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Abstract

The purpose of this review is to explore self-organizing mechanisms
that pattern microtubules (MTs) and spatially organize animal cell cy-
toplasm, inspired by recent experiments in frog egg extract. We start by
reviewing conceptual distinctions between self-organizing and templating
mechanisms for subcellular organization. We then discuss self-organizing
mechanisms that generate radial MT arrays and cell centers in the absence
of centrosomes. These include autocatalytic MT nucleation, transport of
minus ends, and nucleation from organelles such as melanosomes and Golgi
vesicles that are also dynein cargoes. We then discuss mechanisms that par-
tition the cytoplasm in syncytia, in which multiple nuclei share a common
cytoplasm, starting with cytokinesis, when all metazoan cells are transiently
syncytial. The cytoplasm of frog eggs is partitioned prior to cytokinesis by
two self-organizing modules, protein regulator of cytokinesis 1 (PRC1)-
kinesin family member 4A (KIF4A) and chromosome passenger complex
(CPC)-KIF20A. Similar modules may partition longer-lasting syncytia,
such as early Drosophila embryos. We end by discussing shared mechanisms
and principles for the MT-based self-organization of cellular units.
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1. INTRODUCTION

In a paper that surprised many, Cheng & Ferrell (2019) reported that cytoplasm from frog eggs
could self-organize into regularly spaced cell-like units reminiscent of syncytial cells (Figure 1a).
The reaction depended on microtubules (MTs) but not on nuclei, centrosomes, actin, or plasma
membranes. We wrote a short perspective to accompany that report (Mitchison & Field 2019).
This article is an extension of that discussion in which we address the principles by which cellular
units self-organize and some history of the research into this topic.Ourmain focus is onMT-based
systems. The self-organization of plasma membrane domains and cortical actin cytoskeletons is
a fascinating topic, but it is beyond the scope of this review. For an additional perspective on
self-organization of embryo cytoplasm, see Shamipour et al. (2021).

2. PRINCIPLES OF SELF-ORGANIZATION

2.1. Self-Organization in Biology

Self-organization can be defined as a process in which some form of overall order arises from
local interactions between parts of an initially disordered system. This process is related to the
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Figure 1

Examples of self-organization and templating in cellular organization. (a) The self-organization of cellular units in interphase frog egg
extract. Panel a adapted with permission from Cheng & Ferrell (2019). (b) An example of bistability in actomyosin-based cellular
organization. Keratocyte fragments were stable in two organizational states, (top) circular/immobile and (bottom) polarized/migrating.
Circular nonmotile fragments were converted into polarized motile fragments by pushing with a pipette. Panel b adapted from
Verkhovsky et al. (1999). (c) The templating of MT organization by the centrosome in a small cell. (d) The self-organization of a MT
aster in a frog egg, in which the aster grows as a traveling wave by MT-stimulated MT nucleation. The cell radius is ∼600 μm and the
average MT length is ∼15 μm. Panel d adapted from Ishihara et al. (2016). Abbreviations: ER, endoplasmic reticulum; MT,
microtubule.

concept of self-assembly, in which a disordered system of preexisting components forms an orga-
nized structure or pattern as a consequence of specific, local interactions among the components
themselves without external direction (Wikipedia 2021). The term self-organization is conven-
tionally applied to dissipative systems, while the term self-assembly is most often used for systems
that proceed to thermodynamic equilibrium.

Self-assembly is ubiquitous in protein biochemistry, in which it leads to stable oligomeric as-
semblies that are sometimes called quaternary structures. Self-organization is much more compli-
cated. Assembly converges on a stable point in a multidimensional organizational landscape that
is highly dynamic and can perform mechanical work. Classic examples include Benard convection
cells in physics and reaction–diffusion systems in developmental biology [reviewed in Landge et al.
(2020)]. Self-organizing systems can break symmetry and organize spontaneously. This requires
positive feedback mechanisms to amplify random fluctuations. These systems can also be bistable
such that an outside stimulus is required to break symmetry. A very clear example of bistability
in cell organization is provided by circular fragments of fish keratocyte lamellipodia, which are
stably circular until nudged with a pipette, whereupon they become stably polarized and migrate
in a straight line (Figure 1b).

2.2. Alternatives to Self-Organization

To critically discuss self-organization, we need to define biologically relevant alternative organiz-
ing principles: candidates include instructed, molded, templated, and nucleated. The concept of
“instructed” is defined here as a situation in which a preexisting structure directly determines the
size or shape of a larger assembly. For example, the length of bacteriophage tails is instructed by
the length of a tape measure protein (Xu et al. 2014). Defined this way, instructed is limited to
systems of molecular size. The concept of “molded” is not common in molecular assembly pro-
cesses, though it is one way to conceptualize the central dogma processes of DNA replication,
transcription, and translation in which a polynucleotide molds its complement by base pairing.
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The concept of “templated” is similar to molded, in that we apply it to situations in which an
assembly initiates in a mold and then grows out to become much larger. A good example is prion
propagation, which constitutes an epigenetic mechanism in fungi (Benkemoun & Saupe 2006).

