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Abstract

During tumor evolution, cancer cells can acquire the ability to proliferate,
invade neighboring tissues, evade the immune system, and spread systemi-
cally. Tracking this process remains challenging, as many key events occur
stochastically and over long times, which could be addressed by studying
the phylogenetic relationships among cancer cells. Several lineage tracing
approaches have been developed and employed in many tumor models and
contexts, providing critical insights into tumor evolution. Recent advances
in single-cell lineage tracing have greatly expanded the resolution, scale, and
readout of lineage tracing toolkits. In this review, we provide an overview of
static lineage tracing methods, and then focus on evolving lineage tracing
technologies that enable reconstruction of tumor phylogenies at unprece-
dented resolution.We also discuss in vivo applications of these technologies
to profile subclonal dynamics, quantify tumor plasticity, and track metasta-
sis. Finally, we highlight outstanding questions and emerging technologies
for building comprehensive cancer evolution roadmaps.
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INTRODUCTION

Tumor growth and progression are shaped by evolutionary forces (Nowell 1976,Greaves &Maley
2012, Black & McGranahan 2021). From the transformation of a single cell, each successive cell
division carries with it the possibility of introducing new genetic or epigenetic changes that can
confer selective growth advantages in the daughter cells and are passed on through generations.
A key consequence of this process is that the accumulation of these changes over time creates
complex subpopulations in a tumor (i.e., intratumoral heterogeneity) where each subpopulation
is the product of the unique set of changes in its ancestors (or lineage) (Shah et al. 2009, Marusyk
& Polyak 2010, Navin & Hicks 2010, Navin et al. 2011, Gerlinger et al. 2012, McGranahan &
Swanton 2017,Vendramin et al. 2021).Ultimately, this evolutionary process can lead to aggressive,
resilient, and complex tumormasses with rare subpopulations capable of metastasizing throughout
an individual or resisting targeted therapies (Hanahan & Weinberg 2011, Vogelstein et al. 2013,
Gerlinger et al. 2014, Quintanal-Villalonga et al. 2020). Understanding the (epi)genetic changes
in each lineage giving rise to aggressive subpopulations has been a central goal in cancer research,
as it can reveal fundamental insights into tumor progression and nominate therapeutic targets
(Greenman et al. 2007, Jamal-Hanjani et al. 2015, Amirouchene-Angelozzi et al. 2017).

Tumor lineages can be elucidated through lineage tracing approaches, which provide a suite
of techniques enabling researchers to track the emergence of new cell subpopulations, as well as
their proliferation, and migration in vivo (Woodworth et al. 2017). Although a variety of lineage
tracing approaches have been employed in the context of cancer research, historically most efforts
have taken one of two approaches: (a) the use of reporters or barcodes in model organisms, which
enable one to follow all of the progeny of a clone marked at the beginning of the experiment, or
(b) the use of naturally occurring genomic variation [often in the form of single-nucleotide variants
or copy number variation (CNV)] as natural labels that can be used to reconstruct tumor lineages
(Navin & Hicks 2010, Bailey et al. 2021, Tarabichi et al. 2021).

In this review, we focus on the development and application of new, high-resolution lineage
tracing technologies in the context of cancer biology.We first summarize the development of dif-
ferent lineage tracing tools and then discuss the application of these technologies to trace tumor
progression, with a focus on methods that enable a single-cell readout and high-resolution profil-
ing of tumor evolution. Then, we provide a review of recent applications of these tools to profile
key questions in tumor biology such as metastatic behavior and drug resistance. Finally, we high-
light open questions in cancer biology and speculate on the potential technological innovations
that will support these investigations and further increase the scope, dimension, and precision of
cancer lineage tracing studies. For additional discussion of lineage tracing in human samples and
additional technological overviews we refer the reader to several other reviews (Kretzschmar &
Watt 2012,Woodworth et al. 2017,Wagner&Klein 2020,Bailey et al. 2021,Black&McGranahan
2021, Penter et al. 2021b, VanHorn & Morris 2021, Vendramin et al. 2021).

