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Abstract

Organoid models have revolutionized cancer research through their ability
to capture the cellular heterogeneity and spatial organization of a tumor in
3D culture. Patient-derived organoids can also mirror responses to therapy
in vitro, opening the doors to personalized medicine that can direct clin-
ical decision-making. As cancer immunotherapy has flourished and efforts
to develop novel immunotherapies have increased, models that incorpo-
rate immune cells into organoid coculture to recapitulate the complexity
of the tumor microenvironment faithfully are in high demand. To this end,
a wide variety of organoid immune coculture methods have been developed,
each differing in the source of immune cells used, types of immune cells
maintained in culture, and their specific utility. This review aims to orga-
nize these methods into a framework that will aid researchers in choosing
the appropriate system for their experimental needs. We also highlight sev-
eral nonimmune cell types that have been successfully incorporated into
organoid culture and the biology these coculture models are poised to
interrogate.
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INTRODUCTION

Organoid systems that enable the culture of normal and cancer epithelial stem cells and their dif-
ferentiated progeny in defined, 3D culture conditions have proven to be an important advance in
cancer research,more closely recapitulating tumor heterogeneity and plasticity than conventional
2D models, while being more scalable and cost effective than mouse models (Sato et al. 2009,
Ootani et al. 2009, Tuveson & Clevers 2019). Organoid modeling has yielded novel insights into
the design principles that underpin epithelial homeostasis, regeneration, and cancer,while patient-
derived cancer organoids (PDOs) can recapitulate patient-specific responses to some therapies and
are currently being evaluated in clinical trials to prospectively guide clinical decision-making in
real time (Vlachogiannis et al. 2018, Ganesh et al. 2019, Chalabi et al. 2020, Yao et al. 2020, Ooft
et al. 2021). Rooted in stem cell biology, organoid technology initially focused on maintaining
and differentiating adult epithelial or induced pluripotent stem cells (iPSCs) and their neoplas-
tic counterparts into a variety of differentiated cell types. The immune microenvironment of a
tumor or tissue can be construed as incorporating not only the immediate tissue microenviron-
ment but also constituents of regional lymph nodes, circulating immune cells, and the systemic
neurohormonal milieu.However, conventional organoid models have largely lacked stromal cells,
including immune cells, that originate from diverse nonepithelial lineages. Yet epithelial devel-
opment, homeostasis, regeneration, and disease all depend on complex multilineage interactions
among distinct cell types to generate and maintain tissue architecture and function (Karin &
Clevers 2016, Roberts et al. 2017, Schreurs et al. 2019, Garner & de Visser 2020). The transfor-
mative impact of checkpoint immunotherapy in controlling tumor growth in major cancer types
has underscored the need to incorporate the immune microenvironment into organoid models to
better recapitulate tumor biology (Postow et al. 2015, Wolchok et al. 2017, Scognamiglio et al.
2019, Bar-Ephraim et al. 2020, Yuki et al. 2020, Dao et al. 2022). Such models are being employed
not only to define mechanisms of epithelial-immune cross talk in health and disease but also as
biomarkers of patient response or resistance to emerging immunotherapies.

ORGANOID MODELING TECHNIQUES

Numerous methods to establish and culture organoids have been developed, each differing in
starting material used, tissue processing, culture apparatus, and, consequently, the cell popula-
tions that can be maintained in culture. These methods and key advantages and disadvantages of
each are summarized in Table 1. The most widely adopted organoid culture is the submerged
culture method. Primary tissue is enzymatically or mechanically dissociated and cell suspensions
are embedded in a matrix. This mixture is plated on plastic dishes in dome-like drops and covered
in culture media once the matrix solidifies. Submerged culture allows for rapid generation and
expansion of organoids in a matter of days to weeks, and organoids can be cultured for months.
Compared to other organoid techniques, submerged culture is relatively user friendly, allows for
successive passaging and cryopreservation of organoids, and is easily scaled up for larger exper-
iments. However, endogenous nonepithelial cells from the tissue microenvironment cannot be
maintained in submerged culture approaches. Immune and stromal cells must be separately iso-
lated from tissue or from other sources such as peripheral blood and added into thematrix in order
to be cocultured.

