
CB34CH11_Karpen ARI 1 September 2018 11:58

Annual Review of Cell and Developmental Biology

Heterochromatin: Guardian
of the Genome
Aniek Janssen,1,2,∗ Serafin U. Colmenares,1,2,∗

and Gary H. Karpen1,2

1Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory,
Berkeley, California 94720, USA; email: ghkarpen@lbl.gov
2Department of Molecular and Cell Biology, University of California, Berkeley,
California 94720, USA

Annu. Rev. Cell Dev. Biol. 2018. 34:265–88

First published as a Review in Advance on
July 25, 2018

The Annual Review of Cell and Developmental
Biology is online at cellbio.annualreviews.org

https://doi.org/10.1146/annurev-cellbio-100617-
062653

Copyright c© 2018 by Annual Reviews.
All rights reserved

∗These authors contributed equally.

Keywords

constitutive heterochromatin, pericentromeres, genome stability,
chromosome segregation, repetitive DNA, DNA repair

Abstract

Constitutive heterochromatin is a major component of the eukaryotic nu-
cleus and is essential for the maintenance of genome stability. Highly con-
centrated at pericentromeric and telomeric domains, heterochromatin is
riddled with repetitive sequences and has evolved specific ways to com-
partmentalize, silence, and repair repeats. The delicate balance between
heterochromatin epigenetic maintenance and cellular processes such as mi-
tosis and DNA repair and replication reveals a highly dynamic and plas-
tic chromatin domain that can be perturbed by multiple mechanisms, with
far-reaching consequences for genome integrity. Indeed, heterochromatin
dysfunction provokes genetic turmoil by inducing aberrant repeat repair,
chromosome segregation errors, transposon activation, and replication stress
and is strongly implicated in aging and tumorigenesis. Here, we summarize
the general principles of heterochromatin structure and function, discuss
the importance of its maintenance for genome integrity, and propose that
more comprehensive analyses of heterochromatin roles in tumorigenesis will
be integral to future innovations in cancer treatment.
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INTRODUCTION

The quest to cure cancer has uncovered many critical genetic programs that drive tumorigenesis,
which results from mutation, loss, or overexpression of genes that regulate cell growth and genome
integrity [e.g., oncogenes, tumor suppressors, and DNA repair factors (Hanahan & Weinberg
2011)]. However, recent studies demonstrate that epigenetic changes and mutations in chromatin
proteins are also strongly correlated with cancer progression (Flavahan et al. 2017). Epigenetic
changes can directly alter transcriptional programs, which could promote cancer progression by
increasing cancer cell plasticity (Flavahan et al. 2017) or by directly silencing tumor suppressor
genes, such as BRCA1 or CDKN2A (Shen & Laird 2013).

However, what is much less explored is the impact of epigenetic changes on genome instability,
a key hallmark of cancer cells and driver of tumor heterogeneity. Genome instability causes cancer
genotypes to continuously change and evolve, either through loss and gain of whole chromosomes
(aneuploidy) or through structural chromosomal changes (e.g., translocations) resulting from
increased levels of DNA damage or faulty repair ( Janssen & Medema 2013).

A crucial but poorly understood epigenetic component of eukaryotic genomes is constitutive
heterochromatin (c-Het) (Figure 1a). Although highly enriched for repeated DNA sequences
and containing few protein-coding genes, the c-Het domain plays critical roles in safeguarding the
genome, including chromosome segregation, telomere protection, suppression of transposon ac-
tivity, and DNA repair. In this review, we first summarize the general principles of heterochromatin
structure and function, most of which have been discovered in studies of model organisms
(Allshire & Madhani 2018). We then discuss the importance of maintaining heterochromatin
for mammalian genome integrity and what we know about molecular components and mecha-
nisms. Finally, we evaluate the hypothesis that defective heterochromatin promotes human cancer
progression by increasing genetic instability and discuss how this perspective impacts our views
of cancer development.
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Figure 1
Localization and functions of heterochromatin. (a) (Left) Repetitive sequences such as satellite DNA and transposons are enriched at
pericentromeric and telomeric regions of chromosomes to form constitutive heterochromatin (c-Het). Heterochromatin is also found at
interspersed, sometimes unique (nonrepetitive), euchromatic sequences (i-Het). (Right) Heterochromatin localization patterns can
differ extensively across cell types and can appear as perinucleolar domains, as pericentromeric bodies, as one or a few large nuclear
bodies (chromocenters), and at the nuclear periphery. (b) Heterochromatin is marked with di- and trimethylated histone H3 lysine 9
(H3K9me2 and H3K9me3, respectively) and its reader protein heterochromatin protein 1 (HP1). Pericentromeric c-Het promotes
centromere and cohesion assembly on mitotic chromosomes, silencing of repetitive sequence transcription, and spatiotemporally
controlled DNA repair.

GENERAL PRINCIPLES OF HETEROCHROMATIN STRUCTURE
AND FUNCTION

Heterochromatin Is a Distinct Nuclear Domain

The heterochromatin domain is a major, highly conserved, and structurally distinct element of
eukaryotic genomes that is responsible for critical genome functions. Composing ∼25% to 90% of
multicellular eukaryotic genomes (Lander et al. 2001, Vicient & Casacuberta 2017), it is typically
situated at pericentromeric and telomeric domains of chromosomes. Heterochromatin is also
enriched for di- and trimethylated histone H3 lysine 9 (H3K9me2 and H3K9me3, respectively)
and its binding protein, heterochromatin protein 1 (HP1) ( James & Elgin 1986) (Figure 1).

Unlike the gene-rich euchromatin domain, c-Het exhibits a dense organization throughout
interphase, enrichment for repetitive DNA sequences, relatively low transcription levels, and
distinct replication timing (Allshire & Madhani 2018). c-Het differs from Polycomb-based
facultative heterochromatin, which is associated with transcriptional regulation of developmental
genes and employs different histone marks and readers. Here, we focus on the genome stability
roles of c-Het at pericentromeric and telomeric regions but also touch on the potential relevance
of heterochromatic domains present in interspersed regions in euchromatin (i-Het) (Vogel et al.
2006) (Figure 1).

c-Het was first recognized by Emil Heitz in liverwort and Drosophila in the 1920s and 1930s
as chromosomal regions that failed to decondense following mitosis (Heitz 1928). Today,
c-Het is increasingly realized to be a nuclear domain integral to many cellular processes,
including chromosome segregation, transcription, and transposon suppression, and is essential
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for organismal health (Allshire & Madhani 2018). As the biological significance of these domains
has become more apparent in recent decades, advances in microscopy now enable us to view
these chromatin regions in nearly all studied eukaryotic species, from fission yeast to mammals.
In humans, c-Het appears as perinucleolar domains, as pericentromeric bodies, and at the nuclear
periphery in interphase cells (Horsley et al. 1996, Minc et al. 1999) (Figure 1a). In mouse
cells, some of these interior c-Het domains aggregate and materialize more prominently as large
chromocenters, in addition to localizing to the nuclear periphery (Mayer et al. 2005). The nuclear
pattern of c-Het can also vary and may have different roles depending on the cell type or tissue
type. For example, the single large, central chromocenter and peripheral euchromatin in mouse
rod photoreceptor nuclei are thought to be an adaptation that facilitates nocturnal vision (Solovei
et al. 2009). Moreover, stem cells possess lower levels of heterochromatin marks and a more
dispersed heterochromatin architecture relative to differentiated cells (Meshorer et al. 2006),
which are thought to help maintain epigenetic plasticity in stem cells (Sridharan et al. 2013).