TECHNOLOGY

Overview of Lineage Tracing Technologies

Lineage tracing is a suite of methods for identifying all descendants of a single cell and is thus
a powerful approach for understanding tissue development, homeostasis, and disease progression
(Kretzschmar&Watt 2012).Generally, lineage tracing approaches are classified as either prospec-
tive, in which founder cells are experimentally labeled to track their descendants, or retrospective,
in which shared spontaneous genetic variations are used to reconstruct lineage relationships
(Woodworth et al. 2017). As mentioned above, studies of primary human tumors have gener-
ally used natural genetic variation to perform retrospective lineage tracing (Vogelstein et al. 2013,
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Turajlic et al. 2019, Abyzov & Vaccarino 2020, Gerstung et al. 2020, Bailey et al. 2021). To date,
these human tumor lineage tracing efforts have led to the discovery of key principles underpinning
tumor development, including the acquisition of subclonal genetic or epigenetic changes ( Jones
et al. 2008,Gerlinger et al. 2012, Sottoriva et al. 2015,Williams et al. 2018,Minussi et al. 2021), the
timing and routes of metastatic spread (Yachida et al. 2010, Yates et al. 2017, Turajlic et al. 2018,
Hu et al. 2020), and the development of therapeutic resistance (Abbosh et al. 2017, Kim et al.
2018, Powles et al. 2021, Salehi et al. 2021).

Though the importance of these studies cannot be overstated, there are several significant
limitations to these approaches. First, several of the early studies have relied on averaging to-
gether signals across sampled regions (i.e., multiregion sampling), which can obfuscate critical
intratumoral heterogeneity. Furthermore, although recent advances in single-cell sequencing
technologies have enabled high-resolution tumor lineage profiling, whole-genome sequencing
(WGS) of single cells is highly expensive and thus has limited scalability. To note, investigators
have had success reconstructing tumor lineages without WGS by leveraging CNV (Patel et al.
2014, Gao et al. 2021), mitochondrial variation (Ludwig et al. 2019, Penter et al. 2021a), methyl-
ation states (Gabbutt et al. 2022), and targeted profiling of highly variable genomic features like
short tandem repeats (Tao et al. 2021). Moreover, beyond technological considerations, human
tumor studies are limited by confounding variables (e.g., environmental exposures and genetic
background) and the inherent variability in the timing of naturally occurring mutations, and they
are not amenable to in vivo perturbations or functional studies. As such, synthetic lineage tracing
in model organisms serves as a critical complement to human tumor studies. Below, we focus on
synthetic lineage tracing systems with consideration toward how these technologies can be applied
to tumor tracing.

Engineered Static Lineage Tracing Systems

Conventional lineage tracing technologies rely on a reporter, such as a fluorescent protein or
a DNA barcode. Specifically, cells are engineered with a lineage reporter (ideally introducing a
unique reporter into each cell) that is passed on through cell division. Because these reporters are
heritable (i.e., static), one can identify individual cell lineages based on progenies sharing the same
reporters. Below, we provide a survey of static lineage tracing methods; we additionally refer the
reader to other reviews for more in-depth discussion of these approaches (Kretzschmar & Watt
2012,Woodworth et al. 2017, VanHorn & Morris 2021).

Recombinase-based lineage tracing methods.One common approach for introducing static
lineage reporters into cells has relied on recombinases that induce recombination between DNA
target sites to create inversions or deletions in a predictable manner (Nagy 2000, Liu et al. 2020).
Typically, a recombinase serves as a switch (e.g., Cre-loxP, FLP-FRT, or Dre-rox) that induces
expression of a heritable reporter, such as a fluorescent protein (Figure 1a). More recently, the
ability to label specific cell types has been improved by using multiple recombinases (He et al.
2017, Liu et al. 2019) or by engineering split-recombinase systems where each fragment is driven
by a different promoter and only cells expressing both promoters will successfully achieve recom-
bination (Hirrlinger et al. 2009). Sparse labeling of rare cells, such as using Cre-ER (estrogen
receptor) with low-dose tamoxifen, is one solution to increase the labeling resolution, with the
caveat that the labeled cells do not represent the overall population. To overcome this and enable
a more comprehensive analysis of individual clones, researchers use multicolor reporters, such as
Confetti and Brainbow, that leverage stochastic Cre-mediated recombination to induce single or
combinatorial expression of multiple fluorescent reporters (Livet et al. 2007, Weissman & Pan
2015, Snippert et al. 2010).
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Figure 1 (Figure appears on preceding page)