Other organoid culture methods attempt to address this issue, including spheroid microfluidic
cultures and tumor fragment cultures such as air–liquid interfaces (ALIs). Spheroid microfluidic
cultures involve gently dissociating tissue into large organotypic tumor spheroids. These patient-
derived organotypic tumor spheroids or mouse-derived organotypic tumor spheroids are then
embedded in collagen. This collagen mixture is injected into the center of a microfluidic device,
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which is fed by media that flow through channels on either side of the collagen layer (Aref et al.
2018, Jenkins et al. 2018). In contrast, tumor fragment cultures call for gently dissociating tissue
into small fragments in order to keep some aspects of the in vivo tissue architecture intact (Neal
et al. 2018). Both techniques allow for endogenous immune and stromal cells to be maintained in
culture for a short period of time. In the study by Jenkins et al. (2018), myeloid and lymphoid cells
remained viable in 3D microfluidic culture for 1–2 weeks, while the ALI culture established by
Neal et al. (2018) improved upon this time frame and showed the immune cells began to decline
over 1–2 months. Both of these methods have allowed for studies with immunomodulatory drugs
such as anti-PD1 to interrogate the functionality of endogenous tumor-infiltrating lymphocytes
(TILs) in organoid culture.

Emerging from a bioengineering approach, microfluidics-based organoid-on-a-chip devices
allow for tight control of many parameters such as pH, oxygenation, nutrient availability, and
shear stress, with the ultimate goal of modeling organ-level physiology. The microfluidic systems
incorporated into chips also uniquely allow for gradients of nutrients and signaling molecules to
be established (Sontheimer-Phelps et al. 2019, Ingber 2022). Chips can be designed to incorpo-
rate other cell types beyond epithelial cells, such as endothelial cells, stromal cells, immune cells,
and microbiota, potentially making them a useful tool for modeling the microenvironment ( Jin
et al. 2018, Park et al. 2019). A major drawback of chips that prevents their widespread use is
their complexity. They are expensive and require both extensively trained users and additional
equipment.

Aside from primary tissues, which contain organ-specific adult stem cell populations within a
stem cell niche, organoids can also be generated from iPSCs.Thesemethods incorporate signaling
molecules and growth factors to co-opt developmental programs in vitro, making these organoids
a useful platform for studying organogenesis in addition to disease pathologies (Azar et al. 2021).
While iPSCs can be used to derived epithelial organoids that can be cultured through any of the
aforementioned methods, they also have unique applications afforded by their pluripotency. Re-
cently, iPSCs were used to assemble complex gastrointestinal organoids that contained cell types
from all three germ layers. These organoids contained smooth muscle cells that were function-
ally innervated by enteric neuroglia, cell types that primary tissue–derived organoid cultures are
devoid of (Eicher et al. 2022). This proof-of-concept work represents an exciting step forward in
developing more physiologically relevant organoid models.

RECONSTITUTING THE ORGANOID MICROENVIRONMENT

The incorporation of immune cells into epithelial organoid cultures has allowed researchers to
study epithelial-immune cross talk in homeostasis, as well as in the pathogenesis of inflamma-
tory disorders and cancer. Organoid immune coculture approaches can broadly be grouped into
two categories: bottom-up reconstitution, where immune cells of interest are added into epithe-
lial cell culture with the goal of reconstituting the immune microenvironment, and top-down
reconstitution, which seeks to preserve and culture the existing tissue-infiltrating cells in culture
(Figure 1). An important factor to consider in cancer organoid immune cocultures is specifically
which source of immune cells should be used to best model the tumor immune microenvironment
in an in vitro system. The answer may ultimately depend on the goals of the coculture and the
questions being asked. For example, while T cells of the same tumor-recognizing clone can be
present both intratumorally and in peripheral circulation, their effector statuses have been shown
to differ greatly. Intratumoral T cells are often driven to an exhausted phenotype that is largely
absent in their matched peripheral counterparts (Lucca et al. 2021). Top-down reconstitution
may therefore provide a better model for assessing whether intratumoral T cell exhaustion can
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Figure 1