The dense packaging of c-Het—as evinced from various photometric techniques, enzyme in-
accessibility assays, and biochemical centrifugation—has long been thought to form the basis for
heterochromatin properties such as transcriptional repression and inaccessibility of DNA to var-
ious factors (Figure 2). Indeed, transcriptional silencing induced by targeting of HP1 to ectopic
sites coincides with chromatin compaction and the formation of coalesced domains composed of
multiple heterochromatic regions present on different chromosomes (Li et al. 2003, Verschure
et al. 2005). However, chromatin compaction is not sufficient to explain the presence of both
highly dynamic and stable HP1 populations within heterochromatin (Cheutin et al. 2004). Recent
findings identify a liquid-like HP1 population that generates a phase transition compartment sur-
rounding the less-mobile chromatin-bound fraction (Larson et al. 2017, Strom et al. 2017). Such a
biophysical compartmentalization mechanism may facilitate the enrichment and rapid exchange of
heterochromatin proteins necessary for the dynamic structural changes that heterochromatin un-
dergoes during cell cycle progression and in response to stress or DNA damage (Chiolo et al. 2011).
Thus, unlike chromatin compaction, phase separation provides a mechanism for selective accessi-
bility to heterochromatin, enriching for phase-compatible proteins while also excluding proteins
that may destabilize heterochromatin structure (Figure 2). Future challenges entail deconvolving
the contributions of chromatin compaction and phase properties to c-Het structure and function,
which could have important implications for understanding heterochromatin’s maintenance of
genome stability.

Heterochromatin Is Enriched for Diverse Repeated DNAs

Repetitive sequences, which consist primarily of satellite DNA (simple, short tandem repeats),
transposons, and ribosomal DNA (rDNA) (Padeken et al. 2015), are usually marked with
H3K9me2/3 catalyzed by SUV39 methyltransferases. Multiple copies of a transgene are suffi-
cient to acquire heterochromatin characteristics (Dorer & Henikoff 1994), indicating that the
presence of repetitive sequences alone can drive heterochromatin nucleation. Clusters of repeti-
tive DNAs compose pericentromeric and telomeric regions of chromosomes in most organisms,
resulting in the enrichment of H3K9me2/3 at these domains (Figure 1). The DNA sequence
varies widely between different types of repeats, highlighting the ability of heterochromatin to
form independently of sequence.

In humans, functional centromeres are composed predominantly of pure tandem repeats of
the 177-bp α-satellite, whereas the pericentromeric heterochromatin domains are populated by
α-satellite and different satellite subfamilies (i.e., HSATII, HSATIII, sn5, and β- and γ-satellite)
(Miga 2015). Meanwhile, human telomeres comprise tandem TTAGGG repeats that help protect
the ends of linear chromosomes. Even the highly transcribed rDNA from five human chromosomes
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Figure 2
Heterochromatin composition and compartmentalization. (a) Constitutive heterochromatin (c-Het) is enriched for nucleosomes
containing di- and trimethylated histone H3 lysine 9 (H3K9me2 and H3K9me3, respectively) and its binding protein, heterochromatin
protein 1 (HP1). In addition to these core components, DNA methylation, other histone methylation marks, and a plethora of
HP1-binding proteins [auxiliary heterochromatin proteins, histone deacetylases (HDACs), and histone methyltransferases (HMTs)]
promote heterochromatin formation and maintenance that create a biophysically distinct compartment from euchromatin. Arrows
denote intraheterochromatin movements of phase-compatible heterochromatin proteins and exclusion of phase-incompatible
euchromatin proteins. HP1 molecules are present in euchromatin as well, although at lower concentrations relative to
heterochromatin. (b) Two compartmentalization mechanisms proposed to form the c-Het domain and to mediate its functions are
illustrated: chromatin compaction (upper panel ) and phase separation (lower panel ) with the relevant heterochromatin components in
panel a highlighted. Although the compaction model explains heterochromatin properties through steric hindrance of certain protein
complexes, phase separation explains spectrometric evidence of both static and highly dynamic pools of heterochromatin proteins and
the selective permeability of the domain to different proteins. We propose that c-Het is a highly dynamic domain in which both
compaction and phase separation contribute to its biological functions (Larson et al. 2017, Strom et al. 2017).

(13, 14, 15, 21, and 22) (McStay & Grummt 2008) recruits heterochromatin and transcriptionally
represses approximately half of the 300–400 rDNA repeats at any given time.

Finally, transposons are coding DNA sequences closely related to viruses that can change
positions and/or propagate in the genome. Transposons are enriched in c-Het and are predomi-
nantly inactive and fragmented. In addition, more than 50% of the assembled human euchromatic
genome consists of repeats, including transposon-related elements such as LINEs (de Koning et al.
2011, Lander et al. 2001). These euchromatic repeats are similarly targeted for heterochromatin
formation and silencing. The high levels of repetitive sequences in human euchromatin (that
likely represent i-Het) suggest that heterochromatin components also protect euchromatin from
genome instability caused by repetitive DNA.
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Heterochromatin Contains Distinct Histone and DNA Modifications
and Associated Proteins

In mammalian cells, H3K9me2/3 is catalyzed by five SET domain–containing methyltransferases:
G9a and GLP promote mono- and di-methylation, whereas SETDB1, SUV39H1, and SUV39H2
catalyze di- and trimethylated forms of H3K9. The generation of transgenic mouse models with
mutations or deletions of these H3K9-directed methyltransferases has revealed the importance of
heterochromatin formation and maintenance during organismal development (Cho et al. 2012;
Eymery et al. 2016; O’Carroll et al. 2000; Tachibana et al. 2002, 2005). For example, mice mutated
for either SUV39H1 or SUV39H2 are viable, but double-knockout mice display late embryonic
defects and lethality (Peters et al. 2001), indicating that SUV39H1 and SUV39H2 play redundant
roles during development.

