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Abstract

Mitochondria are ancient organelles evolved from bacteria. Over the course
of evolution, the behavior of mitochondria inside eukaryotic cells has
changed dramatically, and the corresponding machineries that control it are
in most cases new inventions. The evolution of mitochondrial behavior re-
flects the necessity to create a dynamic compartment to integrate the myriad
mitochondrial functions with the status of other endomembrane compart-
ments, such as the endoplasmic reticulum, and with signaling pathways that
monitor cellular homeostasis and respond to stress. Here we review what
has been discovered about the molecular machineries that work together
to control the collective behavior of mitochondria in cells, as well as their
physiological roles in healthy and disease states.
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INTRODUCTION

Mitochondria are double membrane endosymbiotic organelles that are at the heart of eukaryotic
cell metabolism (Nunnari & Suomalainen 2012). Their hallmark ability to efficiently catalyze the
production of ATP via oxidative phosphorylation made them pivotal players in the evolution of
the eukaryotic cell (Lane & Martin 2010). Their transformation into efficient energy machines
was enabled by a reduction in the size of the symbiont genome and the corresponding transfer
of many of the genes to the nucleus (Gabaldon & Huynen 2007). As a consequence, the human
mitochondrial chromosome is only 16 kb in size but still encodes essential RNA components of the
mitochondrial translation system and 13 proteins, which are core constituents of the mitochondrial
respiratory complexes I–IV embedded in a specialized invaginated region of the inner membrane,
termed crista, where they form supermolecular complexes that work cooperatively.

Respiratory complex subunits encoded by the mitochondrial and nuclear genomes coordinately
combine in a balanced manner that is tightly regulated and monitored by stress signaling path-
ways, such as the mitochondrial unfolded response (Pellegrino et al. 2013). Respiratory complexes
catalyze the transfer of electrons from NADH generated by the TCA cycle to create a proton
motive force across the inner membrane, used to drive ATP production via the turbine action of
the ancient terminal ATP synthase complex. The mitochondrial electrochemical gradient is an
essential feature of the organelle, driving many fundamental processes, such as organelle biogen-
esis via protein import and calcium buffering. Loss of the electrochemical gradient is emerging as
a signal for mitochondrial dysfunction to activate stress pathways.

Most of the mitochondrial proteome is nuclear-encoded and composed of a mosaic of proteins
derived not only from the endosymbiont but also from other prokaryotic and eukaryotic origins
(Flis & Daum 2013, Forner et al. 2006, Mootha et al. 2003, Sickmann et al. 2003). As a consequence,
extant mitochondria have acquired biogenesis machinery to import nuclear-encoded proteins and
lipids (Neupert & Herrmann 2007, Schmidt et al. 2010). They have also acquired new machinery
that is responsible for controlling their behavior inside the cell. This machinery generates a
dynamic mitochondrial compartment, whose structure and function are highly integrated with
cellular status and with another ancient endomembrane, the endoplasmic reticulum (ER), which,
as we review, is emerging as an intimate partner (also reviewed in Rowland & Voeltz 2012).
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The dynamic nature of mitochondrial behavior manifests in the array of structures mitochon-
dria form at steady state in different human cell types, ranging from highly connected tubular
structures distributed throughout the cell, as observed in cardiomyocytes, to fragmented aggre-
gates localized to a defined cellular position, as in oocytes (Kasahara et al. 2013, Pepling et al.
2007). The heteromorphic and dynamic nature of mitochondria is required for the placement
of these organelles at sites of energetic demand and is the product of diverse machineries that
control fusion, division, positioning, motility, and ultrastructural organization. Mitochondrial be-
haviors must also coordinate the distribution and accurate inheritance of mtDNA to maintain
mitochondrial function. The mitochondrial chromosome is packaged into proteinaceous com-
plexes termed nucleoids, which are present in cells at copy numbers that are in vast excess to that
of nuclear chromosomes and are distributed throughout mitochondrial networks (as reviewed in
Bogenhagen 2012). Here, we provide an overview of the molecular features and mechanisms of
the machines that control mitochondrial behavior, mtDNA transmission, lipid composition, and
internal architecture and describe how the events they catalyze are harnessed for mitochondrial
and physiological functions in homeostasis and stress conditions.

DYNAMIN-RELATED GTPASES CONTROL
MITOCHONDRIAL DYNAMICS

The opposing processes of division and fusion work in concert to maintain the appropriate shape,
size, and number of mitochondria (Bleazard et al. 1999, Nunnari et al. 1997, Sesaki & Jensen
1999). Reduced mitochondrial fusion results in uncountered division and fragmented mitochon-
dria, whereas impaired division leads to a hyperfused mitochondrial network (Hoppins et al. 2007).
This morphological remodeling is critical for regulating organelle physiology and acts along with
motility and tethering mechanisms to adapt mitochondrial positioning and function to the bioen-
ergetics needs of the cell. Remarkably, the machines responsible for mitochondrial division and
fusion belong to the same family of highly conserved large dynamin-related GTPase proteins
(DRPs) that, through their ability to self-assemble and hydrolyze GTP, control membrane re-
modeling events (Danino & Hinshaw 2001, Hoppins et al. 2007, Praefcke & McMahon 2004, van
der Bliek 1999). This is in contrast to their bacterial ancestors, which use the cell cycle–dependent
placement of a tubulin-like FtsZ cell-division machine to coordinate cell division with chromo-
some segregation. Except in the most basal eukaryotes, mitochondria have lost FtsZ-like and also
actin-like cytoskeletal proteins (Erickson 2000, Osteryoung & Nunnari 2003). However, as we
discuss later, mitochondrial fusion and division activities are still critical for the distribution and
inheritance of mtDNA in organisms ranging from yeast to humans.

Dynamin GTPases are found in all kingdoms of life, and evidence suggests that their shared
function is membrane remodeling. The prototypic member of the DRP family, dynamin, func-
tions by forming helical structures that wrap around the necks of clathrin-coated pits to mediate
their scission from the plasma membrane during endocytosis (as reviewed in Faelber et al. 2013,
Hinshaw 2000, Schmid & Frolov 2011). Similarly, mitochondrial division is catalyzed by a cytoso-
lic DRP, DRP1/Dnm1, in mammals/yeast that forms helical structures whose dimensions match
mitochondria (Ingerman et al. 2005, Labrousse et al. 1999, Yoon et al. 2001). Fusion of the mi-
tochondrial outer and inner membranes requires the action of two evolutionarily distinct integral
membrane DRPs, MFN1 and MFN2/Fzo1 in mammals and yeast and OPA1/Mgm1 in mammals
and yeast, respectively (Chen et al. 2003, Faelber et al. 2011, Hales & Fuller 1997, Hermann et al.
1998, Meeusen et al. 2006, Santel & Fuller 2001). The importance of balanced mitochondrial
dynamics is exemplified by the severe pathophysiological consequences of disrupting any of these
processes. Mice genetically deficient in MFN1, MFN2 (Chen et al. 2003), OPA1 (Alavi et al. 2007,
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Davies et al. 2007), or DRP1 (Ishihara et al. 2009, Wakabayashi et al. 2009) do not survive past
mid-gestation, and pathogenic mutations in the human orthologs of MFN2 and OPA1 lead to the
neurodegenerative diseases Charcot-Marie-Tooth syndrome (CMT) and dominant optic atrophy,
respectively (Alexander et al. 2000, Delettre et al. 2000, Waterham et al. 2007, Zuchner et al. 2004).

Phylogenetic analysis suggests that the outer mitochondrial membrane fusion DRP MFN/Fzo1
is related to bacterial DRPs, evolved from an ancestral progenitor (Bramkamp 2012). Although
their physiological roles are poorly described, most bacteria encode two DRPs from a gene dupli-
cation event, organized in an operon, or, in some cases, such as in Staphylococcus aureus, two DRP
gene paralogs encode a single tandem DRP protein (Burmann et al. 2011). Evidence suggests that
bacterial DRP paralogs coassemble, with each performing a nonredundant function (Burmann
et al. 2011). This theme is also apparent in the mitochondrial fusion dynamins, where, in meta-
zoans, outer membrane fusion is mediated by the two distinct, but highly related, MFN1 and
MFN2 proteins, which can form heterocomplexes but are functionally nonredundant (Detmer &
Chan 2007). The inner membrane fusion DRPs, Mgm1 and OPA1, are processed by proteases to
produce both long, membrane-associated and short, soluble isoforms. They also perform nonre-
dundant roles in fusion and potentially function independently in the regulation of additional
membrane shaping pathways, such as mitochondrial division and inner membrane crista forma-
tion, in an isoform-specific manner (Frezza et al. 2006, Griparic et al. 2007, Herlan et al. 2003,
McQuibban et al. 2003, Meeusen et al. 2006, Song et al. 2007).