The concept of “nucleated” is a subset of templating mechanisms and is highly relevant to MT
biology. Nucleation must be carefully parsed, because it can apply in different ways to templated
and self-organizing systems. The hypothetical centrosome in Figure 1c templates a fixed number
of MTs, and the system is not self-organized. Nucleation can also describe an external stimulus
that breaks symmetry and triggers self-organization.The centrosome in Figure 1d nucleates MTs
that nucleate more MTs by an autocatalytic branching process, as observed in frog eggs (Ishihara
et al. 2016). The resulting aster is largely self-organized. The centrosome determines where it
initiates, but the density and direction of MT growth are determined locally. This mechanism can
also initiate spontaneously with slower kinetics (Ishihara et al. 2014).The spontaneous initiation of
autocatalytic nucleation likely explains the formation of centrosome-free units in frog egg extract
(Figure 1a), based on the inspection of recent live imaging of this process (Afanzar et al. 2020).
The spontaneous unitsmust possess some radial order based on their ability to transport organelles
inward. How this is achieved in the absence of centrosomes is an unsolved problem.

2.3. Self-Organization versus Templating in the Growth of Cylindrical Cells

Self-organization is ubiquitous in biology. DNA encodes biology but does not template it. Pre-
existing cells are needed as factories to convert DNA sequences and metabolites into the macro-
molecular subunits and chemical energy needed to support self-organization, but these cells do
not directly template the structure of new cells. In cylindrical cells, as exemplified by rod-shaped
bacteria, the existing cellular architecture might appear to template new cell growth (Figure 2a).
However, experiments in which the cylindrical shape reemerges from experimental perturbation
with the correct radius show that it actually self-organizes (Figure 2b,c). The self-organization
of cylindrical geometry in bacteria depends on the guidance of cell wall polymerase complexes
along the line of maximal curvature by intrinsically curved MreB polymers (Hussain et al. 2018).
The radial length scale is determined, at least in Bacillus subtilis, by the ratio between cell wall
polymerases that move on MreB-guided versus random paths (Dion et al. 2019).

A famous example of templating happens during the growth of ciliated protists, which also
occurs by extension of an approximately cylindrical shape (Figure 2d,e). Cilia grow from basal
bodies that are lined up and interconnected in cortical rows that run parallel to the growth axis.
Ciliary rows are structurally polarized, and their polarity controls the direction of ciliary beat-
ing. Beisson & Sonneborn (1965) followed Paramecium clones in which a few ciliary rows were
mechanically reversed in the mother cell. The reversed ciliary row phenotype was inherited for
hundreds of generations in a remarkable example of epigenetics by templating.

Centrioles in metazoan cells are similar to basal body duplication, suggesting that their replica-
tionmight also be templated.However,we now know that centriole replication is a self-organizing
process that depends on the localized activity of polo-like kinase 4 (PLK4) (Arquint &Nigg 2016,
Lee et al. 2020).There is evidence for the short-term inheritance of organization inmetazoan cells
(Solomon 1979), but this is not considered to be a major epigenetic or organizing mechanism.

3. THE SELF-ORGANIZATION OF RADIAL MICROTUBULE ARRAYS
AND CELL CENTERS

3.1. A Brief History of Microtubule-Organizing Centers

Cell centers have played a prominent role in cell biology research since its origins. Nineteenth-
century cytologists noted the tendency of animal cells to adopt a radial organization around a dot in
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Self-organization and templating in cylindrical cell growth. (a) The growth of a rod-shaped bacterium by the elongation of a constant-
diameter cylinder appears templated but is not. (b) The recovery of the cylindrical shape after experimental disruption demonstrates
that this process is self-organized. Cylinders of the correct radius emerge from a disorganized starting shape. (c) An image from a
shape-recovery experiment in the rod-shaped bacterium Bacillus subtilis. The red to blue outlines show the shape of a single cell at
20-min intervals after initiating recovery. White arrows indicate the emergence of multiple rods with the correct radius. Panel c image
adapted with permission from Hussain et al. (2018). (d) The templated growth of ciliary rows in Paramecium, a ciliated protist. The
dotted lines with arrowheads represent structurally polarized rows of basal bodies and cilia. Two of the rows (red) were experimentally
inverted. The resulting abnormal architecture was inherited for hundreds of generations. Panel d adapted from Beisson & Sonneborn
(1965). (e) An image of cell division in Paramecium. Note the continuity of basal body rows prior to cytokinesis. Panel e image adapted
from Sonneborn (1964).

the center, or two dots in zygotes, between mitosis and cleavage. These centers were first named
spheres of attraction by Van Benneden and later centrosomes [reviewed in Sluder (2014)]. The
advent of electron microscopy in the 1960s revealed that most centrosomes consist of a centriole
pair surrounded by pericentriolar material from which MTs emanate. In the late 1970s, the ability
to reconstitute MT growth in vitro led to the discovery that centrosomes nucleate MTs with their
faster-growing plus end outward (Brinkley 1985). Nucleating sites in centrosomes, and in spindle
pole bodies in fungi, were found to consist of ring-shaped complexes of γ-tubulin (γTb) that
template nascent MTs (Oakley et al. 1990, Liu et al. 2020). The discovery that MTs are nucleated
by stable sites fostered a conceptual model in which MT-organizing centers (MTOCs) template
cell organization (Figure 1c). This model was hugely influential and still dominates textbooks.
The real situation is much more complicated, as we discuss in this review. Even when centrosomes
are present, self-organizing mechanisms make a major contribution to defining the cell center in
many cell types.