Summary of major engineered lineage tracing technologies. (a,b) Static lineage tracers report on the clonal relationship of cells.
(a) Recombinase-based lineage tracing approaches engineer cells or tissues to activate a heritable, fluorescent reporter or a combination
of multiple fluorescent proteins upon expression of a recombinase. (b) Static DNA barcoding technologies integrate a random DNA
barcode into cells (for example, through viral transduction or transposon integration) that can be read out using high-throughput
sequencing approaches. Linking barcodes to expressed reporter genes enables the simultaneous capture of transcriptomic profile and
barcode identity. (c) Evolving lineage tracing technologies leverage gene-editing machinery (such as CRISPR/Cas9, one of its various
effector variants, site-specific integrases, or recombinases) to continuously edit designated target site regions to convey information
about the evolutionary history of a cell population and reveal intraclonal relationships of labeled cells. Abbreviations: dCas9, dead
(endonuclease-deficient) Cas9; indels, insertion and deletion mutations; RFP (CFP, YFP), red (cyan, yellow) fluorescent protein;
scRNA-seq, single-cell RNA sequencing; sgRNA, single guide RNA.

Synthetic barcode–based lineage tracing methods. Important challenges of diversity intrinsic
to fluorescent reporters have been solved by the rapid development of next-generation sequencing
technologies and high-diversity DNA barcoding technologies. Early versions of this technology
utilized vectors carrying defined DNA sequences that could be stably introduced into cells for dis-
tinguishing clones (Walsh & Cepko 1992, Schepers et al. 2008); further improvements replaced
defined sequences with high-diversity random barcode sequences (Gerrits et al. 2010). The bar-
codes are heritable and all descendants derived from each labeled cell clone will inherit the same
barcode (Figure 1b). This technology has been instrumental in enabling the high-resolution and
quantitative analysis in a broad range of cancer-related studies, including analyzing tumor pro-
gression and clonal dynamics, mapping of primary tumor–metastasis relationships (Chuang et al.
2017, Merino et al. 2019), and identifying the origins of drug resistance (Bhang et al. 2015, Hata
et al. 2016).

The recent emergence of single-cell technologies has led to a newwave of DNA barcode-based
lineage tracing technologies. A fundamental advance has been to pair DNA barcodes with RNA
reporters (Figure 1b) (e.g., by inserting a random barcode in the 3′ UTR of a transgene). This
results in cells containing multiple mRNA copies of the DNA barcode, thus enabling observation
with single-cell RNA-seq (scRNA-seq) technologies (Adamson et al. 2016, Dixit et al. 2016, Yao
et al. 2017, Biddy et al. 2018, Weinreb et al. 2020). The pairing of scRNA-seq and DNA barcod-
ing has yielded rich insights into clone-specific differentiation hierarchies (Wagner et al. 2018),
kinetics (Biddy et al. 2018), and biases (Weinreb et al. 2020). To expand the compatibility with
different data modalities, researchers have developed a variety of barcodes to enable epigenomic
(Pierce et al. 2021) or proteomic analysis (Wroblewska et al. 2018, Rovira-Clavé et al. 2021).

Coupling lineage tracing with other genomic technologies can be powerful. For example, bar-
coding combined with pooled CRISPR-based perturbations has enabled the high-throughput
dissection of gene function both in cell culture and in vivo (Michlits et al. 2017, Rogers et al.
2017, Schmierer et al. 2017, Winters et al. 2017). Moreover, retroactive characterization or iso-
lation of rare clones of interest from an initial pool of cells has been enabled by the integration
of single-cell barcoding technologies with RNA FISH (fluorescence in situ hybridization) (Emert
et al. 2021), CRISPR/Cas9-induced frameshift mutations (Feldman et al. 2020) or CRISPR acti-
vation (CRISPRa) (Al’Khafaji et al. 2018, Gutierrez et al. 2021, Umkehrer et al. 2021). Typically,
these systems sequence cells after some experimental selection (e.g., drug treatment) to identify
enriched or depleted barcodes and then retroactively isolate clones from the initial cell line (e.g.,
using CRISPRa and single-guide RNAs (sgRNAs) complementary to the barcodes of interest to
specifically activate a fluorescent reporter in the cells of interest). Together, this rapidly expanding
toolkit offers a variety of approaches for studying the genetic control over complex behavior and
the emergence of rare subpopulations in tumors.
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Engineered Evolving Lineage Tracing Systems