Biochemical and structural analyses have illuminated shared mechanisms of action of DRPs.
DRPs possess up to four identifiable regions: a highly conserved GTPase (G) domain; two helical
regions, which have been termed the middle domain (MD) and GTPase effector domain (GED);
and a highly variable region between the MD and GED, termed insert B (Figure 1). These ele-
ments function together to mediate the self-assembly of DRPs into variable structures, which as-
sociate with membranes and influence their structure. Self-assembly requires GTP, and formation
of these higher-order structures stimulates GTP hydrolysis, which is essential for DRP function
(Ingerman et al. 2005, Muhlberg et al. 1997, Warnock et al. 1996). In vitro studies have demon-
strated that DRPs typically have relatively low affinities for GTP and GDP (Eccleston et al. 2002),
but the rates of assembly-stimulated GTP hydrolysis vary greatly among the members. Higher
rates have been reported for members mediating membrane scission in comparison to membrane
fusion members, which may be relevant for mechanistic differences in these opposing processes.

Atomic structures of diverse members of the DRP family from bacteria to human indicate that
the MD and a portion of the GED cooperate to form a helical bundle, termed the stalk (Faelber
et al. 2011, Ford et al. 2011, Frohlich et al. 2013, Gao et al. 2010, Low et al. 2009, Prakash et al.
2000). The stalk domains of DRPs encode information for the specificity of DRP oligomerization
and for the geometry of higher-order DRP assemblies. In the scission DRPs, such as dynamin and

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 1
Common architecture of dynamin-related proteins. (a) (top) Schematic representation of human dynamin-1 domains. (bottom left)
Crystal structure of nucleotide-free dynamin-1 lacking its proline-rich domain (PRD). The protein harbors a mutation G397D that
blocks the assembly of dimeric dynamin into higher-order oligomers (Ford et al. 2011). (bottom middle) Crystal structure of bacterial
dynamin-like protein (BDLP) bound to GDP (Low & Lowe 2006) (right) and modeled from a cryoelectron reconstitution of
GMPPNP-bound BDLP decorating a lipid tube (Low et al. 2009) (left). (bottom right) Crystal structures of the soluble domain of
GDP-bound atlastin-1 (Byrnes & Sondermann 2011). All structures are shown as chain-bows, with colors progressing from cold to hot
in an N- to C-terminal direction. (b) Schematic representation of the functional domains of the (top) yeast and human division and
(bottom) fusion machinery compared with the prototypical fission DRP, dynamin-1, and the minimal fusion DRP, atlastin-1.
Abbreviations: aa, amino acids; BSE, bundle signaling element; GD, GTPase domain; GED, GTPase effector domain; MD, middle
domain; PH, pleckstrin homology.
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DRP1, the stalk mediates the formation of an obligate dimer and two additional interfaces, which
mediate dimer-dimer interactions (Faelber et al. 2011, Ford et al. 2011, Frohlich et al. 2013). In
contrast, the mitochondrial fusion DRPs OPA1 and Mgm1 are not obligate dimers, but they also
assemble via their respective stalks into higher-order fusion-promoting structures that may not
be helical (Ban et al. 2010, DeVay et al. 2009).

Minimal DRP domain structures have illuminated another critical and common DRP assembly
interface: a dimer interface between G-G domains that varies between members, but whose for-
mation is GTP-dependent and required for assembly-stimulated GTP hydrolysis (Chappie et al.
2009, 2010). G-G interface formation is regulated in many DRPs by a distinct three-helix-bundle
structural element located proximal to the GTPase domain, termed the bundle signaling element
(BSE). The BSE is composed of helices from the N and C termini of the G domain and the C
terminus of the GED. In dynamin, GTP binding facilitates G-G dimer formation across helical
rungs by changing the orientation of the BSE relative to the G domain to a more open conformation
(Chappie et al. 2011). Conformational changes in the G-BSE created by the GTP cycle are likely
transduced to the stalk for membrane scission. Indeed, the stalk of bacterial dynamin-like protein
(BDLP) transitions from a closed to an open conformation in a GTP-dependent manner, consis-
tent with the possibility that the stalk also transduces GTP-dependent conformational changes
in other DRPs (Low & Lowe 2006, Low et al. 2009). Not all DRPs have a defined BSE, such as
atlastin, a distantly related DRP that catalyzes homotypic ER fusion (Bian et al. 2011, Byrnes &
Sondermann 2011, Liu et al. 2012b, Morin-Leisk et al. 2011, Moss et al. 2011, Orso et al. 2009).
In atlastin, the G domain is flexibly linked to the stalk via proline residues, and different atlastin
structures indicate that a similar conformation change alters the relative orientation of the G-stalk
domains. These changes in atlastin in the context of a G-G dimer that forms across membranes,
as opposed to helical rungs, have been proposed to generate force for membrane tethering during
fusion.

The insert B region is the most highly variable between DRP members and is situated at
the base of the stalk. In dynamin, this region forms a pleckstrin homology domain that binds to
PtdIns-4,5 P2 (PIP45P2) lipids to mediate plasma membrane targeting and likely contributes to
membrane scission by sensing high membrane curvature and inserting into the membrane bilayer
(Ferguson et al. 1994, Mehrotra et al. 2014, Ramachandran et al. 2009). Similarly, the inner
membrane fusion DRPs, Mgm1 and OPA1, are selectively targeted to the inner membrane via
their respective insert B regions, which bind cardiolipin (CL), a unique mitochondrial lipid that is
made and highly enriched in the inner membrane (Ban et al. 2010, DeVay et al. 2009, Rujiviphat
et al. 2009). As in atlastin, in the mitochondrial outer membrane fusion DRPs, Fzo1/MFNs, this
region is composed of a set of transmembrane helices that anchor these proteins into the outer
membrane and are also critical determinants of membrane fusion (Hermann et al. 1998, Liu et al.
2012b, Moss et al. 2011, Rapaport et al. 1998). The insert B region in the mitochondrial division
DRPs, Dnm1 and DRP1, also likely binds lipids, but this region has also been proposed to directly
mediate interactions with mitochondrial outer membrane proteins responsible for division DRP
targeting (Bui et al. 2012, Gallego et al. 2010, Strack & Cribbs 2012). Evidence suggests that, in
addition to its role in targeting, insert B regions are responsible for the regulation of stalk-driven
assembly through an occlusion mechanism (Kenniston & Lemmon 2010, Mehrotra et al. 2014,
Ramachandran et al. 2009, Strack & Cribbs 2012). Consistent with this idea, insert B regions are
hot spots for regulation in the form of splice variance and posttranslational modifications and for
human disease-linked mutations (for example, see Cribbs & Strack 2007, Kenniston & Lemmon
2010, Strack et al. 2013).

Thus, a common core mechanism for DRP membrane remodeling is emerging that exploits
the modular nature of DRP architecture for the opposing processes of membrane scission and
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fusion. Membrane scission DRPs may share the ability to form helical structures to mediate mem-
brane scission via G-G interactions between adjacent rungs. In contrast, the fusion DRP atlastin
is thought to drive membrane fusion via interactions between G-G domains across membranes.
Consistent with the idea of a trans interaction, both Fzo1 and MFNs, which have domain architec-
ture similar to that of atlastin, are required on both mitochondrial partners for mitochondrial outer
membrane fusion (Hoppins et al. 2011b, Meeusen et al. 2004). However, the MFN heptad repeat
(HR) 2 region, which is predicted to comprise part of the stalk domain based on the structure of the
related BDLP, forms an antiparallel coiled-coil structure, proposed to tether opposing mitochon-
drial membranes early during fusion (Koshiba et al. 2004, Low & Lowe 2006, Low et al. 2009).
Evidence in yeast suggests that Fzo1 mediates trans G-G interactions across membranes (Anton
et al. 2011). Thus, future experiments will be needed to determine whether both G-G and HR2
tethering mechanisms are important for mitochondrial outer membrane fusion. Interestingly, the
inner membrane fusion DRPs, Mgm1/OPA1, possess a domain architecture that is more related
to scission DRPs. In this context, OPA1 is not required on both mitochondrial partners for inner
membrane fusion (Hoppins et al. 2011b, Song et al. 2009). These observations raise the possibility
that the DRP mechanisms for outer and inner membrane fusion are fundamentally different.

Mitochondrial Fusion: Mechanisms and Physiological Roles

Little is understood about how the activities of the outer and inner membrane mitochondrial
fusion DRPs are coordinately regulated at the molecular level. Data from both cell-based and
in vitro fusion assays indicate that although mitochondrial outer and inner membrane fusion
events are often coordinated in cells, they are separable and mechanistically distinct (Legros et al.
2002, Meeusen et al. 2004). This raises the interesting possibility that outer and inner membrane
dynamics are separately controlled and functionally differentiated. In this context, the action of
DRP1 on the outer membrane can mediate inner membrane scission without outer membrane
scission (Labrousse et al. 1999, Shim et al. 2012). The inner membrane structure formed from
such events may be separately resolved via the action of the inner membrane fusion machine
alone. Such an independent inner membrane dynamics pathway would likely be important for
super organization of the organelle.