Mammalian genomes contain three HP1 homologs that localize to heterochromatin domains
(HP1α, HP1β, and HP1γ). HP1 homologs contain a chromodomain (Paro & Hogness 1991)
responsible for binding to H3K9me2/3, a hinge region associated with nucleic acid binding, and
a chromoshadow domain (Aasland & Stewart 1995) essential for protein-protein interactions and
dimerization. HP1 self-interaction enables the formation of higher-order chromatin structures
thought to mediate the compaction of the heterochromatin domain (Canzio et al. 2013), but HP1
proteins also act as a platform to recruit and regulate many diverse protein complexes within
heterochromatin (Eskeland et al. 2007, Swenson et al. 2016).

In addition to H3K9me2/3, other histone modifications enriched in mammalian het-
erochromatin include H4K20me3, H3K64me3, and H3K56me3. These histone modifications
have been implicated in modulating heterochromatin structure and are thought to be dependent
on H3K9 methylation or directly catalyzed by SUV39 ( Jack et al. 2013; Lange et al. 2013; Schotta
et al. 2004, 2008). More recently, H3K23me3 was also identified as a heterochromatin component
in Tetrahymena and Caenorhabditis elegans meiosis (Papazyan et al. 2014).

A less-conserved but closely associated feature of human c-Het is DNA methylation. In several
organisms, H3K9 methylation has been shown to drive DNA methylation at heterochromatin
( Jackson et al. 2002, Tamaru & Selker 2001), which may further stabilize heterochromatin do-
mains. In mammals, loss of either the H3K9 or DNA methylation pathway produces only partial
defects in the other pathway (Lehnertz et al. 2003), indicative of overlapping but independent
mechanisms of assembly. Both DNA methylation and H3K9me3 inhibit the recruitment of Poly-
comb facultative heterochromatin to c-Het (Peters et al. 2003, Saksouk et al. 2014), consistent
with the semidependent relationship between DNA and H3K9 methylation.

Heterochromatin Establishment, Spreading, and Maintenance

Heterochromatin formation can be initiated through noncoding RNA–dependent mechanisms
prevalent in yeast and plants (for detailed reviews, see Allshire & Madhani 2018, Martienssen
et al. 2008). Briefly, this mechanism requires the assembly of RNA interference (RNAi) transcrip-
tional silencing components on repetitive transcripts, which recruit heterochromatin proteins, like
SUV39, to repetitive DNA. Whether this mechanism is conserved in mammalian cells remains
largely unresolved. Mouse heterochromatin exhibits sensitivity to RNase A treatment (Maison
et al. 2002) and requires transcription of heterochromatin repeats (Probst et al. 2010). In addition,
mouse SUV39H1/H2 is stably recruited to pericentromeric sequences through RNA-dependent
mechanisms ( Johnson et al. 2017, Shirai et al. 2017, Velazquez Camacho et al. 2017). Mouse
heterochromatin may also include alternative modes of heterochromatin formation, such as the
binding of the HP1 interactor Pax3 and related transcription factors to a consensus sequence in
heterochromatin repeats (Bulut-Karslioglu et al. 2012).
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Following establishment, heterochromatin needs to be maintained and propagated. One ma-
jor maintenance mechanism is the binding of HP1 to SUV39 (Aagaard et al. 1999) and histone
deacetylases (Fischer et al. 2009, Motamedi et al. 2008). Hypoacetylation of H3K9 is a prereq-
uisite for methylation of H3K9 at pericentric heterochromatin, and treatment with deacetylase
inhibitors disperses HP1α (Taddei et al. 2001). However, deacetylation of histone residues other
than H3K9 is also important for heterochromatin maintenance (Alper et al. 2013, Contrepois
et al. 2012, Yamada et al. 2005). Iterative cycles of deacetylation, methylation, HP1 binding, and
recruitment of deacetylases and SUV39 enable a sequence-independent, stochastic spreading of
heterochromatin.

This stochastic propagation is often dependent on the doses of regulatory proteins. Loss of
one copy of HP1 or SUV39 results in partial transcriptional derepression, whereas extra copies
of HP1 or SUV39 generate even higher levels of silencing (Elgin & Reuter 2013). Excessive het-
erochromatin spreading could also prove deleterious to neighboring euchromatic gene functions.
Therefore, various mechanisms exist to limit heterochromatin propagation into euchromatin.
Boundary elements such as tRNA genes as well as other actively transcribed regions restrict this
spreading of heterochromatin onto euchromatic genes, which is mediated by factors involved in
transcription, histone modification, and nucleosome turnover (Ahmad & Henikoff 2002, Allshire
& Madhani 2018). Alternative inhibitory mechanisms independent of DNA boundary elements
are also observed. For example, spreading of heterochromatin can be limited by the putative his-
tone demethylase Epe1 (Trewick et al. 2007), which removes H3K9me2 in fission yeast, or by the
kinase JIL1, which phosphorylates H3S10 in euchromatin and thereby inhibits HP1 binding and
further H3K9 methylation (Zhang et al. 2006).

Heterochromatin maintenance and reestablishment regularly occur following disruptive
cellular processes such as mitosis and DNA replication. Upon mitotic entry, HP1 proteins
largely disperse from chromosomes due to phosphorylation of H3S10 by Aurora B, which blocks
HP1 binding to H3K9me2/3 (Hirota et al. 2005), and reassembly occurs in anaphase/telophase
(Wurzenberger & Gerlich 2011). Various other HP1-associated heterochromatin factors similarly
disperse and reassemble during mitosis (Swenson et al. 2016). Heterochromatin structure is there-
fore maintained through cycles of HP1 assembly and disassembly during every mitotic cell division.

Passage of the replication machinery also likely disrupts heterochromatin structure.
Postreplicative restoration of heterochromatin structure is facilitated by the random retention
of parental H3K9me2/3 histones on both daughter strands behind replication forks and may also
involve the recruitment of HP1 by the CAF-1 complex responsible for nucleosome reassem-
bly (Quivy et al. 2004, 2008). The disruption of higher-order heterochromatin structure during
replication, however, may also reestablish RNA-dependent heterochromatin formation. In fission
yeast, a burst of repeat transcription during S phase is required for restoration of heterochromatin
levels (Kloc et al. 2008). In mammals, satellite transcription has also been demonstrated during
replication and may serve a similar function (Lu & Gilbert 2007).

In summary, c-Het composes a large portion of the eukaryotic genome that packages underlying
repetitive sequences and provides structural organization to eukaryotic chromosomes (Figure 1).
It functions by establishing a spatially distinct, dynamic chromatin domain that helps maintain
genome stability through various mechanisms, which we outline in detail below.

