gain control mechanism also operates on the axon terminals of PNs in
the lateral horn but involves feedforward instead of feedback inhibition (110). The source of in-
hibition is a group of ∼40 GABAergic PNs with multiglomerular dendrites whose axons bypass
the mushroom bodies (70, 103). Once again, inhibition scales with total ORN activity and acts
presynaptically, in a manner that suppresses transmission at low, but not at high, firing rates (110).
A chief difference between this high-pass filter and gain control in the antennal lobe is the number
of glomerular channels that the postsynaptic neuron samples. PNs of one glomerulus are driven
by a single ORN class (45, 70, 141), and gain control regulates their sensitivity to this dominant
excitatory input. Lateral horn neurons (LHNs), in contrast, connect to an average of six glomeruli
(67), and the high-pass filter eliminates weakly active elements from the corresponding input vec-
tors (110). The result is a decorrelation of synaptic input patterns, as is evident from the sizeable
increase in cosine distances (110) (Figure 3c,d).
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Figure 3

Effects of inhibitory gain control at olfactory receptor neuron (ORN) terminals (a and b) and inhibitory high-pass filtering at projection
neuron (PN) terminals (c and d) on Euclidean (a and c) and cosine distances (b and d) between PN activity vectors. Scatter plots compare
the 5,995 possible pairwise distances between 110 odors in the presence and absence of inhibition; histograms quantify net distance
changes due to inhibition. Panels c and d were adapted from Reference 110. Abbreviation: spikes/s, spikes per second.

Stochastic Resonance

All gain control mechanisms described so far are active at high stimulus intensities and involve
negative feedback at the cellular and circuit levels. The gain of sensory transduction is feedback
controlled (31, 100), and transmission by ORN and PN terminals is inhibited at high stimulus
strengths (106, 107, 110, 117). By contrast, very little is known about positive gain control mech-
anisms that enhance neuronal responses to low-intensity stimuli. Threshold detectors, such as
LHNs or the Kenyon cells (KCs) of the mushroom bodies, are by their very nature blind to sub-
threshold inputs but could, in principle, be sensitized to such signals by adding a nonspecific—even
noisy—offset that lifts weak activity above threshold. This simple mechanism, which is known
under the somewhat misleading moniker of “stochastic resonance,” is an inevitable property of
nonlinear devices that perform thresholding operations on their inputs (43).

The antennal lobe contains neurons and connections that seem suited to provide this nonspe-
cific positive offset. A small, broadly odor-responsive population of LNs synthesize and secrete
acetylcholine, the predominant excitatory transmitter in the fly brain, diffusely in all glomeruli;
its release can depolarize PNs (63, 125). In addition, the same population of LNs (and perhaps
also others) are gap junction–coupled to PNs (63, 148). The existence of lateral, electrical and
chemical, excitatory connections explains persistent PN responses after the experimental elimina-
tion of all direct ORN input (105, 118, 125). Owing to the prohibitive difficulty of targeting these
connections cleanly and comprehensively for experimental manipulations, however, the idea that
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lateral excitation amplifies low-intensity signals to make them detectable to downstream decoders
remains untested.

THE DECODER STAGE

Two Systems

The bifurcating axons of PNs project combinatorial odor images onto two discrete decoders: the
lateral protocerebra and the mushroom bodies (66, 70, 92, 130, 147) (Figure 1a,b). The roles of
these structures in odor discrimination bring tomindKahneman’s Systems 1 and 2 (72).The lateral
horn resembles System 1: fast, stereotyped, and coarse, an autopilot for innate behaviors. The
mushroom body is reminiscent of System 2: slower, experience-based, and finely discriminating.

System 1, the lateral horn, contains at least 1,410 neurons per hemisphere (41). Five hundred
and eighty locally projecting and 830 distantly projecting LHNs fall into anywhere between 39
and 150 distinct types on the basis of anatomical, genetic, and functional criteria (41, 67). LHNs,
therefore, are a somewhat smaller but more variegated population than KCs, the intrinsic neu-
rons of the mushroom bodies (see below). Individual LHNs sample from up to 21 different PN
afferents (67), which target the lateral horn in a broadly stereotypical manner (39, 69, 92, 147).
Certain glomerular combinations are overrepresented, both within and between LHN types, per-
haps because the corresponding chemical mixtures define ethologically important “odor scenes”
(67). In addition to these combinatorial feature detectors, dedicated hotlines exist for monomolec-
ular salients: PNs of the DA1 glomerulus, for example, respond to the pheromone 11-cis-vaccenyl
acetate (82) and project, quite possibly as the sole input to one type of LHN, to a circumscribed
and sexually dimorphic region of the lateral protocerebrum (69, 78, 119).