Summary of organoid coculture methods. Organoid microenvironment models can be grouped into bottom-up reconstitution and
top-down reconstitution methods. (Top) Bottom-up reconstitution methods, including submerged cultures, organoids-on-a-chip, and
iPSC-derived organoids, allow users to select specific cell populations of interest to include in coculture to tightly control the identity
of the microenvironment. Cells can be sourced from blood or secondary lymphoid tissues such as lymph nodes or differentiated in
culture from iPSCs. (Bottom) Top-down reconstitution methods, including spheroid microfluidic cultures and tumor fragment cultures,
preserve tissue-infiltrating immune and stromal cells in organoid culture for a short period. This provides users a window to interrogate
interactions between organoids and endogenous microenvironmental cells, such as assessing the cytotoxicity of tumor antigen–specific
T cells or screening for patient-derived organoid response to checkpoint immunotherapy. Abbreviations: iPSC, induced pluripotent
stem cell; PBMCs, peripheral blood mononuclear cells. Figure adapted with permission from images created with Biorender.com.

be reversed with immunotherapy, while a bottom-up reconstitution system may provide a better
window into the mechanism through which cancer cells induce T cell exhaustion.

Bottom-Up Reconstitution

Reconstituting the immune microenvironment in organoid culture allows researchers to select
specific immune cell populations of interest to study. Peripheral blood, spleen, bone marrow, ex
vivo expanded TILs, and lymph nodes have all successfully been used as a source of immune
cells, primarily in submerged organoid coculture (Chakrabarti et al. 2018, Kong et al. 2018,
Dijkstra et al. 2018, Tsai et al. 2018, Votanopoulos et al. 2020). Patient-derived colorectal cancer,
non-small-cell lung cancer, and cholangiocarcinoma tumor organoids have been used to expand
tumor-reactive T cell clones from matched autologous blood that can effectively kill organoids in
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cytotoxicity assays, demonstrating how coculture systems can be used as an individualized model
to study interactions between tumor cells and T cells (Dijkstra et al. 2018, Zhou et al. 2022). Co-
culture of patient-derived melanoma organoids with autologous lymph nodes demonstrated that
cocultures had responses to anti-PD1 checkpoint blockade that largely mirrored patients’ clinical
responses, highlighting the utility of immune organoid cocultures as a platform for drug screening
that could inform clinical decision-making (Votanopoulos et al. 2020). In both pancreatic ductal
adenocarcinoma and gastric cancer organoid models, depletion of myeloid-derived suppressor
cells from coculture improved T cell responsiveness to anti-PD1 therapy (Holokai et al. 2020,
Koh et al. 2021). Immune cells have also been successfully cocultured in chip-based devices, specif-
ically monocyte-derived macrophages with human intestinal organoids in a chip-based model of
inflammatory bowel disease. Beaurivage et al. (2020) demonstrated that both the epithelial cells
and macrophages took on a functional proinflammatory state with a lipopolysaccharide trigger,
pointing toward the physiological relevance of this model. Organoid immune cocultures have
also proven to be a useful preclinical model in evaluating the efficacy and toxicity of genetically
engineered cellular immunotherapies for solid tumors, where chimeric antigen receptor (CAR)
T cell development has been hampered by off-target toxicities related to antigen expression in
normal tissues. Schnalzger et al. (2019) developed assays to evaluate the killing capacity of CAR-
engineered natural killer cells against both normal and tumor PDOs. Their work demonstrates
how organoid models are well suited to validate tumor-specific neoantigen targets as well as iden-
tify off-target toxicities in the preclinical setting.More recently, Dekkers et al. (2023) developed a
coculture system to live-image the activity and behavior of engineered T cells against PDOs.They
also utilized single-cell RNA sequencing to identify previously undescribed gene programs asso-
ciated with potent T cell cytotoxicity or so-called super-engager activity. These studies together
highlight how organoid immune coculture models can be harnessed to advance the development
of cellular immunotherapies.