3.2. The Self-Organization of Spindle Poles

The twin poles of a mitotic spindle can be thought of as local cell centers where MT minus ends
cluster. Spindle poles are defined by centrosomes in most animal cells (Figure 3a), and one of the
most important functions of centrosomes is to nucleate these poles. Centrioles and centrosomes
are absent in higher plant cells and during egg meiosis in many animals; spindles in these systems
are termed anastral (Figure 3b). They still have distinct poles where minus ends cluster, and it
has long been known that such poles must self-organize. Even when centrosomes are present, they
are structurally distinct from spindle poles, as shown in experiments in which the inhibition of
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Mitotic spindle pole self-organization. (a) A metaphase spindle with centrosomes at the poles from a newt lung cell. Panel a image
adapted from O’Connell & Khodjakov (2007). (b) An anastral metaphase spindle from the plant Hemanthus. Panel b image provided by
De Mey et al. (1982). (c) The self-organization of asters in mitotic Xenopus egg extract after the addition of taxol. Panel c images adapted
with permission from Verde et al. (1991). (d) The self-organization of asters in reconstituted reactions containing taxol-stabilized
microtubules (MTs) and oligomeric motor proteins; the top image shows experimental data, while the bottom image is a simulation.
Panel d images adapted with permission from Surrey et al. (2001).

dynein caused centrosomes to dissociate, leaving spindle poles intact (Heald et al. 1997).Heald and
colleagues proposed that centrosomes accelerate spindle pole assembly by nucleating MTs, but
the spindle pole itself self-organizes in response to signals from chromatin. One of those signals
is the GTP-binding nuclear protein Ran (Ran.GTP) (Karsenti & Vernos 2001). Similar con-
clusions were drawn from experiments in which centrosomes were removed by manipulation of
embryos or laser ablation [reviewed in Sluder (2014)]. Centrioles can now be conveniently
removed from proliferating mammalian cells by treatment with a PLK4 inhibitor (Wong et al.
2015).This causes a tumor protein p53–dependent cell cycle arrest in normal cells, but cancer cells
continue to proliferate and can regenerate centrosomes after the drug is removed by washing the
cells. In systems in which centrosomes are normally present, their removal tends to slow spindle
assembly and increase segregation errors. However, most aspects of Drosophila development can
adapt to the loss of centrosomes, which demonstrates the power of self-organizing mechanisms
(Basto et al. 2006).

3.3. The Self-Organization of Radial Microtubule Arrays by Motor Proteins

A conceptual breakthrough came from the observation that radial arrays rapidly self-organized
when the MT-stabilizing drug taxol was added to mitotic Xenopus egg extract (Figure 3c).
This was the first experiment to show that radial arrays could form by a process other than
MTOC nucleation. At the time, whether dynein transported minus ends or MT-nucleating
factors was unclear. Dynein and dynactin are now thought to transport minus ends bound to the
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pole-organizing protein called nuclear mitotic apparatus (NUMA) (Hueschen et al. 2017). The
γTb complex accumulates at anastral spindle poles, but it is currently thought to get there by the
assimilation of small asters and not by direct transport (Letort et al. 2019). Minus end–directed
kinesins in the KIFC1 (HSET or NCD) family also cluster minus ends in spindles. Their role in
the self-organization of spindle poles was discovered at approximately the same time as dynein’s
(Hatsumi & Endow 1992). The relative importance of the two types of motors varies between sys-
tems (Borgal & Wakefield 2018). Higher plants lack dynein so their spindle poles are completely
dependent on minus end–directed kinesins (Yamada & Goshima 2017). Spindle bipolarity is also
a self-organizing process with a central role for tetrameric kinesins [reviewed in Kapoor (2017)].

The concept that the motor-driven transport of MT ends along MTs is sufficient to organize
a radial array was proved by groundbreaking reconstitution experiments using stable MTs and
artificially oligomeric motor proteins (Figure 3d) (Nédélec et al. 1997). These studies introduced
computational simulation approaches that are increasingly used to interrogate self-organizing sys-
tems. Recent simulations of early steps in spindle pole self-organization have been extended to
include many of the known components (Letort et al. 2019).

Minus end–directed motors can replace the minus end–focusing activity of centrosomes but
not their nucleation activity. Recent work has revealed that the majority of MTs in large spindles
are nucleated from the side of preexistingMTs (Alfaro-Aco et al. 2020).We review the implications
of autocatalytic nucleation for self-organization in Section 5.Quantitative analysis has shown that
most spindle MTs are positioned by nucleation, not transport (Decker et al. 2018). In this view,
minus end–directed motors shape spindle poles more than they build them.