In yeast, the non-DRP outer membrane protein, Ugo1, is essential for fusion and, based
on circumstantial evidence, has been proposed to coordinate outer and inner membrane fusion
(Coonrod et al. 2007; Sesaki & Jensen 2001, 2004; Wong et al. 2003). Ugo1 has been proposed
to function in the fusion of each mitochondrial membrane at a step after membrane tethering
and needs to be present on only one mitochondrial partner (Anton et al. 2011, Hoppins et al.
2009). Ugo1 physically interacts with both Fzo1 and Mgm1, and the interaction between Fzo1
and Mgm1 requires Ugo1 (Sesaki & Jensen 2004, Wong et al. 2003). Although the exact molecular
role of Ugo1 has not been resolved, data suggest that it can act as an Fzo1 effector to facilitate its
assembly in a GTP-dependent manner, to promote tethering of mitochondrial outer membranes
(Anton et al. 2011). Ugo1 belongs to the mitochondrial carrier protein family, whose members are
responsible for transporting various molecules, including fatty acids, across the inner membrane
(Belenkiy et al. 2000). As such, Ugo1 may facilitate lipid mixing at the site of fusion by directly
modulating the lipid and/or chemical environment (Hoppins et al. 2009). In this context, in mam-
mals, a mitochondrial-anchored phospholipase D enzyme, MitoPLD, facilitates MFN-mediated
mitochondrial fusion through the generation of phosphatidic acid (PA) via the hydrolysis of CL
(Choi et al. 2006). Thus, MitoPLD and Ugo1 may serve to directly modify bilayer structure and/or
produce a lipid mark to facilitate the spatial regulation of Fzo1/MFN-mediated membrane fusion.
Mammals also possess outer membrane-localized carrier-like proteins, such as MTCH2, which
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functions during apoptosis to facilitate the activation of the proapoptotic Bcl2 family member,
Bax (Palmieri 2013, Robinson et al. 2012). Future work is needed to determine whether they, like
Ugo1, also function in mitochondrial dynamics.

The yeast F-box protein, Mdm30, is also a regulatory fusion component (Anton et al. 2011,
Cohen et al. 2011, Dürr et al. 2006, Escobar-Henriques et al. 2006, Fritz et al. 2003, Neutzner &
Youle 2005). It is proposed to function after Ugo1 to ubiquitylate Fzo1 following GTP hydroly-
sis, potentially driving membrane fusion via Fzo1 proteasomal degradation. Under mitochondrial
stress, K63 ubiquitylation of the mammalian MFNs by the E3 ligase Parkin has also been reported,
which leads to proteasome-dependent degradation of MFN and subsequent inhibition of mito-
chondrial fusion during the process of mitophagy (Chan et al. 2011, Chen & Dorn 2013, Gegg
et al. 2010, Ziviani et al. 2010). In other cases, MFN ubiquitylation may also promote fusion, as a
recently identified small molecule inhibitor of the mitochondrial deubiquitinase enzyme, USP30,
increased ubiquitylation of MFNs and promoted MFN-mediated fusion in a manner not depen-
dent on proteolytic turnover (Yue et al. 2014). Thus, a role of ubiquitin as a posttranslational
regulator of mitochondrial fusion may be conserved, but the exact mechanistic mode likely varies.

The mechanistic significance of two Fzo1-like proteins, MFN1 and MFN2, in mammalian cells
is not clear. Evidence suggests that although there is some redundancy, they are also specialized.
In vitro, the formation of tethered mitochondria occurs more readily with mitochondria from
cells overexpressing MFN1 (Ishihara et al. 2004), and only MFN2 has been shown to associate
with the Bcl2 proteins, Bax and Bak, which, in addition to regulating cell death, also alter MFN2-
dependent fusion (Hoppins et al. 2011b, Karbowski et al. 2006). Pathogenic mutations have been
reported only in MFN2 and result in CMT syndrome 2A2 (CMT2A2), a peripheral neuropathy
associated with axonal degeneration of neurons with long axonal projections (Kijima et al. 2005,
Zuchner et al. 2006). MFN2CMT2A2 mutations can be complemented in cells by the formation of
Mfn1–Mfn2CMT2A2 hetero-oligomers but not homo-oligomers of Mfn2+–Mfn2CMT2A2 (Detmer
& Chan 2007). This observation provides insight into the tissue specificity of CMT2A2 as the
relative levels of MFN2 and MFN1 expression vary in tissues and indicates that the control of
the expression levels of each protein serves to regulate mitochondrial dynamics in a tissue-specific
manner. The sensitivity of this type of neuron to loss of MFN2 underscores an important link
between mitochondrial dynamics and motility. Indeed, MFN2 is required for the transport of
axonal mitochondria and has been reported to associate with the Miro/TRAK/Milton complex,
which regulates mitochondrial motility (Baloh et al. 2007, Misko et al. 2010).

The mitochondrial inner membrane DRPs, Mgm1 and OPA1, are regulated by divergent
proteolytic mechanisms. Proteolytic processing of Mgm1/OPA1 generates long isoforms, N-
terminally anchored in the inner membrane, and short, soluble isoforms in the intermembrane
space (Duvezin-Caubet et al. 2006, Esser et al. 2002, Griparic et al. 2007, Herlan et al. 2003,
Ishihara et al. 2006, Song et al. 2007). Functional and biochemical studies indicate that long- and
short-OPA1/Mgm1 isoforms assemble together to mediate efficient fusion but are functionally
nonredundant, similar to the MFNs and bacterial DRPs (DeVay et al. 2009, Meeusen et al. 2006,
Zick et al. 2009). Processing of Mgm1 is mediated by the rhomboid protease, Pcp1, at a site whose
accessibility responds to mitochondrial ATP levels, thereby coupling fusion to bioenergetic status
(Herlan et al. 2004). OPA1 biogenesis is more complicated, influenced at the transcriptional
level, where splicing yields a total of eight variants whose relative functions are unknown. Splice
variation dictates the mode of OPA1 proteolytic processing. OPA1 exons 5 and 5b introduce
two distinct cleavage sites, S1 and S2, used by the metalloprotease OMA1 and the intermembrane
space AAA protease, YME1L, respectively. YME1L mediates the constitutive processing of OPA1,
presumably during its import and sorting, but it is possible that processing is linked to the fusion
event per se (Griparic et al. 2007, Ishihara et al. 2006, Song et al. 2007). In contrast, OMA1
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cleaves at the OPA1 S1 site in a postsorting mode under conditions of mitochondrial stress, such
as depolarization, leading to the conversion of long-OPA1 isoforms to short-OPA1, inhibition of
fusion, and mitochondrial fragmentation (Baker et al. 2014, Duvezin-Caubet et al. 2006, Guillery
et al. 2008, Ishihara et al. 2006, Song et al. 2007). In this manner, OMA1 functions as a stress
integrator that regulates metabolism and promotes mitophagy and cell death (Baker et al. 2014,
Quirós et al. 2012). Recent data suggest that the long-OPA1 isoform is sufficient to mediate
efficient fusion and that short-OPA1 isoforms may independently function to promote stress-
induced mitochondrial division (Anand et al. 2014). This represents a new way of thinking about
the roles of OPA1 isoforms in mitochondrial dynamics and points to the importance of balance
between the long and short isoforms for homeostasis.

Physiologically, one of the most fundamental roles of mitochondrial fusion is in the mixing
of mitochondrial components (Chen et al. 2003, Eura et al. 2003, Legros et al. 2002, Nunnari
et al. 1997) (Figure 2a). Content transfer also occurs during transient kiss-and-run mitochondrial
merging events (Liu et al. 2009). Although cristae content appears to be preserved during mito-
chondrial fusion (Wilkens et al. 2013), content mixing can complement defective mitochondria
through the redistribution of mitochondrial DNA, mRNA, and proteins. Indeed, there is increased
mitochondrial heterogeneity in MFN1/2- and OPA1-null cells, which lose membrane potential
in a subset of organelles (Chen et al. 2003, 2005). Intriguingly, although cells singly deficient in
either MFN1 or MFN2 show a fragmented phenotype, they still retain residual fusion activity and
escape major mitochondrial dysfunction (Chen et al. 2005), suggesting that it is the intermixing
of mitochondrial content, rather than the tubular network itself, that is essential for maintaining
respiratory capacity.