HETEROCHROMATIN IS REQUIRED TO ENSURE
GENOME INTEGRITY

Many studies have implicated dysfunctional heterochromatin in disease and, in particular, cancer
progression. Loss of large blocks of H3K9 di- and tri-methylation correlates with gene expression
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changes in cancer cells and has been proposed to contribute to their phenotypic plasticity (Feinberg
et al. 2016). Cancer progression and metastasis are associated with changes in the distribution of
H3K9me2/me3 and HP1 expression levels (De Koning et al. 2009, Dialynas et al. 2008, Feinberg
et al. 2016, Rondinelli et al. 2015, Slee et al. 2012, Vad-Nielsen et al. 2016), and loss of H3K9
di- and tri-methylation results in an increased rate of tumorigenesis in mouse models (Braig et al.
2005, Peters et al. 2001).

We hypothesize that such cancer-associated heterochromatic changes provide cancer cells
with an evolutionary advantage, not only by directly changing transcriptional programs
(Feinberg et al. 2016) but also by increasing the level of genetic instability. For example, changes
in heterochromatin components can alter the nuclear compaction of DNA sequences, thereby
increasing susceptibility to DNA damage. Changes in heterochromatic histone modifications can
also directly affect DNA damage repair efficiency since many histone modifications have been im-
plicated in promoting or inhibiting the recruitment of specific repair proteins (Price & D’Andrea
2013).

Here we discuss the evidence that supports these hypotheses and interrogate the mechanisms
by which heterochromatin dysfunction can result in increased genome instability.

Heterochromatin Safeguards Mitotic Fidelity

The most evident role for c-Het in genome stability can be inferred from its enrichment at
pericentromeric repeats surrounding centromeres (Figure 1). Centromeric chromatin, the site
of kinetochore assembly in mitosis, is distinct from both euchromatin and heterochromatin
(Sullivan & Karpen 2004) and contains the centromere-specific H3 variant CENP-A required
for centromere assembly to allow for proper chromosome segregation in mitosis.

Pericentromeric heterochromatin components are essential for de novo CENP-A assembly
at centromeres in fission yeast (Folco et al. 2008) and promote proper kinetochore-microtubule
attachments in mitosis and subsequent equal chromosome segregation to both daughter cells
(Ekwall et al. 1995, 1996). In addition, fission yeast HP1 (Swi6) is enriched in pericentromeric
heterochromatin and is required for sister cohesion (Bernard et al. 2001, Nonaka et al. 2002,
Yamagishi et al. 2008).

In mammalian cells, HP1α helps mediate the assembly and maintenance of cohesion complexes
(Kang et al. 2011, Perera & Taylor 2010). However, mammalian HP1α also recruits and binds the
chromosomal passenger complex protein INCENP (Abe et al. 2016, Ainsztein et al. 1998, Kang
et al. 2011, Perera & Taylor 2010), which corrects aberrant kinetochore-microtubule interactions
in mitosis, indicating that the mitotic role of HP1α in mammalian cells extends beyond cohesion
maintenance (Abe et al. 2016, Ainsztein et al. 1998).

In line with a role for pericentromeric heterochromatin in the proper assembly of centromeres
and cohesion, loss of H3K9 methyltransferases or HP1 homologs results in an increase in chro-
mosome segregation errors in mice, Drosophila, and fission yeast (Ekwall et al. 1995, Ekwall et al.
1996, Peng & Karpen 2009, Peters et al. 2001) (Figure 3). These missegregation events can cause
a plethora of defects in the daughter cells, including the formation of replication stress–prone
micronuclei (Crasta et al. 2012); chromosome breaks during cytokinesis ( Janssen et al. 2011); and
an unequal distribution of chromosomes between daughter cells, termed aneuploidy—all of which
are phenomena strongly connected with cancer progression.

The increased rate of chromosome segregation errors could be responsible for the enhanced
tumor incidence observed in SUV39H1/2-deficient mice (Braig et al. 2005, Peters et al. 2001)
(Figure 3). However, a direct correlation between loss of HP1 or H3K9me2/3 and increased
chromosome segregation errors in human tumor tissue has not been investigated. Such studies in
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Figure 3
(Top left panel ) Wild-type heterochromatin structure is dynamically regulated by SUV39H1/H2 methyltransferase and KDM4
demethylase activities. HP1 denotes heterochromatin protein 1. (Top right panel ) Model for increased genome instability through loss
of heterochromatin integrity. Loss of heterochromatin integrity can be achieved through a variety of mechanisms. KDM4A–D
demethylase overexpression or loss of SUV39H1/H2 histone methyltransferase activity results in decreased c-Het H3K9 methylation.
Alternatively, gain of repetitive sequences, e.g., due to aneuploidy, can titrate the limited pool of c-Het components like HP1, resulting
in inefficient heterochromatin maintenance at repetitive sequences. Loss of heterochromatin integrity can generate a variety of genome
stability defects, including� chromosome missegregation events through aberrant centromere or cohesion assembly;� increased
DNA damage from replication problems due to RNA:DNA hybrid formation or from transposon hopping; and� aberrant
recombination between repeats on nonhomologous chromosomes, causing translocations and abnormal chromosome structures due to
defects in spatiotemporal regulation of double-strand break (DSB) repair. Together these defects contribute to genome instability and
can thereby promote tumor heterogeneity and evolution.
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cancer tissues could give insights into direct links between c-Het defects, chromosomal instability,
and tumorigenesis, which would have important implications for understanding cancer progression
and treatment.

Heterochromatin Prevents Aberrant Repeat Recombination

c-Het not only provides a structural platform to protect centromere and kinetochore integrity
in mitosis but also forms a compact, silenced, phase-separated environment (Larson et al. 2017,
Strom et al. 2017) that protects the integrity of the multitude of repetitive sequences present
within this domain.

The repetitive nature of heterochromatic sequences makes them extremely vulnerable to im-
proper DNA damage repair. DNA double-strand breaks (DSBs), in which both strands of the DNA
helix are broken, are especially dangerous in repetitive sequences. DSBs can be fixed by a variety
of repair pathways, but the two major mechanisms are nonhomologous end joining (NHEJ) and
homologous recombination (HR) (Ciccia & Elledge 2010). NHEJ repairs DNA by ligating both
ends of the DSB together, often resulting in small insertions and deletions at the break site, and is
therefore considered more error prone. HR repair involves more extensive processing of the DSB
site; 5′-to-3′ end resection of the DSB ends by specialized enzymes results in a single-stranded
DNA sequence, which invades and perfectly copies homologous sequences on the sister chromatid
or homologous chromosome to repair the DSB (Ciccia & Elledge 2010). HR is usually considered
the safest, error-free choice for DSB repair in single-copy sequences; however, the presence of
up to millions of homologous repetitive sequences from different chromosomes, all concentrated
within c-Het domains, poses a major challenge for safe HR repair. Recombination between a DSB
and homologous repeats in cis, or on nonhomologous chromosomes, can result in lethal dicentric
chromosomes, as well as insertions, deletions, and other chromosomal translocations (Figure 3).