System 2, the mushroom body, operates in a side loop between the antennal lobe and the
lateral horn (34, 66) (Figure 1a,b) and is essential for learned (59) but dispensable for innate odor
discrimination (110).Olfactory information continuously flows through themushroom body loop,
but the positive and negative valences assigned to it in the untrained ground state are in such
perfect equipoise that their effects on behavior cancel (108). Learning creates an imbalance that
is expressed as a behavioral bias and can be mimicked—without training—by switching on or off
mushroom body output neurons (MBONs) contributing to the net zero balance of positive and
negative valence signals in the ground state (108).

The internal architecture of the mushroom body, like that of the cerebellum, features all nec-
essary elements of a random-access memory (25, 73). About 2,000 mushroom body–intrinsic KCs
per hemisphere (2) serve as address decoders by drawing random—to a first approximation (150)—
samples of 2–11 inputs from the ∼50 glomerular address lines (22, 98) with postsynaptic claws
that wrap around a corresponding number of PN terminals (85). All KC axons initially gather
in a tight bundle, the peduncle, which subsequently splits into vertical and horizontal lobes; the
axonal projection patterns of KCs into these lobes define seven genetically (137) and also, where
electrophysiological data exist, biophysically distinct neuronal classes (51, 64, 138). Although the
functional significance of this subdivision remains—with a few exceptions (29, 79)—mysterious,
the common treatment of the KC ensemble as a homogeneous population is undoubtedly an over-
simplification.

Dendritic integration of PN inputs determines whether a memory address is activated for read-
ing or writing; the efferent KC synapses constitute the actual data storage locations (60, 104, 108,
122). About 50–100 of these cholinergic synapses (5, 136) are arranged, like pearls on a string,
along each axonal fiber as it intersects the arborizations of MBONs and their cognate dopaminer-
gic neurons (DANs) (Figure 1b), which serve as read and write lines, respectively (25, 73).Twenty-
one types of MBONs and their DAN companions (25, 91) define 16 memory compartments that
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tile the mushroom body lobes (2, 136); MBONs directing attraction and aversion, and DANs
providing negative and positive reinforcement (16, 25, 89), are segregated along the vertical and
horizontal axes (3). Because active KC-to-MBON synapses depress when exposed to dopamine
(60, 104, 122), pairing MBONs and DANs in a sign-reversed arrangement—MBONs directing
attraction with aversively reinforcing DANs and vice versa (2, 3)—ensures that negative reinforce-
ment weakens the positive value associated with an odor, whereas positive reinforcement does the
opposite. Intercompartmental inhibition (2) contributes in some cases to the self-cancellation of
MBON output in the untrained state (111).

The addressing system employs three strategies to maximize odor discrimination: Expansion
recoding and sparse connectivity between PNs and KCs segregate the means of the stimulus–
conditional response distributions in a high-dimensional coding space; feedback inhibition com-
presses the distributions’ variances; and sequential sampling allows the contrast between repre-
sentations to grow over time.

Expansion Recoding and Sparsening

Early theoretical work on the cerebellum proposed that expansion recoding (projecting activity
onto a large number of neurons) and sparsening (reducing the fraction of active neurons) would
promote stimulus separation (1, 93). In the mushroom body, the expansion ratio from ∼150 PNs
to ∼2,000 KCs is ∼13.3 on purely anatomical grounds but increases to ∼40 if the functional
redundancy among sister PNs (75) is taken into account. The expansion ratio from cerebellar
mossy fibers to granule cells is similar (88).

The number of unique KC addresses would peak if each KC randomly drew (with replace-
ment) ∼25 presynaptic partners from the ∼50 glomerular channels, but the combinatorial explo-
sion of possible wiring patterns allows many fewer synapses to generate adequate diversity. In fact,
keeping connections relatively sparse avoids correlations that would counteract the benefit of a
large synaptic degree (23, 88). If the number of synapses is fixed, for either wiring or energetic
reasons, there is therefore an optimal degree of connectivity at which the discriminability of all
stimulus–conditional response distributions is maximal. This optimum depends on the distribu-
tion of synaptic weights, which adds variability to postsynaptic currents, and on the presence of
inhibitory feedback, which expands the decoder’s dynamic range by permitting KC thresholds to
vary with stimulus strength (88). For a mushroom body with ∼50 glomerular address lines, a total
of 14,000 afferent synapses, an empirically determined synaptic weight distribution (51), and the
single anterior paired lateral neuron providing global feedback inhibition (see below), the optimal
figures are 2,000 KCs with an average of 7 excitatory inputs each (88). These figures agree closely
with the actual number of KCs and the average claw count per cell (22, 85, 88).