The basis of impaired respiratory function in fusion-deficient cells is not understood, but the
current dogma is that it is secondary to the loss of mtDNA. In both yeast and mammals, loss of
fusion results in lost mitochondrial genomes. Yeast lacking Fzo1 or Mgm1 are devoid of mtDNA
(Hermann et al. 1998, Rapaport et al. 1998), cells lacking OPA1 or both MFN1 and MFN2
contain only one-third of the normal mtDNA levels, and many mitochondria lack nucleoids (Chen
et al. 2003, 2005). Fusion is also thought to be important for maintaining mtDNA integrity and
replication fidelity. In a muscle-specific MFN1/2-null mouse, there is, in addition to mitochondrial
genome depletion, increased frequency of point mutations and deletions in muscle mtDNA, which
occur before any phenotypic changes are detected (Chen et al. 2010).

Unlike the tightly regulated transmission of nuclear DNA, mtDNA inheritance is stochastic,
or relaxed, in nature, leading to daughter cells acquiring different populations of mtDNA and
to unequal segregation of genomes within mitochondria (Birky 1994). In the case of somatic
mtDNA mutations, relaxed segregation leads to the coexistence of both wild-type and mutant
mtDNA within the same cell and at varying ratios between cells, termed heteroplasmy. Below a
given threshold, mutant mtDNA in a heteroplasmic state is tolerated (Nakada et al. 2001), but
this depends critically on fusion. Mice carrying an error-prone mtDNA polymerase are viable
but cannot survive a combined reduction in fusion through MFN1 deletion (Chen et al. 2010).
Consistently, a hybrid formed from two mutant HeLa cell lines carrying pathogenic mutations
in different mitochondrial tRNA genes has normal respiratory activity as a result of fusion and
content mixing (Ono et al. 2001).

Mitochondrial Division: Mechanisms and Physiological Roles

The best characterized system for mitochondrial division regulation is the yeast Saccharomyces
cerevisiae. The yeast division machinery consists of the DRP Dnm1; a C-tail-anchored outer
membrane protein, Fis1; and an adaptor-like WD-containing protein, Mdv1. The cytosolic N
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terminus of Fis1 forms a tetratricopeptide repeat–like domain that interacts directly with Mdv1
(Dohm et al. 2004, Karren et al. 2005, Mozdy et al. 2000, Suzuki et al. 2003, Tieu & Nunnari 2000,
Tieu et al. 2002). Mdv1 functions as a molecular bridge between mitochondrial-anchored Fis1
and soluble Dnm1, and together Fis1 and Mdv1 function to target Dnm1 to the mitochondrial
surface (Bui et al. 2012, Cerveny & Jensen 2003, Cerveny et al. 2001, Tieu & Nunnari 2000,
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Tieu et al. 2002, Zhang et al. 2012). Mdv1 also functions as a regulator of mitochondrial division
post-targeting, to nucleate the assembly of Dnm1 on the mitochondrial surface (Lackner et al.
2009, Naylor et al. 2006). Indeed, biochemical and cytological evidence suggests that the native
yeast division machine is a helical structure composed of coassembled Dnm1 and Mdv1 (Lackner
et al. 2009). Caf4 is an Mdv1 paralog that also interacts with Dnm1 but whose role in division is
minimal (Griffin et al. 2005, Guo et al. 2012). Recent data indicate that Caf4 interacts with Dnm1
at the Num1 mitochondrial tether, which positions mitochondria at the mother cell cortex during
cell division, as discussed below (Lackner et al. 2013, Schauss et al. 2006). Although the functional
significance of Dnm1 at Num1 tethers is not clear, its unique dependence on Caf4 suggests that
Caf4 functions as a different type of effector to differentiate Dnm1 activity at Num1-tethering
sites from its activity at mitochondrial division sites. Indeed, DRPs in general are likely to be
regulated by both positive and negative effectors.

In mammalian cells, several non-DRP proteins have been identified as receptors for DRP1
targeting to mitochondria; however, their precise regulatory roles have not yet been determined.
A structural Mdv1 ortholog is not apparent in higher eukaryotes, and at least four integral outer
membrane proteins have been implicated as DRP1 receptors, namely, hFIS1, homologous to
the yeast division component, MFF, MiD49, and MiD51 (Gandre-Babbe & van der Bliek 2008,
Palmer et al. 2011, Stojanovski et al. 2004, Yoon et al. 2003, Zhao et al. 2011). Evidence for a
direct role of hFIS1 in mitochondrial division is controversial, but independent roles for MFF,
MiD49, and MiD51 in mitochondrial DRP1 targeting are undisputed (Koirala et al. 2013, Liu
et al. 2013, Losón et al. 2013, Palmer et al. 2013). Although MFF promotes DRP1 recruitment
and division activity, the role of the MiDs in DRP1 recruitment may not be directly linked with
its activation. Overexpression of either MiD49 or MiD51 accumulates and sequesters DRP1 on
the mitochondrial surface, resulting in an inhibition of division and formation of a fused mito-
chondrial network. A hint of the molecular basis of MiD-mediated DRP1 inactivation comes from
the observation that MiD overexpression results in the accumulation of the S637 phosphorylated
form of DRP1 on mitochondria (Losón et al. 2013). Protein kinase A (PKA) targeted to mito-
chondria via mitochondrial A-kinase anchoring protein (AKAP1) has been shown to inhibit DRP1
function via S637 phosphorylation, resulting in DRP1 behavior that mimics that seen in a GTP
hydrolysis–deficient DRP mutant (Cereghetti et al. 2008, Chang & Blackstone 2007, Cribbs &
Strack 2007). Reactivation of S637-phosphorylated DRP1 is mediated by phosphatases, such as
calcineurin and mitochondrial protein phosphatase 2A, that, along with PKA/AKAP1, coordinate
mitochondrial division with signaling activities, such as neuronal development and cell death (Kim

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
Mechanistic models of mitochondrial fusion and division. (a) Schematic of mitochondrial fusion protein
topology and interactions diagraming mixing of content and compensation between healthy (left, beige) and
dysfunctional (right, red ) mitochondria. (b) Schematic of mitochondrial division machinery at endoplasmic
reticulum (ER)-mitochondria contacts. ER-mitochondrial encounter structure (ERMES) and the conserved
Miro GTPase Gem1 spatially and functionally link ER-associated mitochondrial division (ERMD) to
nucleoid segregation. The mitochondrial contact site (MICOS) complex is depicted as purple waves in the
intermembrane space. Below, a schematic model of mechanistically distinct steps in mitochondrial division:
ER-mitochondria contact initiates mitochondrial constriction potentially through an actin-based
mechanism; DRP recruitment and activation through mitochondrial receptors to mediate DRP helical
assembly and assembly-stimulated GTP hydrolysis; recruitment of additional factors, such as myosin II, to
complete scission of outer and inner membranes; and resolution of ERMD to link segregation of
mitochondria and mtDNA. Abbreviations: IMM, inner mitochondrial membrane; IMS, intermembrane
space; OMM, outer mitochondrial membrane.
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et al. 2011, Merrill et al. 2013, Slupe et al. 2013). Together, these observations suggest that MiD
proteins function as negative effectors of DRP1 to create a pool of mitochondrial DRP1 respon-
sive to specific triggers. In this context, the recently reported structure of MiD51 indicates that it
possesses a nucleotidyl transferase domain that binds GDP and ADP, as well as an independent
surface loop required for DRP1 targeting (Losón et al. 2014, Richter et al. 2014). In vitro, MiD51
inhibits DRP1 assembly and GTP hydrolysis, and ADP relieves this inhibition, suggesting that
this may be relevant for regulation in cells (Losón et al. 2014). In addition to phosphorylation
by PKA, DRP1 is posttranslationally modified by ubiquitylation, sumoylation, nitrosylation, and
phosphorylation by additional kinases (reviewed in Wilson et al. 2013). Many of these modifi-
cations in DRP1 are located in the variable insert B region, which is subject to splice variant
modification, further evidence of the regulatory significance of the domain within DRPs. The
interplay between multisite posttranslational DRP1 modifications and DRP1 effectors/receptors
in the regulation of mitochondrial homeostasis under normal and pathophysiological conditions
is thus highly complex and will require further work to elucidate.

Endoplasmic Reticulum–Associated Mitochondrial Division:
Link to mtDNA Distribution

The evolution of DRP-mediated mitochondrial dynamics raises the question of what division site
mechanism has replaced the bacterial Min system, which places the FtsZ-like division apparatus
at mid-cell to ensure faithful chromosome segregation. In eukaryotes, mitochondrial division site
placement is determined by an interorganellar interaction with the ER (Friedman et al. 2011).
Prior to DRP recruitment, ER tubules wrap around mitochondria and mark sites of mitochondrial
division, a process termed ER-associated mitochondrial division (ERMD), which is conserved from
yeast to humans (Figure 2b). Beyond division site placement, ERMD may function to create a
geometric hot spot for the assembly of the division DRP helix, where MFF is selectively recruited to
efficiently target activated DRP1 in a spatially restricted manner. Such a microdomain might also
modulate mitochondrial composition at ERMD sites to directly facilitate or recruit additional
factors on the outside and/or inside of mitochondria and promote mitochondrial division. In
mammalian cells, there is evidence for actin polymerization at the site of ERMD, mediated via
the ER-localized isoform of the formin INF2, and data indicate that myosin II is subsequently
recruited, suggesting that an actinomyosin mechanism may facilitate mitochondrial constriction
during division (Korobova et al. 2014).