The approaches discussed above rely on introducing heritable marks at the clonal level and
prospectively labeling all progeny. While some aforementioned approaches are amenable to
sequential rounds of barcoding [e.g., with CellTagging (Biddy et al. 2018)] to gain subclonal reso-
lution, they are challenging to implement for in vivo study.To address this, researchers have begun
to develop evolving lineage tracing technologies that combine concepts from both prospective
tracing approaches, whereby heritable marks are used to track clonal populations, and retrospec-
tive tracing approaches, whereby random, heritable genetic diversity is introduced over time that
can be used to infer lineage relationships.

CRISPR/Cas9-based evolving barcoding technologies. At their core, these evolving barcoding
tools require randomness to be continually introduced into a defined genetic locus over the course
of the experiment in a manner that is inherited throughout cell divisions (as reviewed inMcKenna
& Gangon 2019). The most common version of such approaches has leveraged CRISPR/Cas9
gene-editing technologies to introduce random mutations at specific, synthetic DNA scratchpads
or target sites (McKenna et al. 2016, Frieda et al. 2017, Kalhor et al. 2017, Garcia-Marques et al.
2020). While several elegant strategies have been developed, each relies on three basic compo-
nents: Cas9 nuclease, DNA target sites that are integrated into the genomes, and single-guide
RNAs (sgRNAs) that specifically target Cas9 to the target sites. Together, these three compo-
nents enable Cas9 to introduce targeted double-strand breaks at the DNA target site locus that
are subsequently repaired in an error-prone fashion to generate heritable insertions or deletions
(indels) (Figure 1c). Importantly, these DNA target sites can be transcribed into poly-adenylated
mRNAs, allowing them to be captured and profiled along with all other cellular mRNAs using
massively parallel scRNA-seq techniques (e.g., droplet-based or split-pool strategies). In doing so,
this approach makes it possible to directly link the current cell state (as measured by scRNA-seq)
with its past history (as captured by the lineage recorder), and to do so on a massive scale (Alemany
et al. 2018, Raj et al. 2018, Spanjaard et al. 2018, Chan et al. 2019, Bowling et al. 2020).

Concomitant with the development of these technologies has been the emergence of new ana-
lytical methods for handling the scale and complexity of the data.While initial studies had success
with reconstructing lineages using existing approaches like Camin-Sokal maximum parsimony
(Camin & Sokal 1965) and neighbor-joining (Saitou &Nei 1987), there has been significant inter-
est in developing algorithms specifically tailored to engineered systems (Gong et al. 2021). Several
new approaches have emerged for reconstructing lineages from engineered systems, such as Cas-
siopeia ( Jones et al. 2020), LinTIMat (lineage tracing by integrating mutation and transcriptomic
data; Zafar et al. 2020), GAPML (GESTALT analysis using penalized maximum likelihood; Feng
et al. 2021), PhyloTime (Fang et al. 2022), and DCLEAR (distance-based cell lineage reconstruc-
tion; Gong et al. 2022). Moreover, investigations have provided theoretical results for improving
reconstruction with better lineage tracing designs (Salvador-Martínez et al. 2019, Wang et al.
2021). Beyond reconstructing lineages, significant effort has been invested in creating computa-
tional approaches for inferring so-called fate maps of how specific progenitor populations give
rise to various cell types (Fang et al. 2022, Wang et al. 2022, Yang et al. 2022), inferring ancestral
gene expression states (Forrow & Schiebinger 2021, Ouardini et al. 2021), and providing tools for
interactively exploring these lineages (Salvador-Martínez et al. 2021, Jones et al. 2022).

Other evolving lineage tracing tools.While Cas9 is an efficient, flexible, and commonly used
tool for lineage tracing, there are three limitations. First, DNA double-strand breaks generated
by Cas9 editing can cause cell stress and potential cytotoxicity (Ihry et al. 2018, Geisinger &
Stearns 2020). Second, there is little control over the types and sizes of indels, and large edits are

116 Jones • Yang • Weissman



challenging to measure (McKenna et al. 2016, Hussmann et al. 2021). Third, the use of Cas9 to
edit arrays of adjacent DNA target sites presents the risk of collapsing several sites together and
thus losing intermediate information (McKenna et al. 2016).