Top-Down Reconstitution

In contrast to submerged cultures and organoid-on-a-chip devices, top-down reconstitution ap-
proaches such as tumor explant cultures and tumor spheroidmicrofluidic devices have been shown
to maintain a diverse repertoire of intertumoral immune cells in culture for short periods of time.
This is a key advantage over bottom-up reconstitution, where cell populations are chosen by the
user to add into coculture, potentially biasing the reconstituted microenvironment toward cells
of interest. Preserving the tumor microenvironment (TME) in microfluidic culture has allowed
researchers to investigate biomarkers of response and mechanisms of resistance to checkpoint
blockade in PDOs that track with patient response to therapy (Aref et al. 2018, Deng et al. 2018,
Jenkins et al. 2018). Neal et al. (2018) demonstrated that ALI culture of tumor fragments could be
used to generate PDOs that preserve a diverse milieu of microenvironmental cells, including can-
cer fibroblasts, myeloid cells, and lymphoid cells. Notably, the T cells in coculture maintained the
T cell receptor repertoire of the original tumor and could respond to checkpoint blockade, high-
lighting the power of ALI cultures inmodeling antitumorT cell responses.A recent study utilizing
a droplet-based approach to generate colorectal cancer tumormicro-organospheres demonstrated
that both myeloid and lymphoid cell populations were preserved in submerged culture (Ding et al.
2022). These cultures could be used to assess patient responsiveness to immunotherapy. A major
disadvantage of these techniques is the inability to maintain microenvironmental cells in culture
long term, as most studies have demonstrated a decline in immune cell viability after a few weeks.
Furthermore, the ability to genetically modulate individual cell types to ask mechanistic questions
may be somewhat limited in top-down cultures relative to bottom-up cultures.
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SCAFFOLDS FOR TUMOR MICROENVIRONMENT ENGINEERING

A crucial component of any organoid culture system is the matrix in which the cells are sus-
pended. The matrix supplies both mechanical and chemical cues that are crucial for the signaling,
activation, and differentiation of immune and epithelial cells. As the variety of organoid culture
techniques provides an enormous amount of flexibility in their culture systems, so too do the avail-
able substrates (Fernando et al. 2021). Organoids are generally cultured in hydrogels, which are
materials containing a complex 3D network of hydrophilic polymers that form a scaffold. Many
organoid systems employ Matrigel, a natural extracellular matrix (ECM)-based hydrogel derived
from the culture supernatant of the Engelbreth-Holm-Swarm mouse sarcoma model (Sato et al.
2009). Matrigel contains a variety of basement membrane polymers along with over 1,800 other
proteins and is subject to batch-to-batch variability; concerningly, proteins in mouse-derived hy-
drogels can be immunogenic and have been shown to activate T cells in culture in the absence of
organoids (Hughes et al. 2010, Dijkstra et al. 2018, Kaur et al. 2021). Thus, there is a gradual shift
toward using alternative hydrogels that could better support the coculture of immune and stro-
mal cell populations. Natural hydrogel alternatives include protein hydrogels like collagen and
fibrin, as well as polysaccharide hydrogels like hyaluronic acid and gelatin (Kozlowski et al. 2021).
These purified bioreactive materials can create physiologically relevant ECM-like environments
that readily support the growth of organoids and microenvironmental cells while removing the
heterogeneity and variability seen in Matrigel culture.

Synthetic hydrogels allow users to fine-tune their biochemical and mechanical properties such
as the stiffness, elasticity, and pore size—key properties of the ECM all known to effect cellular
behavior (Zaman et al. 2006,Miron-Mendoza et al. 2010, Aisenbrey &Murphy 2020). This allows
users to better model tissues with specific ECM characteristics unmatched by natural hydrogels,
such as the stiff fibrotic stroma of pancreatic ductal adenocarcinoma (PDAC), which was recently
modeledmore accurately in a PDAC organoid fibroblast coculture model using a custom designed
polyethylene glycol (PEG)-based hydrogel (Below et al. 2022). A recent study demonstrated that
a PEG hydrogel improved the migratory and chemotactic ability of dendritic cells over Matrigel,
increasing dendritic cell organoid physical interactions (Cherne et al. 2021). In 2020, researchers
seeking to develop a lymph node–like hydrogel culture system made a PEG- and heparin-based
hydrogel loaded with the cytokineCCL21,which allowed for rapidT cell expansion and activation
(del Rio et al. 2020). As more complex coculture systems incorporating organoids and multiple
microenvironmental cell types are developed, more customizable synthetic or hybrid hydrogel
models may be needed to support the unique requirements of these cultures.