The molecular basis of ERMD is best understood in yeast, where the multiprotein ER-
mitochondrial encounter structure (ERMES) is present at sites of ERMD and is required to initiate
ER-mitochondria contact. The ERMES complex tethers ER and mitochondria and is composed
of five subunits: Mdm10, 12, and 34 and Mmm1, which are each core subunits necessary for
ERMES assembly, and Gem1, which is associated with ERMES at steady state, though not re-
quired for ERMES assembly (Kornmann & Walter 2010, Kornmann et al. 2011, Richter et al.
2014). Mmm1 is an integral ER protein, whereas Mdm10 and Mdm34 are integral to the mitochon-
drial outer membrane and Mdm12 is cytosolic. Mdm12, Mdm34, and Mmm1 have synaptotagmin-
like mitochondrial-lipid-binding protein (SMP) domains that are predicted to bind and/or facil-
itate lipid transport, a function that may be intimately related to its role in ERMD (Kopec et al.
2010). Mdm10, in contrast, is a β-barrel protein that also functions as a component of the outer
membrane sorting and assembly machinery complex (Meisinger et al. 2004, 2007; Yamano et al.
2010a,b). Gem1 is a highly conserved Miro GTPase that harbors two GTPase domains flanking
two EF-hand motifs and is tail-anchored into the mitochondrial outer membrane (Frederick et al.
2004). Although they are present in their ancestors, there are no obvious homologs of ERMES
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proteins in animals, indicating that the components may have significantly diverged at the se-
quence level or were replaced by other ER-mitochondria tethering complexes (Wideman et al.
2013).

ERMES forms a discrete and finite number of interfaces between the ER and mitochondria
(Kornmann et al. 2009, Murley et al. 2013). In addition to marking sites of division, ERMES
structures are tightly linked to a subset of nucleoids engaged in replicating mtDNA (Hobbs
et al. 2001, Meeusen & Nunnari 2003). At sites of ERMD, nucleoids segregate by an unknown
mechanism and, in a majority of cases, are distributed to both tips of divided mitochondria (Murley
et al. 2013). Deletion of core ERMES components disrupts nucleoid structure and results in a loss
of mitochondrial genomes (Boldogh et al. 2003, Hanekamp et al. 2002, Youngman et al. 2004), in
addition to causing dramatic effects on mitochondrial morphology. In mammalian cells, nucleoids
also localize at mitochondrial tips (Garrido et al. 2003). Silencing of DRP1 leads to cells with
large areas of hyperfused mitochondria devoid of nucleoids and the formation of large aberrant
nucleoid structures (Ban-Ishihara et al. 2013, Parone et al. 2006), suggesting that ERMD plays a
fundamental role in coordinating division with the distribution of the replicating nucleoid. In this
context, ERMES has also been implicated as a bridge between mitochondria and the actin network,
suggesting that it may serve to link and coordinately drive nucleoid segregation, mitochondrial
constriction during division, and mitochondrial distribution after division (Boldogh et al. 2003).
Thus, the process of ERMD and nucleoid segregation in yeast may fundamentally be related to
the role of actin in ERMD in mammalian cells.

During division, Gem1 is required for the distribution of daughter mitochondria following
ERMD (Murley et al. 2013). The metazoan orthologs, Miro1/2, regulate mitochondrial motility,
and Gem1 may function similarly, by recruiting yeast-specific motility factors to mitochondrial
tips to promote the resolution of daughter mitochondria following division. However, it is also
possible that Gem1’s role in ERMD is more specific to the nucleoid. Consistent with this, Miro
homologs are absent in organisms that lack mtDNA (Vlahou et al. 2011), and Δgem1 cells rapidly
lose mtDNA (Frederick et al. 2004). Whether Miro1 and Miro2 play a similar role in mitochondrial
division and mtDNA segregation is not known.

Although division site placement involves the ER, it is not understood how placement of ER-
mitochondria contacts is achieved. These questions are related to whether, in a manner analogous
to bacterial FtsZ, there is a machine inside of mitochondria that facilitates mitochondrial division.
Indeed, nucleoid proteins required for mtDNA maintenance remain localized to discrete punctate
structures within mitochondrial tubules in the absence of mtDNA, suggesting that there may be
an internal mark associated with mitochondrial division (Meeusen & Nunnari 2003, Spelbrink
et al. 2001). In yeast, an excellent candidate for an internal membrane scission machine is the
inner membrane protein, Mdm33, which possesses matrix-localized coiled-coil regions that could
act in trans across inner membranes to mediate constriction (Messerschmitt et al. 2003).

INTERNAL DETERMINANTS OF MITOCHONDRIAL BEHAVIOR

An internal mark for the placement of mitochondrial division sites might be related to the pres-
ence of recently identified mitochondrial skeletal scaffold structures that serve to define domains
and higher-level organization of the organelle to integrate many of its functions. Mitochon-
drial scaffolds include the conserved prohibitin complex, which forms ringlike structures in the
inner membrane; the mitochondrial lipids, CL and phosphatidylethanolamine (PE); and the mi-
tochondrial respiratory complexes themselves (Osman et al. 2011, Stuart 2008). Another primary
skeletal element in mitochondria is the conserved multisubunit inner membrane associated com-
plex, MICOS (also called MitOS and MINOS) (Harner et al. 2011, Hoppins et al. 2011a, von der
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Malsburg et al. 2011). Evidence indicates that MICOS forms an extended heteromorphic structure
that organizes and potentially shapes the mitochondrial inner membrane, which is differentiated
into at least three regions that are structurally, compositionally, and functionally distinct (refer
to Figure 2b). The region closely opposed to the outer membrane is termed the boundary re-
gion and possesses the machinery required for lipid trafficking, mitochondrial protein import,
and respiratory complex assembly. The inner membrane cristae are invaginated into flat lamellar
structures with highly curved edges stabilized by the dimerization/multimerization of ATP syn-
thase complexes and house assembled respiratory complexes (Davies et al. 2012). Relatively narrow
tubules, termed cristae junctions, connect cristae to the boundary and partition intermembrane
space components, such as cytochrome c, from the boundary. Consistent with its role in organiz-
ing mitochondrial membrane domains, MICOS also serves to facilitate mitochondrial biogenesis
by interacting with components of the import and sorting machineries in the outer mitochondrial
membrane (von der Malsburg et al. 2011). Super-resolution imaging has revealed that mammalian
nucleoids are tightly associated with inner membrane cristae (Brown et al. 2011). Thus, these
mitochondrial scaffolds, as well as the mitochondrial respiratory complexes themselves, may play
important roles in nucleoid positioning and segregation. Consistent with this possibility, elements
of the MICOS structure appear adjacent to nucleoids, and loss of an intact MICOS complex leads
to nucleoid aggregation (Itoh et al. 2013). How MICOS interacts and is integrated with other
scaffolding components to create higher mitochondrial organization is an outstanding question.

MOTILITY AND TETHERING: POSITIONING AND INHERITANCE
INTEGRATED WITH DYNAMICS

The overall behavior of mitochondria is also determined by mechanisms that actively transport and
tether mitochondria at defined positions in cells. In yeast, a portion of the mitochondrial network
is transported in a directed manner via an actin-based mechanism into the daughter bud of dividing
cells (Simon et al. 1997, Yang et al. 1999). Transport is driven in part by the class V myosin motor,
Myo2, as mutant myo2 cells have defects in daughter cell mitochondrial distribution (Altmann
et al. 2008; Fortsch et al. 2011; Itoh et al. 2002, 2004), as do cells lacking Ypt11, a Rab-type
GTPase reported to interact with Myo2 in directing mitochondrial inheritance (Itoh et al. 2002,
Lewandowska et al. 2013), or Mmr1, an outer membrane protein that functions as a cargo adaptor
protein for Myo2 recruitment to mitochondria (Chernyakov et al. 2013, Eves et al. 2012, Itoh
et al. 2004). Whether this machinery works as a complex to actively transport mitochondria to the
bud, or whether components function to tether the network or other recruitment factors within
the daughter cell, is still a matter of debate (Boldogh et al. 2004, Frederick et al. 2008, Shepard
et al. 2003, Swayne et al. 2011). Additional transport mechanisms likely exist, as movement is
delayed but not blocked in Ypt11- or Mmr1-deficient cells (Itoh et al. 2002, 2004). A nonmotor
Arp2/3 transport complex has been proposed to function via ERMES and transport mitochondria
through the force generated by actin polymerization (Boldogh et al. 2001, Fehrenbacher et al.
2005). In metazoans, in contrast, mitochondria are primarily transported on microtubules via
kinesin and dynein-based motility mechanisms, which have been proposed to function together
in a complex(es) with Miro1/2 and the adaptor protein Milton/TRAK (as reviewed by Fransson
et al. 2006, Glater et al. 2006, Guo et al. 2005, Misko et al. 2010, Wang & Schwarz 2009, Wang
et al. 2011). Thus, although the Miro GTPase family is remarkably conserved, the cytoskeletal
mode of mitochondrial transport is divergent in yeast and metazoans, whereas in the Dictyostelium
amoeba, Miro is not required for microtubule-dependent mitochondrial transport (Vlahou et al.
2011). This raises the possibility that the role of Miro in mitochondrial transport is more complex,
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perhaps in negotiating the contact between the mitochondria and ER during motility (Friedman
et al. 2010).