3.4. The Self-Organization of Organelle-Based Centers
in Melanophore Fragments

MTs can self-organize into radial and more complex arrays in interphase cells by pathways that
are incompletely understood. An important generalization, and a distinction from mitotic spin-
dle poles, is that MT nucleation from membranes is strongly implicated in all cases. This line of
research started with observations in fish melanophores, which are large, multi-armed cells orga-
nized by a radial array of MTs emanating from a centrally located centrosome. The MTs provide
tracks for the radial transport of pigment-containing organelles called melanosomes that move
inward (aggregation) or outward (dispersal) in response to signaling pathways. When McNiven
et al. (1984) severed an arm of Holocentrusmelanophores, MT minus ends were initially clustered
at the cut site, reflecting their precut distribution and stability to cut-induced depolymerization.
Over a few hours,MTs reorganized such that the minus ends were clustered at the centroid of the
minicell (Figure 4a).

Rodionov & Borisy (1997) observed more dramatic dynamics in centrosome-free fragments
from Tetramelanophores.With melanosomes dispersed,MTs in the fragments were disorganized.
Triggering melanosome aggregation caused the MTs to reorganize into a radial array centered on
the aggregated melanosomes over ∼10 min (Figure 4b). These experiments provide remarkable
examples of the self-organization of a cell center and radialMT array.The full mechanism remains
unclear, but two processes play central roles: dynein-mediated transport of and MT nucleation by
melanosomes (Malikov et al. 2005). The reorganization of MTs into a radial array emanating
from a vesicle aggregate was also observed at the tip of Aplysia neurons after axotomy in a model
of recovery from neuronal injury (Kamber et al. 2009).

3.5. Microtubule Nucleation by Golgi Membranes

A breakthrough inMT biology came from observations that approximately half of theMTs in typ-
ical tissue culture cells are nucleated from Golgi membranes (Figure 4c). Golgi membranes are
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The self-organization of radial microtubules (MTs) and nucleation from organelles. (a) The reorganization of MTs in a cut arm from a
Holocentrus melanophore. The black dots represent melanosomes after stimulation to aggregate, and the arrows indicate MT polarity.
Panel a adapted from McNiven et al. (1984). (b) Rapid and reversible self-organization of MTs (white) and melanosomes (black) in
centrosome-free fragments from Tetra melanophores. With melanosomes dispersed, MTs were randomly organized. Triggering
aggregation caused MTs to organize into a radial array while melanosomes aggregated and centered over ∼10 min, as illustrated in the
time course. Panel b images adapted with permission from (left) Rodionov & Borisy (1997) and (right) Vorobjev et al. (2001). (c) MT
nucleation from centrosomes and Golgi vesicles (red) visualized by end-binding protein 3 (EB3) comet tracking. Yellow tracks emanate
from centrosomes and blue from Golgi vesicles. Panel c image provided by Efimov et al. (2007). (d) Golgi outposts in mouse skeletal
muscle. Note the lattice-like arrangement of MTs centered on Golgi outposts. Panel d image adapted with permission from Oddoux
et al. (2013).

also dynein cargoes, so they likely contribute to the self-organization of the cell center by com-
bining transport and nucleation. Golgi membranes tend to cluster in the G1 phase and spread
out later in the cell cycle (Frye et al. 2020). These dynamics depended on MTs but not on
centrosomes, suggesting that they are self-organizing. Golgi nucleation is sufficient to gener-
ate an approximately radial MT array in the absence of centrosomes in some cell types (Gavilan
et al. 2018), suggesting that the melanosome mechanism may be generalizable. Golgi membranes
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nucleate by molecular pathways that differ from those of centrosomes and depend on A-kinase
anchor protein 9 (AKAP9 or AKAP450), CLIP-associating proteins (CLASPs), and the minus
end–stabilizing factor calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) (Wu &
Akhmanova 2017). This mechanism shares components with nucleating sites at the apical plasma
membrane in epithelial cells (Wu & Akhmanova 2017), suggesting that a MT-nucleating module
can be attached to diverse membranes.MT nucleation by membranes is likely to be important for
the self-organization of the internal architecture in many cell types.

3.6. Golgi Outposts in Large Cells

Large, specialized cells often exhibit complex MT organization that supports their morphology
and functions. In such cells, centrosomes usually lose nucleation activity and are replaced by al-
ternative, presumably self-organizing, MTOCs (Wu & Akhmanova 2017). Neurons are the most
studied example, as reviewed elsewhere (Kapitein&Hoogenraad 2015,Wilkes&Moore 2020).An
emerging concept that builds on our membrane nucleation theme is that of Golgi outposts, which
function as local MTOCs in muscle myotubes and oligodendrocytes (Valenzuela et al. 2020). The
myotube cortex is organized by a gridlike array of dynamic MTs nucleated from the surface of
nuclei and from Golgi outposts (Figure 4d) (Becker et al. 2020, Oddoux et al. 2019). The gridlike
patternmay reflect the interaction ofMTswith sarcomeres (Becker et al. 2020,Oddoux et al. 2019).
Nucleation from Golgi outposts in muscle depends on AKAP9 and the γTb complex, consistent
with mechanisms identified in tissue culture cells. Oligodendrocytes are responsible for wrapping
axons in myelin using large lamellar processes whose MTs are also nucleated by Golgi outposts
(Fu et al. 2019). The small, unstructured tubulin polymerization–promoting protein (TPPP) has
been implicated as the MT nucleator (Fu et al. 2019), suggesting a more specialized mechanism.
However, how Golgi outposts locally cluster and globally distribute is currently unclear. By anal-
ogy to melanosomes and Golgi membranes in smaller cells, we expect to find a self-organizing
mechanism that depends on the combination of nucleation and dynein-mediated transport.