RECONSTITUTING THE COMPLEX IMMUNE MICROENVIRONMENT
BEYOND IMMUNE-EPITHELIAL INTERACTIONS

Faithful reconstruction of the immune microenvironment of a tissue or tumor must include not
only the immune and epithelial cells but also other local and distant stromal cells that modulate
complex multicellular interactions. Numerous other cell types, such as endothelial cells, neurons,
fibroblasts, and microbiota, interact and cross talk with immune and epithelial cells to shape the
tissue’s physiology, both in homoeostasis and in disease. Efforts to faithfully recapitulate the TME
in organoid cocultures therefore should not neglect to incorporate these components.

Fibroblasts

Cancer-associated fibroblasts (CAFs) are stromal cells that have long been studied for their ability
to deposit and remodel the ECM, leading to increased tumor stiffness. Their role in modulating
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immunity within the TME is more recently being appreciated. CAFs secrete numerous im-
munomodulatory cytokines and signaling molecules, and the ECM remodeling they induce has
been shown to effect lymphocyte migration within tumors (Sahai et al. 2020). In vitro models
that incorporate both immune cells and CAFs are key for studying the biology of cancers with
dense CAF infiltration such as PDAC, where they can constitute 80% of the total tumor volume
(Feig et al. 2012).

Numerous studies have demonstrated that primary tissue–derived organoids and CAFs can be
successfully cocultured (Mäkinen et al. 2022), although few to date have also added immune cells.
Tsai et al. (2018) generated PDAC PDOs in a submerged Matrigel culture that included CAFs
within the Matrigel and peripheral blood–derived T cells within the surrounding culture media,
showing that T cells can invade the Matrigel and travel toward the organoids. More recently
Below et al. (2022) developed a custom PEG hydrogel that allowed for successful coculture of
murine PDAC organoids, fibroblasts, and bonemarrow–derivedmacrophages.While these proof-
of-concept studies demonstrated successful coculture for only a few days, they represent exciting
platforms that can potentially be built upon for more robust studies of the complex TME.

Endothelial Cells

The formation of leaky and tortuous vasculature, a hallmark of solid tumorigenesis, is supported
by proangiogenic signals produced by both cancer cells and myeloid cells in the TME (Zetter,
1998, Harney et al. 2015, Liang & Ferrara 2016, Potente & Carmeliet 2017). Angiogenesis also
impacts tumor immunity—for example, VEGF has known immunosuppressive properties (Yang
et al. 2018). Incorporating endothelial cells into epithelial immune cell cocultures could allow for
this network of angiogenic signaling and immunomodulation to be interrogated in the hopes of
developing novel antiangiogenic therapies.

The most common methods of incorporating endothelial cells into organoid culture—
so-called induced angiogenesis or spontaneous vascularization models—involve coculturing
organoids with vascular endothelial cells and growth factors that stimulate angiogenesis
(Nashimoto et al. 2017, Pham et al. 2018, Holloway et al. 2020). In a more recent induced-
angiogenesis organoid system, mesodermal progenitor cells derived from human iPSCs were
used to form a functional vasculature. These vessels were complete with endothelial cells, smooth
muscle cells, pericyte-like cells, and Iba1+ perivascular macrophage-like cells and were far more
complex than previousmodels that contained endothelial cells exclusively (Wörsdörfer et al. 2019).
Suchmodels could provide a platform for studying both the angiogenic cascade and its relationship
to the tumor immune microenvironment.

Microbiota

The microbiome is increasingly being recognized for its broad influence on human health in the
normal homeostatic balance of immunity andmetabolism, as well as in pathologies such as chronic
inflammation and cancer (Rooks &Garrett 2016). In the context of disease such as cancer, chronic
inflammation induced by microbial species is associated with numerous types of cancer, such as
gastric cancer induced by Helicobacter pylori, bladder cancer induced by Schistosoma haemotobium,
and Fusobacterium nucleatum–related colorectal cancer ( Jain et al. 2021). In contrast to these mi-
crobes that have protumor effects, others have been associated with increased T cell infiltration
into tumors and improved survival (Cremonesi et al. 2018). The addition of microbial species
into organoid immune cocultures could allow for further interrogation of how their pro- and
anti-inflammatory influences shape disease.