Indeed, loss of H3K9 methylation or HP1a in Drosophila results in aberrant intrachromosomal
recombination among repeats and in significantly elevated levels of extrachromosomal repeated
DNA sequences (Peng & Karpen 2007). The maintenance of pericentromeric heterochromatin
is therefore essential for preserving repetitive sequences and preventing aberrant chromosomal
structures (Figure 3). Furthermore, cytological as well as genome sequence analyses of cancer
tissues have shown that pericentromeric heterochromatin regions are more prone to translocations
and copy number changes (Cramer et al. 2016, Hermsen et al. 1996, Jin et al. 2000), potentially
reflecting the vulnerability of heterochromatic repeats to improper DNA damage repair.

Heterochromatin Utilizes Dynamic Responses to Repair Double-Strand Breaks

To prevent potentially dangerous HR repair between repeats, heterochromatic regions have
evolved specialized temporal and spatial responses to safely repair DSBs. Initially found in budding
yeast and Drosophila (Chiolo et al. 2011, Torres-Rosell et al. 2007) and later demonstrated to also
occur in mammals (Tsouroula et al. 2016), these dynamic responses include the relocalization
of DSBs to the heterochromatin or nuclear periphery, away from the regions where homologous
sequences are most highly concentrated (reviewed in Caridi et al. 2017). In Drosophila, these
specific dynamics require HP1 and its interactors, the SMC5/6 complex (related to condensins
and cohesins), myosin and nuclear actin, and the histone demethylase dKDM4A, as well as the
SUMOylation pathway (Caridi et al. 2018, Chiolo et al. 2011, Colmenares et al. 2017, Ryu
et al. 2015), and promote safe recombination between sister chromatids or homologs ( Janssen
et al. 2016). Depletion of these proteins results in retention of DSBs within the heterochromatin
domain and in increased recombination defects in heterochromatic regions of Drosophila cells
(Chiolo et al. 2011). Loss of heterochromatin proteins did not lead to c-Het retention of
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CRISPR-induced DSBs in mammalian cells (Tsouroula et al. 2016), indicating that mammals
could have acquired redundant pathways to promote the movement of DSBs. However, this study
induced thousands of breaks simultaneously in satellite repeats, which could have masked local
DSB retention relative to more modest break induction in heterochromatin using irradiation
(Chiolo et al. 2011) or single DSB systems ( Janssen et al. 2016). Interestingly, abolishing DSB
end resection also results in retention of breaks within the c-Het domain in both Drosophila and
mouse cells, indicating that early steps of the HR repair pathway are required to initiate DSB
relocalization (Chiolo et al. 2011, Tsouroula et al. 2016).

In addition to the specific movement of resected DSBs to the c-Het periphery, another layer of
heterochromatin DSB protection has evolved. Rad51, the major HR protein that executes homol-
ogy search and recombination, associates with resected heterochromatic DSBs only upon their
relocalization outside the heterochromatin domain (Chiolo et al. 2011). Rad51 exclusion from
c-Het DSBs is thought to prevent premature and erroneous recombination between heterochro-
matic repeats (Chiolo et al. 2011).

These dynamic heterochromatin responses are dependent on the DNA damage kinases ATM
and ATR. Inhibition of ATR in Drosophila and of ATM in mammalian cells results in defects in het-
erochromatin expansion and in peripheral DSB movement (Ayoub et al. 2008, Chiolo et al. 2011,
Tsouroula et al. 2016). The involvement of these canonical damage response kinases suggests that
DNA damage–specific posttranslational modifications of heterochromatin proteins regulate the
intrinsic movement of heterochromatic DSBs. Indeed, Kap1 and HP1β, two proteins associated
with mammalian heterochromatin domains, are phosphorylated upon damage by ATM and casein
kinase 2, respectively (Ayoub et al. 2008, Goodarzi et al. 2008), and unphosphorylatable mutants
of these proteins impair repair. These findings suggest that heterochromatin imposes additional
physical constraints on the DNA damage response machinery that are alleviated through either
relocalization outside the domain or reorganization of local chromatin structure. However, HP1
proteins and phosphorylated Kap1 have been observed to be increased at euchromatic DSB sites
as well, concomitant with a transient deposition of the H3K9me3 mark (Ayrapetov et al. 2014,
Baldeyron et al. 2011). In addition, all human HP1 homologs localize to sites of UV and oxidative
DNA damage (Dinant & Luijsterburg 2009), and HP1γ helps recruit cohesin and the BRCA1
complex (important for HR) to DSBs (Oka et al. 2011, Wu et al. 2015), making it difficult to
conclude that modifications on Kap1 or HP1 proteins are specific to heterochromatic breaks.

It is tempting to speculate that all the local changes that occur at heterochromatic DSBs, such
as posttranslational modification of HP1, SUMOylation of specific substrates, and removal of
nucleosomes upon DSB end resection, promote the movement of DSBs to the heterochromatin
periphery through a biophysical incompatibility of these complexes with heterochromatin phase
properties (Strom et al. 2017). Moreover, the biophysical differences between euchromatin and
heterochromatin may cause the exclusion of Rad51 recruitment from heterochromatin DSBs.
Indeed, loss of HP1, which drives heterochromatin phase properties (Larson et al. 2017, Strom
et al. 2017), results in accumulation of Rad51 within heterochromatin in Drosophila cells (Chiolo
et al. 2011). This observation indicates that loss of biophysical or other distinctions between
euchromatin and heterochromatin allows for aberrant Rad51 recruitment to DSBs within the
heterochromatin domain and promotes erroneous recombination.

Together, these studies indicate that loss of c-Het structure and function significantly in-
creases genomic instability through illegitimate recombination between heterochromatic repeats
(Figure 3), resulting in sequence gains and losses, as well as aberrant chromosome structures (e.g.,
translocations, dicentric chromosomes). However, whether loss of heterochromatin components
also promotes the formation of aberrant chromosomal structures in human cancers is currently
unknown.
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H3K9me3-Enriched Regions Are Associated with Elevated Mutation
Rates in Cancer

Although heterochromatin has evolved specific ways to protect repetitive sequences from forming
extrachromosomal DNA (Peng & Karpen 2007) and undergoing erroneous recombination (Chiolo
et al. 2011), regions enriched for the heterochromatic H3K9me3 mark in cancer cells are highly
prone to accumulating single-nucleotide variants as well as copy number alterations (Cramer
et al. 2016, Lim et al. 2017, Nair et al. 2017, Woo & Li 2012). In fact, H3K9me3 distributions
can predict up to 40% of the total mutational load in cancer cells, whereas active chromatin
marks actually anticorrelate with mutation load (Polak et al. 2015, Schuster-Bockler & Lehner
2012). The H3K9me3-enriched regions analyzed do not include the highly repetitive sequences
present in c-Het regions and are thus likely composed of repeat-flanking unique sequences or
H3K9me3-regulated sites in euchromatin (i-Het). Nevertheless, these studies can potentially
reveal valuable insights into both the role of H3K9me3 in maintaining genetic fidelity and its
influence on mutational load in cancer.