The 50-choose-7 input connectivity of KCs can produce nearly 10 million unique 7-digit ad-
dresses, far more than the actual number of neurons per mushroom body. Each KCmay therefore
connect to a unique combination of glomeruli, as was indeed seen in a fully mapped sample of
200 cells (22). The population sparseness of KC responses to odors, however, is smaller than this
diversity of wiring patterns would superficially suggest: An average of 5–10% of all KCs respond
to any given odor (62, 87, 138). This moderate level of sparseness likely arises from three sources:
First, PNs represent odors in a format approximating a maximum entropy code, so odors are ex-
pected to activate half of the digits of any address (102, 128, 129). Second, not all digits that make
up an address need to be coactive to drive spiking; depending on the synaptic input strengths and
the KC’s intrinsic excitability, activity in one to four of the average seven excitatory inputs may
suffice (52). Third,Drosophila KCs can summate synaptic inputs over time; they are therefore not
pure coincidence detectors (51, 52).
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The observed level of population sparseness must in fact be enforced by the giant GABAergic
anterior paired lateral neuron (APL) (87, 109), which exists in a single copy per hemisphere
(Figure 1b) (137). APL imposes a variable threshold on the overall activity across the decoder
stage that silences all but the top 5–10% of KCs and thus keeps the variances of the response
distributions in check. APL is activated by and provides global inhibition to the entire KC popula-
tion (87), with some variation among KC divisions (64). Disrupting this inhibitory feedback loop
widens the odor tuning of KCs, as reflected in increasingly correlated and broadly distributed
somatic calcium signals (87). This effect is paralleled by changes in learned olfactory choice
behavior that, again, depend on the initial degree of separation of the response distributions:
Dissimilar odor pairs remain discernible, whereas similar odors blur into one another (87).

Because population sparseness is moderate, parallel odor representations may exist in most of
or all the seven KC divisions. Under the assumption that sparseness is similar for all KC classes
[which is almost certainly incorrect (51), but which we make for the sake of the present argument],
even the smallest division, α′β′

m (137), is expected to respond to odors with activity in ∼10 of
its ∼140 members. An intriguing hypothesis (128) posits that the randomness of their afferent
connections allows KCs to form a sparsifying basis in which odors can be represented especially
concisely. A dozen or so of these “compressed sensors” (20) would then suffice to recover all the
information encoded in the ∼50 glomerular channels (128). Functional imaging experiments lend
some credence to this idea: Calcium signals recorded from a group of 12–50 randomly selected
KCs predict, with reasonable accuracy, the animals’ learned odor preference (19).

Sequential Sampling

While judgments based on single samples of ambiguous evidence tend to be unreliable, com-
bining information from multiple observations over time can gradually tease apart even broadly
overlapping stimulus–conditional response distributions (Figure 4a). The corresponding statis-
tical framework—sequential analysis—has its origin in quality control and cryptanalysis, where
data are evaluated as they are collected until a stopping criterion is met (10, 47, 48, 50). The stop-
ping criterion forms an absorbing boundary to which the accumulating evidence advances in a
biased random walk (or, in the continuous limit, a diffusion process with drift): Each new piece
of information moves the accumulated total closer toward or away from the boundary (10, 47,
113, 123). The stronger the sensory evidence, the more powerful the biasing force, and the fewer
samples are needed before the process stops. For the binary decisions that are typically studied
in the laboratory and which concern us here, either a single decision variable moving between
two bounds (one for each option) quantifies the relative evidence favoring one alternative over
the other, or two separate accumulators racing against each other gather absolute evidence for
each of the competing options (10, 47, 123). If the two alternatives have equal prior probability
and the two accumulators are anticorrelated, the difference between these so-called symmetric
random walk and race models is so subtle that it becomes negligible for our purposes (10, 47,
123). The models do, however, differ in how easily they lend themselves to a biophysical inter-
pretation: Race models find a natural correspondence in the evaluation of log likelihood ratio by
neuron–antineuron pairs (46, 123).