A variety of tools have been developed to overcome some of these issues. To minimize unin-
tended cytotoxicity, technologies that avoid double-stranded breakage and endogenous repair of
DNA can be favorable, such as those using site-specific mutations with deaminases (Hwang et al.
2019, Askary et al. 2020, Cravens et al. 2021, Liu et al. 2021), site-specific serine integrases (Chow
et al. 2021), Polylox recombination cassettes (Pei et al. 2017), or transposon-based barcoding
(Wagner et al. 2018) (Figure 1c). To better control the type, size, and temporal order of ed-
its, clever approaches have recently been developed by pairing Cas9 with template-independent
DNA polymerases (Loveless et al. 2021b) or leveraging prime editing for template-based DNA
insertions (Loveless et al. 2021a, Choi et al. 2022).

Signal recording tools. Similar to lineage information, because of their transient nature, many
important cell signaling events cannot be detected at the end point of experiments. To capture and
reconstruct intermediate cell states during the evolutionary process, researchers have expanded
molecular recording toolkits with a variety of signal recording technologies. For example, ele-
gant approaches leveraging the CRISPR spacer acquisition process have enabled transcriptional
recording in bacteria (Shipman et al. 2016, Schmidt et al. 2018). In this section, we focus on signal
recording technologies in mammalian cells.

One effective approach for recording molecular signals is to engineer barcodes under a tissue-
or gene-specific promoter. Conventional recombinase-based lineage tracing methods have lever-
aged this approach by pairing the expression of a recombinase with the promoter of a desired
lineage marker (Kretzschmar & Watt 2012). Recently, a dual-recombinase-based fate mapping
system was developed to record transient epithelial-to-mesenchymal (EMT) fluctuations during
metastasis and revealed that N-cadherin, but not vimentin, labeled metastatic-initiating cells in
theMMTV-PyMT (mouse mammary tumor virus–polyomamiddle tumor-antigen) mouse model
(Li et al. 2020). In another example, investigators introduced a barcoding method dubbed “Wa-
termelon,” which leverages a dual-fluorescent reporter to not only trace drug-resistant clones but
also report on the proliferative state of the clone by monitoring the dilution by cell division of an
inducible H2B-mCherry transgene (Oren et al. 2021).

Due to their high modularity, Cas9-based evolving lineage tracers can be readily adapted to be
signal recorders by coupling sgRNA or Cas9 expression with signal response elements (Perli et al.
2016, Frieda et al. 2017). Variants of Cas9-based editors enable multiplexed signal recording: for
example CAMERA, a base-editor system that introduces C • G to T • A edits to different sites of
a safe harbor locus (Tang & Liu 2018), and ENGRAM, which utilizes a prime editor to record
activity and dynamics of multiple transcriptional reporters in DNA (Chen et al. 2021). In addition
to these CRISPR-related recording tools, Lin et al. (2021) engineered intracellular protein fibers
that can grow slowly in cells by incorporating diverse fluorescent marks, allowing for accurate
time-stamping. Overall, these tools for capturing critical intermediate signals offer a powerful
opportunity to expand our understanding of unobserved cellular history.

APPLICATIONS

Efforts over the past decade have underscored the value of lineage tracing tools to answer funda-
mental questions around cancer development: from elucidating the requisite genetic or epigenetic
changes for tumor initiation and progression, to generating insights into how cellular plasticity
arises and influences tumor progression and therapeutic resistance, to characterizing the patterns
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of metastatic dissemination. In this section, we discuss major discoveries with a focus on recent in
vivo tumor studies empowered by evolving lineage tracing technologies (Figure 2).

Monitoring Tumor Progression

As described above, tumorigenesis typically unfolds over long periods of time. Over the past
decade, static lineage tracing has been widely used to determine the cell type origins of cancers
(Driessens et al. 2012, Schepers et al. 2012), the relative growth rate of different tumor clones
(Lamprecht et al. 2017, Rogers et al. 2017, Reeves et al. 2018), the influence of oncogenes and tu-
mor suppressors on tumor progression (Nguyen et al. 2015, Winters et al. 2017, Cai et al. 2021),
and the molecular nature of tumor-initiating cellular states (Fennell et al. 2022) (Figure 2).