3.7. The Centering of Organelle-Based Microtubule-Organizing Centers

The centering of centrosomes plays a key role in organizing cells and early embryos and has been
extensively reviewed (Ma et al. 2014, Pelletier et al. 2020). Broadly, centrosomes can be pushed to
themiddle of the cell byMTpolymerization or pulled there by dynein, but in either caseMTs slide
as the centrosome moves.Organelle-basedMTOCs appear to center by a fundamentally different
mechanism. Photobleaching showed that MTs do not slide when melanosome aggregates center
(Rodionov & Borisy 1997). Rather, the aggregate moves by replacing MTs as they depolymerize
and are replaced with newly nucleated MTs.Microscopy and modeling supported a mechanism in
which nucleating organelles slide on both MTs they nucleate and MTs that are nucleated at ran-
dom. This generates a self-organizing system that exhibits a stable point with organelles clustered
at the center (Cytrynbaum et al. 2006,Malikov et al. 2005). Important parameters in the model in-
clude the ratio of spontaneous to organelle-nucleatedMTs and theMT turnover rate. This model
provides a conceptual framework for the clustering and centering of Golgi membranes, whether
these processes occur globally in small cells or locally as in myofibers and oliogodendrocytes.

4. THE SELF-ORGANIZATION OF BOUNDARIES IN SYNCYTIA

4.1. Syncytia and Energids

The self-organized units in frog egg extract that prompted this article (Figure 1a) are defined
as much by their boundaries as by their centers. We proposed that these boundaries are a
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manifestation of a cytoplasmic-partitioning mechanism that occurs normally in frog eggs, and
likely in other metazoan cells, prior to cleavage furrow ingression (Mitchison & Field 2019).
This hypothesis was strengthened by recent live imaging that showed similar morphology of
the boundaries formed between spontaneous asters and asters emanating from the twin poles of
mitotic spindles (Afanzar et al. 2020). Here, we discuss the self-organizing biochemical modules
that generate boundaries between asters in frog eggs and their possible relevance to partitioning
the cytoplasm of other syncytial systems.

The idea that multiple, autonomous cellular units can share a common cytoplasm dates back to
the dawn of the cell theory [reviewed in Sitte (1992)]. Sachs, one of the theory’s founders, coined
the term energid to describe subcellular units containing a nucleus in syncytial giant-celled algae
(Sitte 1992). The energid concept decreased in significance as it became clear that most organisms
and tissues are built from cells with a single nucleus, but it remains useful for conceptualizing the
organization of syncytial embryos (Mavrakis et al. 2009). Syncytial cell types in humans include
muscle myofibers, osteoclasts, megakaryocytes, trophoblast cells, and polyploid giant cancer cells
that may contribute to drug resistance and tumor progression (Herbein & Nehme 2020).

Syncytial cells can be conceptually divided into those in which nuclei cluster (osteoclasts,
megakaryocytes, trophoblasts, and multinucleated cancer cells) versus those in which nuclei dis-
perse (myofibers,Drosophila embryos,filamentous fungi, and giant-celled algae) (Blangy et al. 2020,
Calvert et al. 2016, Mine et al. 2008, Moskovszky et al. 2010, Sullivan & Theurkauf 1995, Xiang
2018). There is no evidence for the partitioning of the cytoplasm in syncytial cells with clus-
tered nuclei.Nuclei presumably cluster because the nuclear envelope is an important dynein cargo
[reviewed inGoldberg (2017)]. In the absence of opposingmotors or cytoplasmic partitioning, nu-
clei are drawn toward MT minus ends that cluster in the center of the cell by transport of minus
ends (Figure 3) and nucleation from organelles (Figure 4). In syncytia in which nuclei disperse,
the next question is if, and how, the cytoplasm is partitioned.

4.2. Partitioning of the Cytoplasm Prior to Cytokinesis

All eukaryotic cells are transiently syncytial during cell division, and their cytoskeleton is par-
titioned prior to cytokinesis by known mechanisms. A bipolar MT array called the midzone,
or central spindle, assembles between the separating chromosomes during anaphase and serves
to position the cleavage furrow and keep reforming nuclei separated (Glotzer 2009). The MT
cytoskeleton is sharply partitioned at the center of the midzone (Figure 5a), which makes it a
paradigm for boundary formation in syncytia.