Strategies for bacterial 3D organoid coculture include microinjecting bacteria into the
organoid lumen and, alternatively, reversing the epithelial apical polarity of organoids and
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culturing them “apical out” (Williamson et al. 2018, Park & Koh 2022). Microinjection has been
utilized to demonstrate that colorectal cancer organoids exposed to an Escherichia coli–produced
genotoxin harbor a mutational signature also found in a subset of colorectal cancer patients
(Pleguezuelos-Manzano et al. 2020). A significant hurdle in intestinal bacteria organoid coculture
is that the aerobic conditions needed to support epithelial organoid growth prevent the culture of
obligate anaerobes commonly found in the gut. Air trapped within the lumen of the organoid dur-
ing microinjection prevents long-term coculture of anaerobic bacteria (Williamson et al. 2018).
Culture techniques that maintain separate normoxic and hypoxic areas such as organoid-derived
2D monolayer transwell systems can be used, allowing for intestinal epithelial cells and microbes
to be cultured in their respective preferred environments (Fofanova et al. 2019, Sasaki et al.
2020). While these monolayer systems destroy the 3D structure of organoids, they do maintain
diverse epithelial cell types. Developing methods that allow for sustained cocultures of microbes
with organoids that are high throughput, have relative ease of use, and are reproducible will be
key for interrogating the interactions among organoids, immune cells, and the microbiome. To
date, only a handful of studies have employed a triple coculture of epithelial cells, immune cells,
and microbes (Holokai et al. 2019, Jalili-Firoozinezhad et al. 2019, Sachs et al. 2019), and future
studies will likely incorporate further multikingdom, multilineage complexity.

Neurons

Neurons secrete a vast array of signaling molecules that can bind to their receptors expressed
by tumors and directly support tumor proliferation, migration, and invasion (Wang et al. 2021).
What is also increasingly being appreciated is the signaling axis that exists between the nervous
system and immune system in the context of cancer—the so-called neuroimmune axis (Kuol et al.
2018, Shurin et al. 2020).Most immune cells express receptors for these same signaling molecules,
and several neuropeptides and neurotransmitters have been shown to exert immunosuppressive
effects on immune cells or drive protumor immune phenotypes (Sloan et al. 2010, Nissen et al.
2018). Thus, the nervous system can also drive tumor progression indirectly by supporting an
immune-evasive TME.

The addition of neurons into organoid coculture could provide an important platform for
further research into the emerging area of cancer neuroscience.Organoid cocultures with neurons
and glia of the enteric nervous system (ENS) have been accomplished with intestine, stomach,
and esophagus organoids using stem cell–derived cell populations (Schlieve et al. 2017,Workman
et al. 2017, Park et al. 2020, Eicher et al. 2022). As the epithelial organoids were also stem cell
derived, further studies will be needed to determine if this in vitro ENS can innervate mouse and
human primary tissue–derived organoids. Given that neurons can be derived from virtually any
adult somatic cell types through induced pluripotency, the prospect of coculturing PDOs with
autologous iPSC-derived neurons is an exciting future direction (Chambers et al. 2009).

Lymph Nodes

In solid tumors, tumor-draining lymph nodes have historically been viewed rather simply as the lo-
cation where cancer begins the process of metastasizing to distant organs. Clinical staging is based
on the presence or absence of lymph node–positive disease, and indeed, the presence of cancer in
lymph nodes is one of the most long-standing and robust prognostic biomarkers of metastatic re-
currence and poor survival.More recently in the age of immuno-oncology, lymph nodes are being
appreciated for their influence on shaping the TME and clinical responses to immunotherapy (du
Bois et al. 2021, van Pul et al. 2021, Reticker-Flynn et al. 2022).Within the immunology and bio-
engineering fields, efforts to generate in vitro human lymph node models have focused on their
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applications in pharmacology and vaccine development. A variety of techniques have been devel-
oped utilizing lymph node in-a-dish- and on-a-chip-style cultures, with the most faithful models
utilizing surgically resected human lymph nodes that are cultured in slices or disaggregated to
form lymphoid organoid–like structures (Shanti et al. 2021, Shim et al. 2019, Wagar et al. 2021).