The use of evolving lineage tracing systems has provided a unique opportunity to dissect how
distinct subclones contribute to tumor development at a much higher resolution. Yang et al. (2022)
engineered the KrasLSL-G12D/+; Trp53fl/fl (KP) lung cancer mouse model, developed by the Jacks
lab, with an evolving lineage tracer such that the addition of Cre recombinase would simultane-
ously activate evolving lineage tracing and the oncogenic Kras and Trp53 mutations in individual
lung epithelial cells. This system enabled the continuous tracking of tumor evolution from sin-
gle transformed cells to metastatic tumors at unprecedented resolution. From the deeply resolved
lineages, the authors found that tumor progression is characterized by rare subclonal expansions
driven by the adoption of distinct transcriptional programs (Figure 2). Building on previous ef-
forts by multi–time point sampling of KP tumors (Marjanovic et al. 2020), this high-resolution
phylogenetic analysis offered a phenotypic readout of tumor fitness by single–time point sampling
and generated a comprehensive fitness landscape of tumor evolution.

Quantifying Tumor Plasticity

Tumor plasticity, or the rate at which cancer cells change their molecular and phenotypic features,
has been implicated as a hallmark of tumor progression and therapeutic resistance (Flavahan et al.
2017, Le Magnen et al. 2018, Quintanal-Villalonga et al. 2020, Gutierrez et al. 2022). Several re-
cent efforts have highlighted how lineage tracing approaches offer a powerful tool to characterize
the nature and consequences of plasticity in tumor progression.

Evolving lineage tracers and the resulting high-resolution phylogenies have been highly for
quantifying tumor plasticity, as they enable one to assess the transcriptomic differences between
closely related cells (Rios et al. 2019, Chaligne et al. 2021, Yang et al. 2022). The first study to
leverage this property used an inducible evolving tracer in a metastatic pancreatic cancer cell line
to demonstrate that aggressive tumors occupy a continuous spectrum of EMT cell states with the
late-hybrid EMT state being highly proliferative and metastatic (Simeonov et al. 2021), corrobo-
rating previous studies (Yu et al. 2013, Lüönd et al. 2021, Yang et al. 2020).More recently, Yang et
al. (2022) developed the autochthonous lung cancer model with an evolving lineage tracing tool,
discussed above, and revealed that the loss of the initial alveolar type 2 cell state was accompanied
by a transient increase of transcriptome plasticity, leading to increased intratumoral heterogeneity
and providing a substrate for the selection of aggressive subclones. Although early, these studies
highlight the power of evolving lineage tracing technologies in improving our understanding of
how tumor plasticity arises and is maintained and regulated.

Lineage tracing has also been critical for illuminating how plasticity contributes to therapeutic
resistance (Boumahdi & De Sauvage 2020, Tulpule & Bivona 2020, Torborg et al. 2022). Static
tracing with fluorescent reporters or DNA barcoding has been widely used for identifying the
tumor-initiating cells of tumor relapse after drug treatment (Chen et al. 2012), determining clonal
dynamics and fitness (Bhang et al. 2015, Grüner et al. 2016, Roh et al. 2018, Walens et al. 2020,
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Figure 2 (Figure appears on preceding page)

Illustration and comparison of how static and evolving lineage tracing technologies contribute to our understanding of tumor
progression, plasticity, and metastasis. (Left) Static barcoding enables the study of evolutionary dynamics at a clonal level. For example,
static barcodes enable quantification of the composition and relative growth rate of different tumor clones. It also enables comparison
of the phenotypic heterogeneity between clonal populations and can be further applied to determine the clonality of metastasis and the
relationships between metastatic lesions and their original primary tumor clones. (Right) By contrast, evolving barcoding approaches
allow for a more quantitative, high-resolution assessment of the tumor’s evolutionary dynamics at a subclonal level. For example,
evolving lineage tracing technologies enable one to determine the fine subclonal lineage structure of cells derived from individual
tumor clones and to identify the relative fitness and expansion of different subclones. Evolving lineage tracers also allow for a
quantitative measurement of cellular plasticity by directly assessing the frequencies of cell-state transitions in related lineages. Finally,
evolving lineage tracers can reveal the rates and routes of metastasis and track the origins of metastases to specific subclonal lineages
within the primary tumors.