The ER has also been implicated as a core component of mitochondrial tethering complexes
(Lackner et al. 2013, Swayne et al. 2011). In yeast, there are two ER-linked mitochondrial tethers.
During cell division, mitochondria in daughter cells are anchored to the cortical ER by Mmr1
(Itoh et al. 2004, Swayne et al. 2011), whose mRNA (Shepard et al. 2003) and protein (Swayne et al.
2011) are actively targeted to mitochondria-ER contact sites in the growing bud. How the Mmr1
tethering role relates to its role as a transport adaptor is unclear and may reflect two distinct,
but coordinated functions for the protein. In opposition, in the mother cell, mitochondria are
retained by the cortex-associated protein Num1 (Farkasovsky & Küntzel 1995, Heil-Chapdelaine
et al. 2000, Klecker et al. 2013, Lackner et al. 2013). Num1 functions antagonistically to Mmr1 to
maintain the distribution of mitochondria in both mother and daughter cells, as there is a strong
positive interaction between the NUM1 and MMR1 genes (Hoppins et al. 2011a) and deletion of
NUM1 rescues the inheritance defect of Δmmr1 cells (Klecker et al. 2013). Num1 is a large, mul-
tidomain protein, which contains a putative pleckstrin homology domain that selectively interacts
with plasma membrane PIP lipids and is essential for the formation of an extended, multisubunit
anchor that links mitochondria, ER, and the plasma membrane/cortex of the cell (Lackner et al.
2013). Although the ER is involved in both Num1- and Mmr1-dependent mitochondrial tether-
ing, it functions independently of ERMES or ERMD, indicating that the tethering and dynamics
machineries function in parallel pathways to control mitochondrial distribution. Although these
activities are independent, future work will be needed to unravel how they are integrated at the sys-
tems level to adapt to cellular needs. In most metazoan cell types, mitochondrial tethers have not
been characterized. The exception is in neurons, where the outer membrane protein syntaphilin
facilitates the immobilization of axonal mitochondria at active terminals (Chen & Sheng 2013).
Syntaphilin has been suggested to function as a mitochondrial brake, using at least two separate
mechanisms (Chen & Sheng 2013). In vitro, it binds directly to the microtubule-based kinesin
motor, KIF5, and inhibits its motor activity, suggesting that it converts KIF5 into a component
of a static microtubule-dependent mitochondrial tether. Syntaphilin also competes for binding
with the kinesin mitochondrial adaptor Milton/TRAK to indirectly facilitate tethering. Whether
the ER plays a role in the biogenesis of the syntaphilin/KIF5 tether as it does in yeast tethering
complexes is an outstanding question. However, in both systems there is extensive interplay be-
tween the motility and tethering machines to control mitochondrial distribution in an activity-
and spatially specific manner.

MITOCHONDRIAL LIPID HOMEOSTASIS

Mitochondrial-ER contact sites likely impinge on many aspects of mitochondrial biology by reg-
ulating the distribution of lipids to coordinate the activities of proteins involved in mitochondrial
dynamics and positioning, structure, and function. Consistent with this, many of the molecular
components that directly regulate mitochondrial dynamics, tethering, and motility possess either
integral membrane domains or domains that respond to and are recruited by specific lipid species.
Thus, mitochondrial lipid homeostasis dramatically impacts the organization and behavior of
mitochondria.

Mitochondria have high proportions of the nonbilayer-forming lipids CL and PE, which are
made in mitochondria with precursors transported from the ER and are critical for many mi-
tochondrial functions. CL is made from PA in the inner mitochondrial membrane, whereas the
biosynthesis of PE can occur through the Kennedy pathway or by the decarboxylation of phos-
phatidylserine (PS) in mitochondria. The latter pathway contributes most of the PE found in
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mitochondria because PE generated by the Kennedy pathway is poorly incorporated into the
organelle (Birner et al. 2001, Chan & McQuibban 2012). In yeast, defects in CL and PE homeo-
stasis are synthetically lethal with loss of protein complexes that control inner membrane structure,
such as the prohibitins (Osman et al. 2009) and the MitOS complex (Hoppins et al. 2011a). CL
and PE can laterally segregate with one another in membranes (Mileykovskaya et al. 2001), and
it is speculated that this ability, in cooperation with prohibitins, creates microdomains that re-
strict the movement of lipids and proteins within mitochondria (Osman et al. 2009). CL and PE
also contribute to assembly of mitochondrial respiratory complexes, protein import machinery,
and the processing and activity of Mgm1/OPA1 (Chan & McQuibban 2012, DeVay et al. 2009,
Osman et al. 2009, Sesaki et al. 2006). Turnover of CL to PA on the mitochondrial outer mem-
brane by MitoPLD, as previously discussed, is required for mitochondrial fusion (Choi et al.
2006), indicating that turnover of lipids and remodeling of membrane composition are important
for mitochondrial fusion.

Like loss of mitochondrial membrane potential, altered lipid distribution, especially of CL, is
thought to communicate mitochondrial dysfunction. CL is predominately in the inner membrane
in cristae where it binds to cytochrome c and at inner-outer membrane contact sites. Translo-
cation of CL to the OM by phospholipid scramblase 3 is involved in autophagic destruction of
mitochondria and apoptosis by targeting LC3 and tBid, respectively (Chu et al. 2013, Lutter et al.
2000). Peroxidation of CL during oxidative stress reduces its affinity for cytochrome c and sen-
sitizes cells to apoptosis (Choi et al. 2006). CL might also contribute to apoptosis by regulating
assembly of OPA1 to facilitate cristae remodeling for efficient release of intermembrane space
components in apoptosis (Frezza et al. 2006). Sphingolipid metabolites, such as ceramide, also
contribute to apoptosis by stimulating Bax/Bak oligomerization (Chipuk et al. 2012) or by directly
forming channels in the outer membrane (Colombini 2010), but the mechanism of sphingolipid
trafficking to mitochondria is not known.

ER-mitochondria contact sites are crucial for lipid exchange between the two organelles. The
ERMES complex might facilitate exchanges simply by bringing the two organelles close together
(Kornmann et al. 2009, Nguyen et al. 2012), by binding lipids through ERMES protein lipid–
binding SMP domains (Kopec et al. 2010), or by bringing sites of membrane curvature together
(Toulmay & Prinz 2012). However, the role of ERMES in lipid exchange is controversial: Several
groups have reported altered mitochondrial lipid profiles in ERMES mutants (Kornmann et al.
2009, Osman et al. 2009, Tan et al. 2013b), whereas other groups have seen little effect of ERMES
on mitochondrial lipid profiles or ER-mitochondria lipid-exchange rates (Nguyen et al. 2012, Voss
et al. 2012). Alternative pathways for phospholipid entry into mitochondria might be activated
in ERMES mutants, thus leading to differences in results based on different strain backgrounds,
genetic suppression, or nongenetic adaptation.

The conserved PRELI proteins Ups1 and Ups2 function antagonistically to maintain proper
ratios of CL and PE in mitochondria. Ups1 (PRELI in humans) and Mdm35 (TRIAP1 in humans)
complexes transfer PA to the inner membrane, where it is converted to CL (Connerth et al.
2012, Potting et al. 2013). In contrast, Ups2 is not involved in trafficking of PS to the inner
membrane (Tamura et al. 2012), and the lower PE in ups2 mitochondria is instead probably caused
by accelerated export of PE (Osman et al. 2009). The biochemical mechanism of Ups2 remains
unknown. Mdm35 forms independent complexes with Ups1 and Ups2 and is critical for stabilizing
both proteins, protecting them from proteolysis by Yme1, and regulating the relative abundance
of CL and PE in mitochondria (Potting et al. 2013). In mammals, PRELI-TRIAP1 complexes are
a target of both cell-survival and cell-death stimuli. TRIAP1 is positively regulated by p53 (Felix
et al. 2009), and PRELI-TRIAP1-dependent transport of PA and accumulation of CL in the inner

372 Labbé · Murley · Nunnari



CB30CH15-Nunnari ARI 11 September 2014 7:9

membrane are important for apoptosis resistance (Potting et al. 2013). Proapoptotic stimuli cause
degradation of PRELI-TRIAP1 complexes, leading to reduced mitochondrial CL and enhanced
intermembrane space protein release (Potting et al. 2013). Thus, cell-survival signals enhance
mitochondrial CL synthesis, whereas cell-death signals inhibit it. Important challenges going
forward are to better understand ER-mitochondria lipid trafficking in mammals, the function of
ERMES in lipid exchange, the mechanisms of Ups2 and related proteins, the function of trace
mitochondrial lipids, and the spatial distribution of lipids within mitochondria.