Combining these research efforts with tumor organoid technology could further improvemod-
eling of the tumor immune environment beyond circulating immune cells and tumor-infiltrating
immune cells. Early work in this direction has highlighted the power and applications of such a
model, demonstrating that lymph node–derived antigen-presenting cells can interact with both tu-
mor organoids and peripheral blood–derived T cells to drive antigen-specific antiorganoid T cell
responses (Votanopoulos et al. 2020). This coculture system was used to screen patient responses
to immunotherapy, and further studies are needed to assess long-term stability and applications
for mechanistic research.

TOWARD MORE COMPREHENSIVE MODELING OF THE TUMOR
IMMUNE MICROENVIRONMENT

For decades, extensively inbred genetically engineered mouse models (GEMMs) have been the
backbone of in vivo experimental validation in biomedical research, especially within the fields
of cancer biology and immunology. Discoveries made in mice have exponentially deepened our
understanding of human biology, and some phenotypic characteristics of specific TMEs can be
particularly difficult to recapitulate in human ex vivo models (e.g., the highly desmoplastic mi-
croenvironment of PDAC, specific polarized macrophage states) and may benefit from being
studied in GEMMs. Mice do offer the advantage of longitudinal tumor development in an in-
tact host, although the extent to which murine models capture the biology of human samples is
unclear. Differences between mouse and human biology are likely a contributing factor to the
overall ∼90% failure rate of drugs in clinical trials (Mestas & Hughes 2004, Mak et al. 2014,
Mullard, 2016, Medetgul-Ernar & Davis 2022). While solutions such as humanized mice and
patient-derived xenografts offer intermediate solutions to traditional mouse models, there is a
clear need for fully human models to bridge the gap between successful translational research and
successful clinical trials. Organoid model systems have proven to be a significant advancement
in this regard, allowing users to maintain the heterogeneity of cell types within a human tumor
as well as incorporate microenvironmental cells to model the complex TME. While it is clear
that organoids are in the process of revolutionizing cancer biology research, rigorous validation
of these models is key for their potential to be realized.

To date, studies incorporating immune cells into organoid culture systems have largely focused
on proof of concept—demonstrating the feasibility of their establishment and the viability of key
cell types and, in some cases, validating the competence of organoid immune cocultures to respond
to immune-modulatory drugs. As such technologies become more established, the field needs
standardized, scalable approaches to assess bidirectional immune and epithelial cell functions and
interactions in coculture. Beyond standard viability and cytokine release assays, advanced imaging,
spatial transcriptomic, and metabolomic technologies are beginning to yield novel insights into
the dynamic interactions between immune and epithelial cells in real time and at high resolution
(Genshaft et al. 2021, Dekkers et al. 2023).

As model complexity increases, validating the extent to which ex vivo coculture systems
capture the biology observed in vivo also becomes more challenging. One rigorous gold standard
for such validation assesses how well a model recapitulates a known clinical phenotype (e.g.,
comparing patient and PDO immune coculture responses to anti-PD1 checkpoint inhibitor
therapy) (Vlachogiannis et al. 2018, Chalabi et al. 2020). However, even when concordant
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treatment responses are observed, it cannot be assumed that any other novel aspect of biology
uncovered using the same ex vivo model is physiologically or clinically relevant, which requires
further validation. In summary, organoid systems are rapidly incorporating a plethora of immune
and other stromal cell types, both via reconstitution of individual cell types and from direct tissue
explants that retain elements of in situ tissue architecture. A crucial feature of epithelial organoids
is their ability to retain a continuum of physiologically relevant cell states within ex vivo culture.
Incorporating similar cell state heterogeneity and plasticity among immune cells cocultured with
epithelial cells will yield novel insights into epithelial-immune cross talk in health and disease.
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