In frog eggs, the interval between anaphase onset after first mitosis and the start of cleavage
lasts approximately 15 min and coincides with the start of S phase, so the egg is syncytial for
almost half of the cell cycle. During this syncytial interval, the egg cytoplasm is partitioned by a
boundary between the asters that grow from the poles of the mitotic spindle (Figure 5b). The
boundary is ∼50 μm wide and has a lower MT density than does the rest of the aster (Mitchison
et al. 2012). At its core is a disc of antiparallel MT bundles coated with two signaling complexes:
chromosome passenger complex (CPC) and Centralspindlin (Nguyen et al. 2014). As the asters
grow, this disc grows, eventually triggering furrow ingression where it touches the cortex. The
aster boundary also provides spatial information that directs sister nuclei to move apart in
response to dynein pulling forces (Wühr et al. 2010). In addition, boundaries form between asters
from different mitotic spindles after polyspermic fertilization. These boundaries also exhibit
locally low MT density and keep asters separated, but they lack CPC and Centralspindlin and
cannot trigger cleavage furrows (Field et al. 2015).

Frog egg asters and the boundaries between them can be reconstituted in frog egg extract
to generate model syncytia. When centrosomes are present, they dictate the number of asters
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(Figure 5c). Once boundaries are established, centrosomes move from random to more regular
spacing in response to forces from dynein and actomyosin (Pelletier et al. 2020). Boundaries be-
tween centrosome-nucleated asters in egg extracts recruit the same signaling complexes as in eggs
(Figure 5c). Aster boundaries in egg extract sharply partition all particulate components of the
cytoplasm. The direction of MT growth changes sharply at aster boundaries (Figure 5d), which
implies that local mechanisms block plus end growth. At the same time, the filamentous actin
(F-actin) and keratin networks locally disassemble (Figure 5c, subpanel ii, e). Organelles (ER,
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Figure 5 (Figure appears on preceding page)

Partitioning of the cytoskeleton by cytokinesis midzone modules. (a) Cryo-electron microscopy tomogram of a HeLa cell midzone.
White dots in the center of the image are MT ends, presumably plus ends. Note that MTs are sharply partitioned. This image
is taken after cleavage furrow ingression and shortly before ESCRT-mediated abscission. Panel a image adapted with permission from
Guizetti et al. (2011). (b) Confocal image of a frog egg fixed after first mitosis and before cleavage furrow ingression. Two large asters
grow from the poles of the mitotic spindle (green). The disc-shaped boundary between these structures exhibits lower MT density and
CPC-coated MT bundles (red). Panel b image provided by Nguyen et al. (2014). (c, i) Asters nucleated by artificial centrosomes in frog
egg extract (cyan). CPC is recruited to aster boundaries (red). (ii) Same specimen as in subpanel i, showing that CPC recruitment to
aster boundaries leads to the local disassembly of F-actin (green) and the partitioning of the cytoplasm. Panel c images provided by Field
et al. (2019). (d) MT plus end growth tracks at an aster boundary in frog egg extract. The tracks are color coded by the direction of MT
growth. The circular key at bottom left indicates growth direction; e.g., growth toward the top left is coded orange/yellow, while
growth toward the bottom right is coded blue/cyan. Growing plus ends stop sharply at the boundary, as indicated by the color change.
For a discussion of methods, see Nguyen et al. (2014). Panel d image provided by Nguyen et al. (2014). (e) Disassembly of the keratin
network at a boundary between asters in frog egg extract. Panel e image provided by Field et al. (2019). (f) Schematic illustration of the
PRC1-KIF4A MT-partitioning module that can self-organize from pure proteins. MT plus ends are at the center; green structures
represent GDP tubulin, while red structures represent GTP tubulin. The curved inhibitory arrows indicate the slowing of plus end
growth by KIF4A. Panel f adapted from Bieling et al. (2010) and Hannabuss et al. (2019). (g) Flowchart showing the process of the
CPC-KIF20A module that partitions actin and keratin networks as well as MTs in frog eggs. Panel g provided by Field et al. (2019).
Abbreviations: CPC, chromosome passenger complex; EB1, end-binding protein 1; ESCRT, endosomal sorting complexes required for
transport; F-actin, filamentous actin; KIF, kinesin family member; MT, microtubule; PRC1, protein regulator of cytokinesis.

mitochondria, and lysosomes) are transported away from aster boundaries and toward centers
(Pelletier et al. 2020). The net effect is to partition the cytoplasm into discrete islands that con-
ceptually resemble Sachs’ energids.

Partitioning of cytoplasm in somatic midzones and frog egg aster boundaries is accom-
plished by two self-organizing modules (Figure 5f,g). The antiparallel cross-linker PRC1 and
the plus end–directed, polymerization-inhibiting kinesin KIF4A are sufficient to reconstitute
minimal midzones that partition MTs into two antiparallel clusters (Figure 5f ). PRC1 cross-
links MTs but leaves them free to slide, while KIF4A inhibits the growth of plus ends and
compacts PRC1 toward plus ends. In frog egg extract, the PRC1-KIF4A module is required
to prevent the MTs of one aster from invading their neighbors at the boundaries (Nguyen
et al. 2018). This module also acts within the main body of the aster to prune out antiparallel
MT interactions and thus enforce the radial polarity of the aster. In this way, the PRC1-KIF4A
module allows the centrosome to dictate the radial polarity of aster MTs in the face of local nu-
cleation, which tends to randomize it. We strongly suspect this module is involved in generating
boundaries in the centrosome-free extract system (Figure 1a).