Both genic and nongenic H3K9me3-enriched regions reflect a higher mutation rate relative
to their counterparts with low H3K9me3 levels (Schuster-Bockler & Lehner 2012). Thus, the
increased mutation rate in H3K9me3 regions is unlikely to result from reduced selection against
mutations in domains that are more transcriptionally inert than is actively transcribed euchromatin.
The increased mutational load of H3K9me3-enriched regions is observed in a variety of cancer
types and is largely irrespective of mutation type, such as transition mutations (purine-to-purine
mutations, e.g., A → G) or transversion mutations (purine-to-pyrimidine mutations, e.g., G → T,
or vice versa) (Polak et al. 2015, Schuster-Bockler & Lehner 2012). Several studies have provided
insights into the role of heterochromatin signatures in DNA damage susceptibility, and below
we highlight and discuss different hypotheses that could explain the link between H3K9me3
enrichment and increased mutational load.

Differential mismatch repair and nucleotide excision repair between chromatin regions.
Interestingly, cancers associated with defective DNA mismatch repair (MMR), a pathway that
corrects base mismatches between DNA strands, do not display the mutational disparity between
high- and low-H3K9me3 regions. This loss of mutational disparity in MMR-deficient cancers is
due to increased mutation rates in regions lacking H3K9me3 (Supek & Lehner 2015). Thus, the
higher recovery of mutations in H3K9me3 domains observed in MMR-competent cancer cells is
likely caused by reduced MMR repair rates in high-H3K9me3 regions.

MMR is highly active during DNA replication (Edelbrock et al. 2009). Since H3K9me3-
enriched regions replicate late in S phase, they may have reduced opportunity to efficiently repair
DNA mismatches using MMR. Increased transcriptional activity has also been associated with
enhanced MMR efficiency (Li et al. 2013), suggesting that MMR is normally excluded from
regions with low transcriptional activity, such as heterochromatin.

In addition to mutations associated with MMR deficiency (Supek & Lehner 2015), other types
of mutations are increased in H3K9me3-enriched regions (Schuster-Bockler & Lehner 2012).
Thus, other repair pathways besides reduced MMR could play a role in the increased mutational
load in heterochromatic regions. Indeed, abolishing global genome nucleotide excision repair
(NER), a pathway that repairs DNA base adducts and cross-links, also removes the disparity
in mutational load between high- and low-H3K9me3 regions (Zheng et al. 2014). This result
suggests that NER may also be less efficient in H3K9me3-enriched regions, which is supported
by links between repressive chromatin states and delayed NER repair of UV- and cisplatin-induced
damage (Adar et al. 2016, Hu et al. 2016).
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Together, these studies indicate that differences in MMR and NER repair efficiency between
heterochromatic and more open, actively transcribed chromatin regions could play a causal role
in the differential recovery of mutations between these two chromatin states (Supek & Lehner
2015, Zheng et al. 2014).

DNA damage susceptibility of heterochromatic sequences. The organizational and sequence
differences between heterochromatin and euchromatin are also important factors in their suscep-
tibility to DNA damage. In fact, heterochromatin regions are thought to be more susceptible
to replication stress and formation of fragile sites. Common fragile sites (CFSs), regions in the
genome that show DNA breakage or rearrangements in the presence of replication stress, are as-
sociated with early stages of tumorigenesis (Gorgoulis et al. 2005). Chromatin surrounding CFSs
is generally hypoacetylated, and treatment of cells with deacetylase inhibitors results in decreased
breakage at CFSs, indicating that CFSs are associated with more compact chromatin regions
( Jiang et al. 2009). This predisposition to replication stress could stem from the higher repeat
content of heterochromatic regions, resulting in stable secondary structures inhibitory to fork
progression (Branzei & Foiani 2010, Pearson et al. 2005, Zhao et al. 2010) that require additional
mechanisms to be properly duplicated (Miller et al. 2006).

The increased sensitivity of repetitive chromatin domains to replication stress may be the rea-
son for the temporal separation of heterochromatin and euchromatin replication during S phase.
In most organisms, heterochromatin is late replicating (Lima-de-Faria & Jaworska 1968), but the
biological significance of delaying replication has thus far remained largely elusive. From a genome
stability standpoint, the separation of replication timing may help ensure the effective assembly
of replication and chromatin remodeling complexes to the less accessible, highly repetitive, het-
erochromatic substrates that are prone to the formation of secondary structures and that require
efficient restoration of heterochromatin packaging. Together, these studies indicate that c-Het
may be more sensitive to replication stress–associated DNA damage, due to the preponderance of
repetitive sequences.

The increased mutational susceptibility of H3K9me3 domains in human cells (Schuster-
Bockler & Lehner 2012) has also been attributed to the spatial distribution of heterochromatin
in the nucleus. In differentiated human cells, H3K9me3 regions are often associated with the
nuclear lamina, termed lamina-associated domains (LADs) (Guelen et al. 2008). LADs, due to
their peripheral positioning around the nucleus, encounter greater UV exposure than do other
parts of the genome (Garcia-Nieto et al. 2017). However, the sensitivity of LADs to UV damage
does not necessarily explain the mutational load in H3K9me3 domains observed in many types of
cancers arising from internal tissues, which are unlikely to encounter UV exposure. However, the
peripheral location of LADs, and therefore a major portion of H3K9me3 domains in differentiated
cells, may make them more sensitive to other types of exogenous DNA damage sources.

In conclusion, many studies point toward an increased vulnerability of heterochromatic re-
gions to DNA damage through increased susceptibility to erroneous recombination, replication
stress at repeats, or decreased MMR or NER repair efficiency. This hypothesis is in line with the
clear correlation that exists between increased mutation load in cancer genomes and H3K9me3
distributions in the cancer’s cell type of origin (Polak et al. 2015, Schuster-Bockler & Lehner
2012). However, since chromatin data from cultured cell lines were used for all these correlation
studies, the actual chromatin signatures of the sequenced cancer samples remain unknown. Chro-
matin states are likely altered in cancer genomes, which in turn could give rise to the differential
mutational signatures. Therefore, to be able to identify direct links between heterochromatin fea-
tures and genome instability in cancer, future studies need to focus on directly combining cancer
genome sequencing analyses with cancer chromatin signatures.
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In addition, we do not know when these disparate mutational signatures arise during tumori-
genesis and whether they have a causal role in cancer initiation and/or progression. Performing
cancer genome mutational analysis in mouse tumor models or organoids at different stages during
tumor development could provide answers to these questions. Finally, we currently lack cancer
genome data on the stability and presence of mutations, translocations, or other aberrations in
c-Het repetitive sequences, and such studies could reveal important insights into the role of these
sequences in cancer progression.