When flies discriminate two odors (or, more accurately, two concentrations of one odor), the
membrane potentials of KCs in the αβc division of the mushroom bodies drift noisily toward
action potential threshold (51), just as a continuously updated tally of absolute evidence would
drift toward a decision bound (Figure 4b). Two separate groups of αβc KCs, termed up and down
cells, respond to increases or decreases in odor concentration and can therefore assume the roles
of neurons and antineurons (13, 101) in a race between two integrators (51). A voltage gap of

220 Groschner • Miesenböck



BB48CH09_Miesenbock ARjats.cls April 16, 2019 12:49

a

Stimulus contrast (%) 
100 50 0
0

50

100

A
cc

ur
ac

y 
(%

)

Stimulus contrast (%) 
100 50 0
0

1

2

D
ec

is
io

n 
ti

m
e 

(s
)

c

Stimulus contrastb

5 
m

V

200 ms

30%

10%

60%

90%

5 s

Time

Samples

logLR: 0.98l

logLR: 4.16l

logLR: 6.21l

logLR: 0.35  l

A B

A B

A B

A B

(Caption appears on following page)

www.annualreviews.org • Mechanisms of Sensory Discrimination 221



BB48CH09_Miesenbock ARjats.cls April 16, 2019 12:49

EPSP: excitatory
postsynaptic potential

Neurometric
function: probability
that an ideal observer
could infer a stimulus
attribute (e.g.,
contrast) from a
neuronal response

Figure 4 (Figure appears on preceding page)

Sequential sampling. (a) The log likelihood ratio (logLR) favoring odor A over odor B increases with the
number of samples. (b) Examples of spike rasters (left) and membrane voltages preceding the first αβc
Kenyon cell (KC) spike (right) in response to odor concentration changes at low (blue), intermediate (purple
and orange), and high contrast (yellow). The spike rasters are sorted, in ascending order from the bottom, by
the latency of the first spike after stimulus onset. The membrane potential traces are aligned to the upstroke
of the action potential and depict a period of ≤1 second. (c) Accuracy (left) and speed (right) of odor intensity
discrimination as functions of stimulus contrast. Solid gray lines depict drift-diffusion fits to behavioral
accuracy and decision time measurements (1,245 flies and 4,910 decisions, respectively); colored circles
denote neurometric estimates based on the timing and fidelity of the first αβc KC spikes after odor
concentration changes at low (blue), intermediate (purple and orange), and high contrast (yellow) (means ±
SEM, n = 36–66 trials from 7 to 13 cells per data point). Panels b and c were adapted from Reference 51.

∼8 mV—much wider than that of other KC types—separates the resting potentials and spike
thresholds of αβc KCs and suppresses virtually all spontaneous activity. Closing this voltage gap
requires a minimum of six or seven perfectly coincident PN inputs; in reality, excitatory post-
synaptic potentials (EPSPs) arrive nonsynchronously and must be summed over time (51). The
extremely thin, elongated dendrites of αβc KCs (149) act as temporal filters that slow the decay of
EPSPs and provide accumulator memory. A critical influence on the persistence of this memory is
the dendritic voltage-gated A-type potassium channel Shal (KV4) (143), which regulates the am-
plitude, time course, and propagation of EPSPs (18, 51, 61). Because Shal currents oppose synap-
tically evoked voltage changes (18, 51, 61), the number of EPSPs needed to fire an αβc KC action
potential exceeds the theoretical minimum of half a dozen by a factor depending on the strength
of the sensory evidence: High-contrast stimuli (that is, large odor concentration changes) drive
high-frequency transmission from PNs, which results in steep, rapid KC depolarizations to spike
threshold, whereas low-contrast stimuli cause a trickle of synaptic release, shallow, meandering
membrane potential changes, and long spike latencies (51) (Figure 4b). A particular constellation
of biophysical properties thus allows αβc KCs to perform sequential analysis on their synaptic
inputs, using the discharge of an action potential as the stopping rule.