The more complicated CPC-KIF20A module partitions the cytoskeleton at midzones in so-
matic cells and aster boundaries in frog eggs (Figure 5g). The CPC is a complex of aurora kinase
B (AURKB) and three other subunits (Ruchaud et al. 2007). This module is transported to the
center of midzones and aster boundaries by KIF20A (MKLP2) (Adriaans et al. 2020, Nguyen
et al. 2014). This leads to the autoactivation of CPC on MTs (Sampath et al. 2004) and the gen-
eration of a spatial gradient of AURKB phosphorylation centered on the boundary (Fuller et al.
2008). In frog eggs, this gradient partitions the cytoskeleton by inhibiting MT growth and dis-
assembling F-actin (Figure 5c) and keratin (Figure 5e). Whether the CPC is recruited to aster
boundaries in the centrosome-free system is not yet known (Figure 1a). Sharp boundaries be-
tween asters can form in frog eggs with or without the CPC present (Field et al. 2015). We do
not fully understand this difference. The PRC1-KIF4A module is likely sufficient to partition
MTs between asters. Addition of the CPC-KIF20A module endows the boundary with the ability
to trigger cleavage furrow assembly and partition F-actin. We proposed that the CPC-KIF20A
module is loaded onto the aster boundary by chromatin during anaphase and then propagates
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outward as the asters grow. In this way, the CPC-KIF20A module conveys the location of the
mitotic chromatin to the cortex (Mitchison & Field 2017).

4.3. Partitioning of Longer-Lasting Syncytia

The next question is whether analogs of the partitioning modules shown in Figure 5f,g are rel-
evant in cells that remain syncytial, with nuclei distributed, for multiple cell cycles. Drosophila
embryos are syncytial during the first 13 cell cycles. Nuclei space out regularly and the cytoskele-
ton is clearly partitioned into discrete energids (Foe & Alberts 1983,Mavrakis et al. 2009, Sullivan
&Theurkauf 1995).Organelles are also confined to energids (Frescas et al. 2006), but soluble pro-
teins can diffuse, which is important for the establishment of morphogen gradients (Fradin 2017).
Drosophila embryos are similar to frog eggs in their rapidly dividing nuclei and dense MT arrays
that alternate between mitotic and interphase organizations. MTs and F-actin both contribute to
positioning Drosophila energids (Telley et al. 2012, von Dassow & Schubiger 1994). During mito-
sis, MTs are too short to bridge between adjacent spindles in early cell cycles (Baker et al. 1993).
After anaphase,MTs grow out from centrosomes to generate large asters that interact (Baker et al.
1993).Whether the resulting antiparallel interactions betweenMTs lead to recruitment of specific
partitioning factors is not known. By analogy to frog eggs, we predict that a module equivalent
to PRC1-KIF4A partitions Drosophila energids by blocking MT growth at boundaries. The dis-
assembly of F-actin by AURKB may also generate asymmetries in contractility that contribute to
energid partitioning and distribution.

The energid concept was originally proposed to describe organisms that grow as permanent
syncytia with spaced-out nuclei (Sitte 1992). It is interesting to ask if and how the cytoplasm is
partitioned in such organisms. The mechanisms that position nuclei have been extensively studied
in filamentous fungi using powerful genetic approaches combined with microscopy [reviewed in
Xiang (2018)]. These systems differ considerably from frog egg extract andDrosophila embryos, in
part because theirMTdensity is much lower (Gibeaux et al. 2012).Towhat extent the cytoplasm of
fungal cells is partitioned along with nuclei is a fascinating research question.MTs are partitioned
in the sense that each nucleus nucleates its own cytoplasmic MTs, but whether overlapping MTs
interact and recruit active partitioning modules akin to PRC1-KIF4A is an interesting topic for
future research.

5. PRINCIPLES IN THE MICROTUBULE-DEPENDENT
SELF-ORGANIZATION OF CELLULAR UNITS

5.1. Coupling Transport to the Modulation of Microtubule-Polymerization
Dynamics

A principle common to many of the systems discussed is the motor-driven transport of MT
ends, or proteins that modulate the dynamic properties of MT ends. Minus ends are transported
by dynein or minus end–directed kinesins to organize mitotic spindle poles (Figure 3). MT-
nucleating organelles, which generate and cap new minus ends, are transported by dynein to or-
ganize organelle-based cell centers (Figure 4). Plus end regulators are transported by kinesins
to partition MTs at midzone boundaries (Figure 5f,g). Coupling transport to the regulation of
polymerization gives rise to complex dynamic systems whose stable points are not obvious on in-
spection. They require biochemical reconstitution and computational simulation to properly in-
vestigate, with the challenge that it sometimes becomes difficult to explain in words the function
of individual component or emergent organizational outcomes. Coarse-grained physical models,
e.g., those discussed in Cytrynbaum et al. (2006) and Ishihara et al. (2016), are one possible bridge
between microscopic details and conceptual understanding.
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5.2. Microtubule Nucleation from Membranes and Microtubules