Fennell et al. 2022), and quantifying pharmacogenomic interactions (Foggetti et al. 2021, Li et al.
2021).More recently, pairing such approaches with single-cell transcriptomics has enabled the de-
tailed dissection of the response to therapies and the development of drug resistance (Eyler et al.
2020,Oren et al. 2021, Chang et al. 2022).Moreover, retrospective lineage tracing approaches en-
able one to study the rare cells that give rise to drug-resistant tumors. For example, recent studies
using the CaTCH (CRISPRa tracing of clones in heterogeneous cell populations) and Rewind
retrospective lineage tracing technologies isolated and studied rare cell clones from treatment-
naive populations to gain mechanistic insights into the genomic and transcriptomic alterations
that drive melanoma resistance to targeted therapies (Umkehrer et al. 2021, Emert et al. 2021).
Collectively, the success of applying lineage tracing to study these rare and transient events will
provide a firm foundation for future endeavors integrating these technologies.

Tracking Tumor Metastasis

Metastasis accounts for approximately 90% of cancer-related deaths (Ganesh & Massagué 2021).
Despite its immense clinical importance, themetastatic process remains difficult to study due to its
temporally and spatially sporadic nature. Consequently, major open questions remain, including
how metastases arise, what the rates and routes of metastatic spread are, and what the molecular
features of metastasis-initiating cells are.

Several studies have demonstrated the promise of lineage tracing to address these questions.
Early efforts employing static lineage tracing have illuminated the clonality of metastases. For
example, studies utilizing multicolor tracing revealed that the metastases in some cancer mod-
els could arise from polyclonal seeding events (Maddipati & Stranger 2015, Reeves et al. 2018),
whereas in other tumor types metastasis lesions were largely monoclonal (Caswell et al. 2014,
Chiou et al. 2015). Other reports have leveraged DNA barcoding to improve the scale and read-
out in their studies. For example, one study used DNA barcoding and paired RNA sequencing
to associate metastatic spread with specific transcriptomic programs (Chuang et al. 2017). More
recently, a large-scale effort barcoded 500 cell lines spanning 21 types of solid tumors to create
a comprehensive map of the metastatic routes and organ tropisms of different cancer types at
unprecedented scale ( Jin et al. 2020).

High-resolution, continuous lineage tracing systems have further enabled the quantitative
measurement of metastatic rates and routes. Using a Cas9-based evolving recorder, Quinn
et al. (2021) tracked metastatic behavior in a xenograft model of lung adenocarcinoma. The
high-resolution lineages uncovered a remarkable heterogeneity in metastatic ability, which was
characterized by preexisting and heritable gene expression differences of individual clones, but not
their proliferative potential. Quinn et al. also systematically mapped the detailed steps and routes
of metastatic spread for each clone and revealed that the mediastinal lymph node consistently
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served as a major hub for lung cancer metastasis. Similarly, Zhang et al. (2021) tracked the rela-
tive timing of metastasis using an evolving lineage tracer and found in a breast cancer model that
most metastases were polyclonal and primarily metastasized to the bone before forming secondary
metastases. They have further uncovered that the bone microenvironment promotes tumor cell
stemness and plasticity, thereby invigorating secondary metastases.

Evolving lineage tracing has also shed light on the origins of metastasis. A recent study followed
pancreatic cancer progression and metastasis by engineering an inducible CRISPR/Cas9 lineage
tracer (macsGESTALT) into a mouse pancreatic cancer cell line. This work revealed that cancer
cells went through multiple rounds of bottlenecking from engraftment to metastasis and only rare
clones with late hybrid EMT transcriptional states are the major source of metastasis (Simeonov
et al. 2021). Using similar approaches in the KP lung cancer model revealed that metastases al-
most always arose from the expanding subclones in primary tumors (Yang et al. 2022). Both of
these studies suggest that progression and selection at the primary site are important for metas-
tasis. Collectively, these recent efforts serve to underscore the power of evolving lineage tracing
approaches for elucidating fine-scale metastatic behaviors.