MITOCHONDRIAL BEHAVIOR IS INTEGRATED WITH SIGNALING
PATHWAYS: MITOPHAGY AND CELL DEATH AS PARADIGMS

Mitochondrial dynamics have evolved to coordinate the structure and function of the mitochon-
drial network with the bioenergetics needs of the cell. Mitochondrial behavior is thus highly in-
tegrated with cellular processes, aiding in the regulation of cellular homeostasis and contributing
acute responses to stress (Figure 3). The ER appears to play a major role in regulating mito-
chondrial stress responses by coordinating the machinery of mitochondrial dynamics with that of
signaling pathways.
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Figure 3
Mitochondrial stress response pathways are integrated with mitochondrial dynamics. (right) Loss of membrane potential in
dysfunctional mitochondria leads to impaired processing of OPA1, loss of fusion activity, and mitochondrial fragmentation, which
favors destructive stress responses, such as mitophagy and apoptosis. Stabilization of PINK1 on the membrane of depolarized
mitochondria induces mitophagy. Oligomerization of Bax at sites of DRP1 accumulation, which likely represent ERMD microdomains,
induces MOMP and cytochrome c release. (left) In stress conditions where mitochondrial function must be preserved, such as
autophagy and immunity, inhibition of DRP1 recruitment promotes mitochondrial hyperfusion, allowing the organelles to maintain
ATP production and adapt bioenergetics to cellular needs.
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In conditions of starvation or metabolic stress, cells upregulate autophagy, a conserved
catabolic process responsible for the breakdown of cytoplasmic and organellar components.
In a process orchestrated by the ATG proteins, intracellular material is captured within a
double membrane autophagosome and transported to the lysosome for degradation, providing
macromolecular precursors for anabolic processes and serving in a quality-control capacity to
eliminate dysfunctional cellular components (Rabinowitz & White 2010). In mammalian cells,
starvation results in elongated, tubular mitochondria (Gomes et al. 2011, Rambold et al. 2011).
The rapid increase in cAMP in starving cells activates PKA, which phosphorylates Drp1 at S637,
preventing its recruitment to the outer membrane (Gomes et al. 2011). This hyperfusion also
depends on the activities of OPA1, MFN1, and the inner membrane protein SLP2, but not of
MFN2 (Tondera et al. 2009). Hyperfusion spares mitochondria from degradation (Gomes et al.
2011, Rolland et al. 2009). Indeed, mitochondria are a late autophagy substrate (Eiyama et al.
2013, Kristensen et al. 2008), suggesting their maintenance allows the cell to maintain stable
ATP production and meet metabolic needs while other materials are recycled (Gomes et al.
2011, Tondera et al. 2009). Interestingly, in S. cerevisiae, mitochondrial respiratory deficiency
suppresses autophagy during amino acid starvation, possibly because it is no longer energetically
beneficial to degrade cellular content when ATP can be solely generated by glycolysis (Graef &
Nunnari 2011). Hyperfusion likely represents an effort to preserve ATP levels, a more general
response to stress (Tondera et al. 2009). Consistent with this idea, in Caenorhabditis elegans,
mitochondrial hyperfusion is a transient response that compensates for complex IV deficiency
caused by a reduction in the matrix ribonucleoprotein-binding protein, LRPPRC (Rolland et al.
2013). Hyperfusion is also observed during antiviral immunity and is required for an efficient
host response (Castanier et al. 2010, Horner et al. 2011, Koshiba et al. 2011, Onoguchi et al.
2010).

Coordination of mitochondrial behavior with autophagy also occurs through contact with
the ER, which plays a determinative role in autophagosome biogenesis and cargo. The cellular
origin of autophagosomes has been debated (Axe et al. 2008, Hailey et al. 2010, Hamasaki et al.
2013, Hayashi-Nishino et al. 2009, Moreau et al. 2011, Ravikumar et al. 2010, Suzuki et al.
2001, van der Vaart et al. 2010), but several recent studies have defined ER-to-Golgi transport
components as key determinants (Ge et al. 2013, Graef et al. 2013, Suzuki et al. 2013, Tan
et al. 2013a). In both yeast and mammalian cells, autophagosome formation was functionally
and spatially associated with ER exit sites and the COPII vesicle formation machinery (Graef
et al. 2013, Suzuki et al. 2013, Tan et al. 2013a). Membrane fractionation of a cell-free assay for
mammalian phagophore initiation further identified the ER-Golgi intermediate compartment as
a primary autophagosome membrane source (Ge et al. 2013). Together with the finding that the
autophagy-specific TRAPPIII complex binds and tethers COPII vesicles to sites of autophagosome
formation in a manner similar to TRAPPI tethering of ER-derived COPII coated vesicles to
acceptor membranes (Tan et al. 2013a), these studies suggest that during starvation, COPII vesicles
are specified to an autophagic biogenesis pathway that is parallel and orthologous to the secretory
pathway. In this way, the ER is ideally positioned to integrate the autophagic response with
the physiology of other organelles, including the mitochondria. The preautophagosomal marker
ATG14 was reported to mark the site of autophagosome formation at areas of ER-mitochondrial
contact (Hamasaki et al. 2013), and tomography and fluorescence microscopy have shown transient
colocalization of autophagosomes with the outer membrane (Hailey et al. 2010). The mitochondria
may also contribute directly to autophagosome formation, as fluorescent PE generated from an
ER-derived PS analog was reported to transfer from mitochondrial to autophagosomal membranes
(Hailey et al. 2010).
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Autophagy selective for mitochondrial elimination, or mitophagy, is used as a quality-control
mechanism, presumably to target dysfunctional organelles under steady-state conditions (Kissova
et al. 2004, Schweers et al. 2007, Tal et al. 2007). Contrary to autophagy, mitophagy is associated
with mitochondrial fragmentation (Nowikovsky et al. 2007, Twig et al. 2008). A balance away
from fusion may serve to produce smaller mitochondria that can be engulfed by autophagosomes
and also functions to isolate damaged mitochondria from the rest of the network, as mitochondria
with lower membrane potential are less fusion competent (Twig et al. 2008). In mammalian cells,
depolarization directly inhibits mitochondrial fusion by enhancing OPA1 processing via OMA1
activation (Duvezin-Caubet et al. 2006, Griparic et al. 2007, Ishihara et al. 2006, Song et al. 2007),
and in yeast, low matrix ATP levels result in the loss of the short-Mgm1 isoform and accumulation
of the long (Herlan et al. 2004). Conversely, loss of mitochondrial division impairs mitophagy and
causes an accumulation of oxidized mitochondrial proteins, supporting the idea that dynamics is
linked to mitochondrial quality control (Arnoult et al. 2005b, Gomes & Scorrano 2008, Twig
et al. 2008).

In mammalian cells, mitochondria are targeted for degradation by the PINK1/Parkin ubiqui-
tylation pathway (Youle & Narendra 2011). In healthy cells, the protein kinase PINK1 is consti-
tutively imported from the cytosol into the intermembrane space, where it is cleaved by the inner
membrane protease PARL and subsequently degraded (Deas et al. 2011, Jin et al. 2010, Lin &
Kang 2008, Yamano & Youle 2013). Loss of membrane potential stabilizes PINK1 at the outer
membrane, where it recruits and activates Parkin, an E3 ubiquitin ligase. The Parkin-dependent
K63 ubiquitylation of several proteins on the mitochondrial outer membrane leads to their protea-
somal degradation and the recruitment of autophagic machinery, resulting in mitophagy (Geisler
et al. 2010, Kim et al. 2008, Matsuda et al. 2010, Narendra et al. 2010, Vives-Bauza et al. 2010).
The outer membrane MFN and Miro proteins are targets for Parkin-mediated degradation, which
causes mitochondrial fragmentation and loss of motility to facilitate mitochondrial segregation
and elimination (Liu et al. 2012a, Wang et al. 2011, Weihofen et al. 2009). Mutations in PINK1
and Parkin are linked to early-onset familial Parkinson’s disease, suggesting that PINK1/Parkin-
mediated mitophagy is critical for the maintenance of normal mitochondrial function in cells,
especially dopaminergic neurons (Youle & Narendra 2011).