Classic, unitary MTOCs epitomize a templating view of cell centers (Figure 1c). MT nucleation
from membranes and from the sides of existing MTs leads to distributed nucleation that is bet-
ter suited to self-organization. The importance of MT nucleation from the sides of MTs, leading
to autocatalysis, is increasingly appreciated. This concept builds on the autocatalytic generation
of F-actin by the actin-related proteins (Arp)2/3 complex [reviewed in Pollard & Borisy (2003)].
It fits naturally into the framework of self-organization as a positive feedback mechanism that
can amplify spontaneous fluctuations. Autocatalytic nucleation, by a mechanism that is currently
unknown, generates large centrosome-triggered asters in frog eggs (Figure 1d) and is probably
responsible for spontaneous self-organization in the absence of centrosomes (Figure 1a). One
effect of autocatalytic nucleation in asters is to ensure a constant density of MTs at the aster pe-
riphery (Ishihara et al. 2016), which is important for size scaling in huge egg cells (Mitchison et al.
2015). The achievement of a steady state in self-organization requires negative as well as positive
feedback mechanisms. The most general negative feedback mechanism in assembly reactions is
component limitation. Inside frog egg asters, component limitation appears to limit MT density
by increasing the depolymerization rate (Ishihara et al. 2021).

Autocatalytic nucleation plays a central role in building large mitotic spindles (Decker et al.
2018), where it serves to scale spindle size to cell size (Rieckhoff et al. 2020). The best charac-
terized molecular pathway in spindles involves the activation of the γTb complex on the sides
of MTs by local aggregates of the targeting protein for Xklp2 (TPX2) and augmin (Alfaro-Aco
et al. 2020). The MT branching augmin/HAUS (human augmin) complex is broadly expressed in
human and mouse tissues (Sánchez-Huertas & Lüders 2015) and plays a central role in the self-
organization of cortical MTs in higher plants [reviewed in Lee & Liu (2019) and Tian & Kong
(2019)]. Autocatalytic nucleation likely plays a central role in the self-organization of many kinds
of MT assembly.

5.3. Spatial Control by Reaction–Diffusion Gradients

Reaction–diffusion gradients play central roles in the self-organization of mitotic spindles, where
the gradient is Ran.GTP concentration (Karsenti & Vernos 2001, Kapoor 2017), and of cytoki-
nesis midzones, where the gradient is AURKB substrate phosphorylation (Field et al. 2019, Fuller
et al. 2008). Such gradients provide a robust mechanism for the spatial control of multiple com-
ponents over micron-length scales. An important conceptual question is the extent to which an
activity gradient provides detailed positional information, as proposed in the spindle GPS (global-
positioning system) model (Kalab &Heald 2008). The binding of importin cargoes to MTs makes
spindle length independent of the length scale of the Ran gradient (Oh et al. 2016). This favors
a model in which the Ran.GTP gradient sets a permissive radius over which spindle subunits are
activated but does not directly instruct spindle geometry. It will be interesting to address similar
questions for the AURKB activity gradient at aster boundaries.

5.4. An Emerging Role for Liquid Condensates

Condensates are an increasingly recognized subcellular organizing principle (Banani et al. 2017).
They are implicated in the self-organization of the cytoskeleton (Tiwary & Zheng 2019) and
in the local control of gene expression in fungal syncytia (Langdon et al. 2018). Condensates
were proposed to concentrate unpolymerized tubulin to promote γTb-independent nucleation
in Caenorhabditis elegans centrosomes (Woodruff et al. 2017) and enhance nucleation by γTb in
TPX2 condensates (King & Petry 2020). They were also proposed to shape anastral spindle poles
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(So et al. 2019) and a matrix compartment within spindles (Tiwary & Zheng 2019). The CPC has
the potential to condense (Trivedi & Stukenberg 2020), which might facilitate the aggregation of
MT bundles at aster boundaries (Figure 5). Condensates have interesting biophysical differences
compared to alternative organizational states such as gels andmonolayer adsorbates.Notably, they
possess a surface tension that promotes the rounding, fusion, and beading up of surface layers
(Hyman et al. 2014, Mitchison 2020). These effects may help to shape self-organizing systems
at nanometer- to micrometer-length scales. The coupling of condensate assembly to dissipative
biochemistry results in active liquids with interesting biophysical properties such as the centering
of passive particles (Zwicker et al. 2018). Condensate biophysics will likely play a large role in
self-organization inside cells.

5.5. Coda

Much remains to be learned about the mechanisms by which cellular units self-organize and par-
tition. Understanding these mechanisms will require the biochemical reconstitution of key mod-
ules and computational modeling as well as the imaging and perturbation of intact systems. As
our knowledge of molecules and processes grows, it becomes increasingly challenging to draw out
simple concepts. Nevertheless, continuing the quest is important, as it goes to the heart of what
constitutes a living system.
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