OUTLOOK AND FUTURE DIRECTIONS

The rapid development of lineage tracing technologies has enabled the reconstruction of tumor
phylogenies at unprecedented resolution and scale, providing critical insights into the major steps
of tumor evolution. Below, we outline several key avenues for future investigation that will further
expand lineage tracing toolkits and facilitate comprehensive mapping of tumor evolution across
different cancers.

Interrogating Tumor-Stromal Interactions

Cancer cells evolve within a dynamic and diverse ecological niche, commonly referred to as
the tumor microenvironment (TME), that constantly exerts several selective pressures, includ-
ing hypoxia, competition for space and nutrients, and inflammation, that collectively shape tumor
evolution (Binnewies et al. 2018). However, cancer lineage tracing studies have largely focused
on cancer cells without taking into consideration the spatial context and other cells and signals
coexisting in the TME. A promising direction to preserve the TME information in cancer lineage
tracing analysis is to capture tumor evolution in its native spatial context by integrating lineage
tracing approaches with high-resolution spatial transcriptomics technologies enabled by sequenc-
ing or imaging (Chen et al. 2015, Moffitt et al. 2016, Ståhl et al. 2016, Eng et al. 2019, Stickels
et al. 2021, Chen et al. 2022). Already, evolving lineage tracing approaches have successfully been
paired with spatial transcriptome sequencing (He et al. 2022) or FISH-basedmethods (Frieda et al.
2017,Askary et al. 2020,Chow et al. 2021) for simultaneously profiling lineage, transcriptome, and
spatial context. We anticipate that integrative spatial and lineage analysis of tumor evolution will
provide insights into key questions around how the spatial arrangement of cancer cells and various
cancer-stromal interactions influence tumor progression, plasticity, and metastasis.

Capturing Intermediate, Transient Cell States During Tumor Evolution

Employing concepts from classic lineage tracing efforts, an overarching goal is to identify stereo-
typical paths that a transformed cell takes to develop into an aggressive tumor. Various approaches
have been employed to reconstruct these paths from a single sampling of cells with paired single-
cell transcriptomic and lineage tracing readouts (Weinreb et al. 2020, Yang et al. 2022), although
without prior knowledge of the developmental process these efforts are inherently limited by
the possibility of unobserved intermediate states. While dense temporal sampling could partially
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address this, incorporating multichannel molecular recorders capable of recording transient ex-
pression of genes that mark important intermediate cell states could significantly improve fate
mapping efforts. Additionally, recent computational advances that infer fate maps (Fang et al.
2022) or ancestral gene expression states (Ouardini et al. 2021) will be useful for this task.Together,
we anticipate that these tools will not only reveal what subclonal structures and evolutionary paths
gave rise to aggressive tumors but also provide amechanistic understanding into how andwhy each
tumor made specific fate decisions by sensing and responding to different evolutionary forces.

Developing a Comprehensive, Multiomic, and Predictive Roadmap
of Tumor Development

The efforts described above have focused on the relationship between transcriptome and lineage;
however, a cell’s identity is a product of the interplay between several molecular species that give
rise to complex relationships between various gene regulatory circuits (Tanay & Regev 2017). In
addition to transcriptome analysis, we must integrate other levels of the cell’s genetic, epigenetic,
and functional state to build comprehensive maps of tumor evolution (Granja et al. 2019, Neftel
et al. 2019, LaFave et al. 2020). To this end, pairing lineage tracing with multiomic assays is likely
to shed light on the regulatory features underlying consequential changes in the tumor (Ogbeide
et al. 2022).

Beyond a descriptive understanding, we believe that a predictive model of tumor progression
will require a fundamental understanding of how gene function affects evolution. Recent work
pairing genetic perturbations with an evolving lineage tracer demonstrated how tumors’ evo-
lutionary trajectories can be altered by genetic perturbations (Yang et al. 2022). Future efforts
combining functional genomics and lineage tracing will shed light on complex gene functions in
the context of tumor evolution and nominate gene candidates that may regulate tumor expansion,
plasticity, and metastasis. More broadly, integrating these technologies will aid in the construc-
tion of a comprehensive, multiomic roadmap of tumor development, from which we can build
predictive models of tumor evolution, reveal key drivers of tumor progression, and develop new
therapeutic strategies.
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