In addition to their canonical roles in regulating mitochondrial structure, the mitochondrial
division and fusion DRPs function to regulate apoptosis, a form of programmed cell death
initiated by developmental cues or intracellular stresses. In vertebrates, these intrinsic apoptotic
signals converge on mitochondria through the activation of Bcl-2 homology 3–only proteins,
causing the oligomerization of proapoptotic members of the Bcl-2 family, Bax and Bak, on the
outer membrane into foci that are linked to outer membrane permeabilization (MOMP) and
the release of cytochrome c and other death factors to initiate apoptotic caspase activation in the
cytosol (Chipuk et al. 2010, Vaux 2011). During apoptosis, DRP1 plays a positive regulatory role
in MOMP. DRP1 is recruited and activated at the mitochondrial outer membrane via posttrans-
lational modifications, causing a dramatic fragmentation of the mitochondrial network (Frank
et al. 2001, Wasiak et al. 2007). Fragmentation is not required for apoptosis, however (Estaquier
& Arnoult 2007, Parone et al. 2006), suggesting that the role of mitochondrial division and fusion
proteins in cell death is more direct and not a consequence of changes in mitochondrial shape per
se (Karbowski et al. 2004, Lee et al. 2004, Neuspiel et al. 2005, Olichon et al. 2003, Sugioka et al.
2004). The exact mechanism by which mitochondrial DRPs influence MOMP is not understood.
OPA1 appears to play a role in the reorganization of cristae junctions that occurs during apoptosis,
allowing the redistribution of cytochrome c from the cristae folds into the inner membrane space
for release during MOMP (Frezza et al. 2006, Scorrano et al. 2002). These morphological changes
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are associated with disruption of the oligomeric state of OPA1 (Arnoult et al. 2005a, Cipolat et al.
2006, Frezza et al. 2006, Yamaguchi et al. 2008). During apoptosis, both DRP1 and MFN2 are
found in foci colocalized with Bax on mitochondria (Karbowski et al. 2002). These apoptotic foci
spatially mark mitochondrial constriction sites and mitochondrial tips, consistent with the idea
that they are associated with the observed increase in mitochondrial division and fragmentation.

The connection of mitochondrial division with MOMP has raised the possibility that MOMP is
spatially linked to ERMD sites and that mitochondrial DRPs regulate MOMP by influencing the
shape and/or composition of ER-mitochondria microdomains. Consistent with this, DRP1 was
shown to promote tBid-induced Bax oligomerization in CL-containing membranes by stabilizing
membrane tethering and lipid mixing through hemifusion intermediates (Montessuit et al. 2010).
Such hemifusion events are thought to occur during mitochondrial fission and may form at CL-rich
outer and inner membrane contact sites (Ardail et al. 1990). In addition, ER-derived sphingolipid
metabolites have been shown to act as cofactors for Bax/Bak activation at the outer membrane
(Chipuk et al. 2012). Tailoring of local lipid composition through ER-mitochondria exchanges
may also allow the coordination of diverse apoptotic signaling elements (Gonzalvez et al. 2008,
Kuwana et al. 2002, Lutter et al. 2000). Movement of Ca2+ from the ER to mitochondria is
another critical apoptogenic process that is facilitated by close apposition of the two membranes,
by establishing local regions of high Ca2+ concentration that trigger mitochondrial transporters,
Ca2+ uptake, overload, fragmentation, and MOMP (Csordas et al. 2006, Filippin et al. 2003,
Pinton et al. 2008). In this way, ER-mitochondrial contacts may allow for the tailoring of signaling
microdomains in a context-dependent manner. Such a specialized signaling site is also seen during
antiviral responses. Inflammatory and antiviral pathways are transmitted through the formation
of an outer membrane signaling complex that involves interactions between the mitochondrial
membrane protein, MAVS (Dixit & Kagan 2013), and the ER integral protein, STING (Ishikawa
& Barber 2008, Jin et al. 2008, Sun et al. 2009, Zhong et al. 2008). Although interaction with
division machinery has not been reported, the MAVS/STING complex colocalizes with the ER,
which may, as for apoptosis, provide the specific protein, lipid, and ionic conditions required for
signaling.

The adaptor protein hFIS1 may play a key role in coupling mitochondrial dynamics with stress
responses and in integrating these signals with the ER. In response to mitochondrial Ca2+ influx
from the ER, FIS1 and DRP1 mediate a fragmentation response that, if prolonged, is associated
with cytochrome c release and apoptosis (Hom et al. 2007). During apoptosis, FIS1 induces
mitochondrial fragmentation and interacts with the integral ER protein Bap31 to stimulate its
cleavage into the proapoptotic p20 fragment, promoting MOMP and cell death (Breckenridge
et al. 2003, Iwasawa et al. 2011). In healthy cells, overexpression of Fis1 leads to fragmented
mitochondria and spontaneous mitophagy (Gomes & Scorrano 2008), a response that seems to be a
result of widespread mitochondrial dysfunction, rather than a direct fission-dependent event (Alirol
et al. 2006, Gomes & Scorrano 2008). Conversely, deletion of Fis1 in C. elegans and mammalian
cells results in aberrant mitophagy characterized by large mitophagosome aggregates (Shen et al.
2014). This defect is specific to mitophagy, as starvation-induced autophagosome formation is
unaffected and is dependent on Parkin and DRP1. In stress conditions, FIS1 was found to bind
phospho-S600 DRP1 in a complex with the ER proteins calnexin and Bap31. In the absence of
Fis1, mitophagosomes form elongated structures along microtubules (Yamano et al. 2014). These
formations do not accumulate in Mff−/− or Drp1−/− cells, further indicating that fission per se does
not account for FIS1’s function in stress pathways. More recent data indicate that FIS1 is a scaffold
for TBC1D15, a mitochondrial Rab GTPase–activating protein, and functions at the interface
between mitochondria and autophagosomes to regulate Rab7-dependent autophagosomal growth
around mitochondria during mitophagy (Lee et al. 2004, Stojanovski et al. 2004, Suzuki et al. 2003).
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FIS1 thus appears to play a role in coordinating stress machinery with mitochondrial dynamics
(Otera et al. 2010).

SUMMARY POINTS

1. The opposing processes of mitochondrial fusion and division are mediated by a family of
highly conserved large dynamin-related GTPase proteins (DRPs) that function through
nucleotide-dependent self-assembly and hydrolysis.

2. DRP activities are controlled at many levels by interaction regulatory factors, posttrans-
lational modifications, proteolytic processing, and alternative splicing.

3. Fusion and division work in concert with internal scaffold-like structures as well as trans-
port and tethering machineries to regulate mitochondrial behavior and distribute mito-
chondrial genomes throughout the mitochondrial network.

4. ER-mitochondria contact sites create functional microdomains. Interactions with the ER
define the site of mitochondrial division and replicating nucleoid segregation. The ER
also contributes to mitochondrial tethering independently of its role in division.

5. Mitochondrial lipid homeostasis is critical for the regulation of the activities of proteins
involved in dynamics, structure, positioning, and function and likely specifically impacts
ER-mitochondria contact sites.

6. Mitochondrial behavior is highly integrated with signaling pathways, such as mitophagy
and programmed cell death.

FUTURE DIRECTIONS AND UNSOLVED ISSUES

1. Mechanistically, how are DRP activities regulated by the accessory factors of the
fusion and division machinery? How is this integrated with DRP posttranslational
modifications?

2. How is the dynamics machinery coordinated with internal structural components to
regulate mitochondrial genome distribution and ultrastructural organization? What role
does the ER play?

3. What lipid and protein components define the microdomains formed by ER-
mitochondria contact sites? What other cellular factors, such as actin and myosin, are
involved in the positioning and function of these sites?

4. What factors fulfill the tethering and lipid transfer functions of ERMES in higher eu-
karyotes? In this context, do the Miro proteins perform the same function as Gem1?
What is the function of ERMES in lipid exchange?

5. How are lipids positioned within mitochondria? How do this spatial distribution and
the presence of trace lipids affect mitochondrial behavior? What are the mechanisms of
Ups2 and related proteins in mitochondria lipid homeostasis?

6. How are the division and fusion activities of the DRPs coordinated with their roles in
signaling? How does the ER contribute to these functions?
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Zick M, Duvezin-Caubet S, Schäfer A, Vogel F, Neupert W, Reichert AS. 2009. Distinct roles of the two
isoforms of the dynamin-like GTPase Mgm1 in mitochondrial fusion. FEBS Lett. 583:2237–43

Ziviani E, Tao RN, Whitworth AJ. 2010. Drosophila Parkin requires PINK1 for mitochondrial translocation
and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. USA 107:5018–23

Zuchner S, De Jonghe P, Jordanova A, Claeys KG, Guergueltcheva V, et al. 2006. Axonal neuropathy with
optic atrophy is caused by mutations in mitofusin 2. Ann. Neurol. 59:276–81

Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, et al. 2004. Mutations in the mito-
chondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36:449–51

www.annualreviews.org • Mitochondrial Behavior 391


	ar: 
	logo: 