The conclusion that αβc KCs encode accumulating evidence in subliminal voltage changes
rests on four pillars of experimental support. First, neurometric functions based on the timing of
the first αβc KC spike account for the behavior of the decision-making animal (51) (Figure 4c).
Second, psychophysical measurements of speed and accuracy yield an estimate of diffusion noise in
the decision process (29). Electrophysiological measurements of the membrane potential noise of
αβc KCs match this estimate (51). Third, the membrane density of Shal in αβc KCs is kept within
narrow limits by the forkhead box P (FoxP) transcription factor (51). Mutating FoxP derepresses
the Shal promoter, augments A-type currents, hastens the decay of EPSPs, and prolongs spike
latencies. Mutating FoxP also prolongs decision times—to the same extent that it prolongs spike
latencies (29, 51). Fourth, the biophysical and behavioral defects of FoxP mutants can be repaired
by blocking Shal, and they can be introduced into wild-type flies by overexpressing Shal exclusively
in αβc KCs (51).

The ability to alter decision times by changing a single ionic current in a small, well-defined
population of neurons (51) sets these analyses apart from studies of perceptual decisions in other
systems. Much thinking about neural mechanisms of sequential sampling has revolved around
spike-based phenomena, such as smooth, ramp-like increases in firing rate (57, 116, 124), dis-
crete jumps from low to high activity (which can create the appearance of ramping if jumps occur
stochastically in a population) (84), or the progression of activity toward choice-specific attrac-
tors (58). Is subthreshold integration by αβc KCs therefore an idiosyncrasy? Perhaps not—a re-
cent spate of perceptual studies in the mouse highlights at least some commonalities. Mice can
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perform a simple visual discrimination task even when the relevant neurons in the primary visual
cortex are allowed to emit, at most, a single spike (114); the necessary computations must per-
force be completed in the interval containing (or preceding) that spike. Like the latencies of αβc

KCs, the spike latencies of neurons in the piriform cortex increase with decreasing odor intensity
contrast while their average firing rates remain virtually constant; accordingly, spike times report
odor concentration more reliably than absolute spike rates do (11). And, glutamatergic neurons
in the periaqueductal gray (PAG) impose a synaptic threshold on excitatory inputs from the su-
perior colliculus that encode looming threat; the first PAG spikes trigger escape in accordance
with a drift-diffusion model of threat integration (36). In contrast with αβc KCs, however, which
implement both the integration process and the stopping rule (51), PAG neurons merely thresh-
old a signal that is integrated presynaptically, by recurrently connected collicular neurons whose
efferent synapses facilitate as activity builds up (36).

At first sight, the role of Shal in αβc KCs is puzzling: What would be the advantage of an
imperfect integrator that leaks information during collection? We speculate that there may be an
optimal half-life to evidence: too short, and temporal integration will fail outright; too long, and
even noise will eventually add up to commitment. Put slightly differently, the time constant of the
accumulator’s memory should be matched to the expected arrival rate of sensory evidence. The
details of this match then determine the stringency of the decision criterion and the degree to
which behavioral choices are insulated from random fluctuations in sensory input. Because Shal
activates at depolarized voltages (143), evidence acquired recently (and, therefore, close to spike
threshold) is discounted more heavily than evidence collected further in the past, when the cell
remained near resting potential and the channel’s open probability was negligible (51). This effect
could partially counteract the inevitable fading of earlier samples with time and enable approxi-
mately linear integration.

Neuronal Noise and Behavioral Variability

Behavior is irreducibly variable: Even when confronted with clear-cut evidence, animals make
the occasional odd (or exploratory) choice. Flies discriminating two odors, for example, display
a maximal accuracy of no more than ∼98% (29). The random walk (or diffusion) component of
the drift-diffusion framework captures this unpredictability formally but is agnostic about its bio-
physical origin.Drosophila FoxP mutants now point to a potential source of behavioral variability:
Despite their prolonged reaction times, these mutants discriminate odors with the same accuracy
as wild-type flies (29). This dissociation of accuracy from speed was initially thought to reflect
a compensatory elevation of the decision bound, which would offset the reduced drift rate and,
therefore, the larger relative contribution of diffusion noise (29). Intracellular recordings subse-
quently proved this conjecture incorrect: The decision bounds—that is, the spike thresholds—of
wild-type and FoxP-deficient αβc KCs are identical (51). Instead, the abundance of Shal in FoxP
mutants reduces the sensory-evoked drift in membrane voltage to the same extent as it reduces
membrane potential noise, maintaining a constant ratio (51). This tight covariation of signal and
noise suggests a common sensory origin for both and implies that αβc KCs are virtually noise-
less accumulators, echoing a similar inference drawn from psychophysical and modeling studies
in humans and rats (15). Behavioral variability may thus have its roots in noisy sensory evidence
or an intrinsically noisy encoder stage and not in the capriciousness of System 2.
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