Heterochromatin Silences Expression of Repetitive DNA Sequences

Another important function of heterochromatin in maintaining genome stability is the transcrip-
tional silencing of repetitive DNA sequences, such as transposons and satellite DNA (Bulut-
Karslioglu et al. 2014, Peng & Karpen 2007, Zeller et al. 2016). Although repeat RNAs play
important physiological roles in heterochromatin formation (Eymery et al. 2009), aberrant over-
expression of such RNA has been associated with misregulation of several cellular processes that
could result in increased genome instability (Figure 3). Loss of the two C. elegans H3K9 methyl-
transferases met-2 and set-25 results in upregulated expression of a subset of repetitive elements.
This increased repetitive element expression results in RNA:DNA loop formation and higher rates
of insertions and deletions specifically at repeats normally enriched for H3K9me2/me3 (Zeller et al.
2016). RNA:DNA hybrids can produce DNA damage by obstructing the progression of the repli-
cation machinery, leading to fork collapse and DSB formation (Aguilera & Garcia-Muse 2013).
Increased satellite repeat expression in mammalian cells also compromises centromere structure
and induces mitotic spindle defects and chromosome missegregation in mitosis (Bouzinba-Segard
et al. 2006, Zhu et al. 2011). Together, these studies indicate that repetitive transcripts are in-
herently prone to inducing DNA damage due to a propensity to interfere with replication and
centromere assembly and that heterochromatin formation at repeats promotes genome stability
in part by suppressing their transcription (Figures 1 and 3).

Heterochromatin and telomeric repeat silencing. Heterochromatin also maintains the in-
tegrity of telomeric domains. Human telomeres consist of several kilobases of tandemly repeated
telomeric repeats, as well as distinct subtelomeric repeat sequences. An important factor in the
maintenance of telomeric repeat silencing is ATRX, which, together with the histone chaperone
DAXX, loads the histone variant H3.3 at telomeres (Lewis et al. 2010). ATRX interacts with
H3K9me3 and HP1 (Eustermann et al. 2011, Iwase et al. 2011). Consistent with a role for hete-
rochromatic silencing in telomere integrity, telomere maintenance is also dependent on SUV39h
and DNA methyltransferases (Garcia-Cao et al. 2004, Gonzalo et al. 2006). Loss of telomeric
repeat silencing through loss of H3.3 or ATRX can result in aberrant recombination as well as
increased RNA:DNA loop formation at telomeres that can cause DNA damage (Arora et al. 2014,
Lovejoy et al. 2012).

Replication-dependent telomere shortening is often counteracted by expression of telomerase
or, in ∼10% of cancers, by alternative lengthening of telomeres (ALT), a recombination-based
mechanism (Dunham et al. 2000). Maintaining or increasing telomere length allows cancer cells to
continue to divide without entering replicative senescence. The increased DNA damage induced
by RNA:DNA loops in the absence of telomere silencing has been hypothesized to promote the
onset of ALT (Arora et al. 2014, Lovejoy et al. 2012). These studies indicate that heterochromatin
maintenance is essential for telomere integrity and that loss of telomeric silencing can result in
ALT, which in turn could promote tumorigenesis.
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Heterochromatin and LINE-1 silencing. In addition to the prevention of damaging
RNA:DNA structures (Zeller et al. 2016), heterochromatin silencing of transposons also sup-
presses the deleterious hopping of these mobile elements into other genomic regions, which could
otherwise result in disruption of coding regions and rearrangements (Slotkin & Martienssen 2007)
(Figure 3). A particularly abundant transposon in mammalian cells is LINE-1 (long interspersed
repeat element-1). LINE-1 elements are part of the retrotransposon family, and their sequences
account for approximately 17% of the assembled human genome (Cordaux & Batzer 2009), which
excludes elements located in pericentric heterochromatin. Most LINE-1 sequences are inactive
due to disruptive mutations that accumulated during evolution. However, it is estimated that ap-
proximately 100 LINE-1 elements are completely intact and can retrotranspose to other parts of
the genome (Burns 2017, Cordaux & Batzer 2009). Repressive chromatin marks, such as DNA
methylation, Kap1, and H3K9me3, usually silence transcription and transposition of these ele-
ments (Bulut-Karslioglu et al. 2014, Garcia-Perez et al. 2010, Rowe et al. 2010). Thus, loss of
heterochromatin components is likely to increase retrotransposition of LINE-1 and other c-Het
and i-Het elements; however, this potential impact on genome instability needs direct assessment.

High levels of RNA repeat and transposon expression, including LINE-1 retrotransposition
events, have been identified in different types of cancers (Burns 2017). This observation suggests
that heterochromatin-dependent silencing of LINE-1 transcription is disrupted in these cancers.
In one study, up to 53% of patients had LINE-1 retrotransposition events, of which half included
3′ transduction events in which neighboring sequences were also mobilized (Tubio et al. 2014).
Although most of the LINE-1-induced genomic disruptions were mainly passenger mutations,
some of the LINE-1 insertions disrupted tumor suppressor genes (Lee et al. 2012, Solyom et al.
2012). Therefore, increased expression and hopping of LINE-1 sequences in cancer, and of po-
tentially other transposons, represent another mechanism by which loss of epigenetic silencing
contributes to genome instability, providing cancer cells with genetic diversity and an evolutionary
advantage. Interestingly, in contrast to the hypothesis that increased LINE-1 expression could
drive genome instability, LINE-1 expression is also suppressed in a variety of cancer types (see
sidebar titled Desilencing Retrotransposons Elicits an Antitumor Response).

CAUSAL FACTORS FOR HETEROCHROMATIN DEFECTS IN CANCER

As outlined above, heterochromatin defects can cause genome instability in diverse ways, but
which genetic or epigenetic changes in cancer cells actually drive these heterochromatin defects?
Point mutations, translocations, or deletions of coding regions for H3K9 methyltransferases,

DESILENCING RETROTRANSPOSONS ELICITS AN ANTITUMOR RESPONSE

Paradoxically, several lines of evidence recently showed that cancer cells heavily depend on epigenetic silencing of
retrotransposons to evade antitumor immune responses and chemotherapy-induced cell death (Cuellar et al. 2017,
Guler et al. 2017). Since retrotransposons originate from viral integrations, these sequences can be recognized
as nonself by both the innate and adaptive immune systems and can thus trigger an immune response. Elevated
expression of the H3K9 di- and trimethyltransferase SETDB1 results in increased H3K9 methylation of LINE-1
elements, which allows tumor cells to evade cell death (Cuellar et al. 2017, Guler et al. 2017). Indeed, loss of
silencing by depletion of SETDB1 or other heterochromatic factors results in more effective cell death induction
following chemotherapy treatment of cancer cells (Guler et al. 2017). These studies indicate that loss of epigenetic
silencing could also have a potent antitumor effect. Inhibition of H3K9 methyltransferases and histone deacetylases
is currently being tested in clinical trials (Pfister & Ashworth 2017).
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HP1, and other heterochromatin components could result in reduced expression or activity of
these proteins and loss of heterochromatin structure and function (Figure 3). Importantly, loss of
heterochromatic silencing is dose dependent, and desilencing of heterochromatic sequences can
occur with only a 50% reduction in expression of heterochromatin proteins, such as single-copy
loss of HP1.

However, there are more indirect ways through which loss of heterochromatin marks could
occur during tumor development. First, karyotype changes resulting from chromosome misseg-
regation events could progressively sequester a limited pool of heterochromatin proteins. The
presence of extra copies of repetitive sequences upon gain of a chromosome can result in titration
of limited heterochromatin components, thereby relieving silencing at regions that are normally
heavily heterochromatinized (Figure 3). This was first revealed in Drosophila, in which addition of
an extra copy of the Y chromosome results in global loss of heterochromatin-dependent silencing
(Gowen & Gay 1934).

Loss of heterochromatin structure and function has also been associated with aging in various
organisms. Humans with diseases associated with early aging, such as Hutchinson-Gilford progeria
syndrome and atypical Werner syndrome mutations, have germline mutations in lamins and show
loss of c-Het structures (Shumaker et al. 2006, Zhang et al. 2015). Indeed, cells from healthy aging
individuals reveal similar lamina defects and a concomitant loss of heterochromatin-associated
H3K9me3 (Scaffidi & Misteli 2006). Together, these studies show that physiological aging, which
is the major risk factor for cancer onset (de Magalhaes 2013), could contribute to progressive loss
of c-Het structure, or vice versa. We hypothesize that this loss of heterochromatin integrity could
cause the increased genome instability levels as well as cancer susceptibility of aging cells (Scaffidi
& Misteli 2006).

Another way to achieve reduced H3K9 methylation is through increased H3K9me3 demethy-
lase activity. Many histone demethylases are overexpressed in cancer, which could lead to local or
global losses of histone methylation marks in the genome (Black et al. 2012). Overexpression of
the H3K9me3- and H3K36me3-specific demethylase KDM4A protein has been found in different
types of cancer (Black et al. 2013, Kim et al. 2012) and results in loss of H3K9me3 (Fodor et al.
2006).

Other described genetic defects in cancer that can cause loss of heterochromatin marks are de-
ficiencies in the tumor suppressors JARID1C and BRCA1; loss of either protein leads to disruption
of heterochromatin and to derepression of repetitive sequence transcription (Filipponi et al. 2013,
Zhu et al. 2011). The interdependence between DNA methylation and H3K9 methylation in
human cells (Saksouk et al. 2014) also indicates that changes in DNA methylation could affect
H3K9 methylation and thereby disrupt heterochromatin formation. Since loss of and changes in
DNA methylation patterns are strongly associated with cancer progression (Timp et al. 2014), its
impact on overall heterochromatin integrity must be considered a potential tumorigenic factor.

SUMMARY AND FUTURE DIRECTIONS

A preponderance of studies now indicate that the delicate balance between H3K9 methylation and
demethylation in heterochromatin strongly contributes to genome stability. Loss of heterochro-
matic factors can result in chromosome segregation defects, aberrant repeat recombination, and
desilencing of repetitive sequences (Figure 3). These defects promote genome instability, a ma-
jor hallmark of cancer that can increase genetic heterogeneity and tumor evolution. In addition,
the complex phenotypes associated with c-Het loss are closely intertwined, involve similar or
interacting protein effectors, and can act as a negative feedback loop. For example, the induc-
tion of chromosomal aberrations or replication defects could give rise to aberrant chromosome
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segregation in mitosis, and vice versa (Burrell et al. 2013, Crasta et al. 2012). Second, cohesin is
recruited by c-Het and is required for chromosome segregation but also functions in transcrip-
tional regulation, DNA repair, and nuclear architecture. Therefore, disruption of heterochromatin
structure has far-reaching effects on different aspects of genome function and maintenance.

This review highlights the important roles of c-Het in maintaining genome stability and reveals
the need for advancements in understanding the roles of this chromatin domain in the prevention
of cancer initiation and progression. We hypothesize that restoring heterochromatin homeostasis
could be a potential preventative or therapeutic strategy for anticancer treatments. An alterna-
tive approach could be to exploit heterochromatin defects in tumors. Combining inhibitors for
SUV39H1/H2 or histone deacetylases with DNA-damaging agents could be a useful anticancer
strategy to increase the DNA damage sensitivity of tumor cells (Pfister & Ashworth 2017). How-
ever, given the potential side effects of increasing genetic instability and promoting tumorigenesis
upon loss of heterochromatin-dependent silencing, future research should carefully assess whether
the use of heterochromatin targeting in anticancer treatments is a viable and safe option.

Besides the genome stability defects highlighted in this review, other cellular functions dis-
rupted by heterochromatin dysfunction could potentially promote tumorigenesis. For example,
heterochromatin loss can result in problems in maintaining quiescence and oncogene-induced
senescence (Braig et al. 2005, Joh et al. 2016, Roche et al. 2016). Also, since heterochromatin
proteins are important for DNA damage repair in euchromatic regions (Ayrapetov et al. 2014,
Soria & Almouzni 2012), the efficiency of repair in otherwise nonheterochromatic regions could
also be affected. Reduced H3K9 methylation could impact nuclear membrane stiffness and in-
tegrity (Stephens et al. 2018), which are important for metastasis, or could induce a stem cell–like
undifferentiated state that promotes tumorigenesis (Becker et al. 2016).

In short, there is a pressing need to improve our understanding of c-Het defects in tumorigenesis
and its impact on cancer evolution. Advancements in cancer genome sequencing, chromatin analy-
ses, and annotation of human c-Het and other unmapped, repetitive sequences will be invaluable in
elucidating the heterochromatin defects present in different cancer types and stages. This under-
standing will undoubtedly provide important insights into and innovative applications toward the
prevention and treatment of cancer, as well as other diseases associated with genome instability.
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