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Abstract

Nearly 70 years old, hydraulic fracturing is a core technique for stimulating
hydrocarbon production in a majority of oil and gas reservoirs. Complex
fluids are implemented in nearly every step of the fracturing process, most
significantly to generate and sustain fractures and transport and distribute
proppant particles during and following fluid injection. An extremely wide
range of complex fluids are used: naturally occurring polysaccharide and syn-
thetic polymer solutions, aqueous physical and chemical gels, organic gels,
micellar surfactant solutions, emulsions, and foams. These fluids are loaded
over a wide range of concentrations with particles of varying sizes and aspect
ratios and are subjected to extreme mechanical and environmental condi-
tions. We describe the settings of hydraulic fracturing (framed by geology),
fracturing mechanics and physics, and the critical role that non-Newtonian
fluid dynamics and complex fluids play in the hydraulic fracturing process.
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Complex fluid:
a fluid with a
microstructure that is
affected by the flow,
this perturbed
microstructure then
gives rise to
anisotropic fluid
stresses that can
modify the flow

Permeability:
a geometric constant
of a porous material
indicating resistance to
flow; it incorporates
both the porosity and
the tortuosity of the
porous medium

Pad: particle-free fluid
used to initiate the
fracture

INTRODUCTION

Hydrocarbons are crucial feedstocks across all sectors of the global economy. The ease of hy-
drocarbon extraction translates directly into petroleum availability and lower cost for products
derived from petrochemicals. Periods of increased worldwide demand, coupled with restricted
supply of hydrocarbons, have encouraged and enabled various technological advances to recover
oil and gas that is increasingly difficult to remove from the ground. Although a variety of reservoir
stimulation techniques are currently used, we describe the process of hydraulic fracturing and the
central role that particulate transport by complex fluids plays throughout.

Hydraulic fracturing is not limited to enhancing production of source rocks (also loosely called
shales)—as opposed to hydrocarbon reservoirs. It is also used in a majority of oil and gas reser-
voirs at some point in their lifetime. Fracturing is used in conventional hydrocarbon reservoirs
to increase permeability in damaged formations or in formations that exhibit significantly lower
production over what could be achieved after fracturing stimulation, e.g., after some decline of pro-
duction owing to reservoir depletion. It is also used in reservoirs where the intrinsic permeability
is too low to yield economical production without it.

Reservoir stimulation by hydraulic fracturing creates additional contact area with the reservoir
by pumping a particle-laden fluid into the rock, generating a large pressure relative to the hydro-
static pressure downhole. Because the permeability of the rock is too low to accommodate the
flow, and the fluid is (mostly) incompressible, the growing pressure is relieved by the fracturing
of reservoir rock generating a new flow path. The first step of fracturing consists of pumping a
solid-free fluid, called a pad, that initiates the fracture prior to the introduction of a particle-laden
fracturing fluid. This way, risks associated with particles reaching the tip of the fracture (described
in the section on Fracturing Fluids) are mitigated. Pumping stops when the desired volume (and
fracture extension) is attained or when the pressure required to sustain fracture growth exceeds
the available pumping capacity; at this point the well is shut. Over time, the pressure in the frac-
ture and in the formation will equilibrate, following the penetration of the injected fluid into the
formation and the closure of the fracture. This process depends largely on the fluid leak-off rate
inside the formation and can take several days in low-permeability formations. The fractures do
not close completely, as the sand or other proppant carried into the fracture by fluid transport
remains and will prop the fractures open. Following this shut-in and leak-off period, the well is
reopened and liquid or gaseous hydrocarbons flow out of the reservoir and into the well.

The drilling and hydraulic fracturing process depends critically upon complex fluids. Prior to
hydraulic fracturing, a well must be drilled, cased, and cemented. Drilling muds (either aqueous or
oil-based) are employed as mechanical stabilizers in the construction of the wellbore to pressurize
(via gravitational hydrostatic pressure) the borehole against collapse, cool the drill bit, and carry
away rock cuttings. Cements are pumped downhole to form a reinforced casing and (along with
metal pipe) isolate sections of the wellbore, providing crucial isolation (1) of the well from the
surrounding environment.

The fracturing fluids used in commercial operations are proprietary formulations specific to
the geology of the formation and desired treatment, but nearly all contain rigid proppant particles
used to hold the newly generated fracture network open after the cessation of flow. Fluids ranging
from dilute polymer solutions (i.e., slickwater), polysaccharide solutions (crosslinked and linear),
foams (also called energized fluids), micellar fluids (viscoelastic surfactants), and oil-based fluids are
loaded with particles of varying sizes, aspect ratios, and densities to achieve the desired combination
of chemical and mechanical properties.

Fluid selection for hydraulic fracturing is a design problem. Optimality is economic: Given a
hydrocarbon reservoir with a specific set of geological characteristics, what set of fluid properties
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will produce the most hydrocarbons for the least cost? This question is straightforward but
nontrivial, as it requires a thorough understanding of (a) the petrophysical properties of the
hydrocarbon reservoir, (b) the rheology and formulation costs of the particle-laden complex fluid
used in fracturing, (c) the fluid–solid interaction driving the hydraulically induced fractures in
the anisotropic hydrocarbon reservoir, and (d) quantification of risk–reward because no process
is 100% reliable. The industry has turned to complex fluids to satisfy this optimization process.

In this review, we focus on the application of complex fluids and non-Newtonian hydrody-
namics that governs the hydraulic fracturing of oil and gas reservoirs. This necessarily requires an
understanding of hydrocarbon reservoirs, with particular attention to the fluid–solid interactions
that occur during the fracturing process, and the nature of reservoir rock (and bounding layers)
in general. We first consider a brief history of hydraulic fracturing. This is followed by a discus-
sion of hydrocarbon reservoir petrology and geomechanics. Then, we consider the mechanics of
hydraulic fracturing, focusing on the role of fluid, reservoir, and flow properties in determining
the fracture geometry. Finally, with the fracturing process quantitatively described, we detail the
rheology of complex fluids relevant in the oilfield and explore the wide-ranging and varied types
of fracturing fluids that are employed downhole, highlighting the various processes that these
complex fluids are involved in during the hydraulic fracturing process.

A Brief History of Hydraulic Fracturing

Hydraulic fracturing is the progeny of reservoir acidizing processes that date back to the late 1800s
(2). Acidizing increases permeability and production in reservoirs through the injection of acids
directly into the formation, which react with, and subsequently dissolve, carbonates and some
sandstones (3, 4). The Van Dyke acidizing patent (2) describes several of the features present in
fracturing today: the use of a rubber packer to isolate target areas of the well, the loading of the well
with a target fluid (in this case an acid), the pressurization (via an imposed hydrostatic head) of the
fluid to improve penetration into the formation, and then the breaking (in this case neutralization)
of the fluid with a base. This technique was later expanded upon by Grebe & Stoesser (5), who
describe an “organic jellifying material” for use in wells. Grebe & Stoesser (6) further describe a
wide range of fluids and fluid-property modifiers in a 1935 article and provide a description of the
hydraulic rock-splitting action (Figure 1) to increase the effectiveness of acidizing. All of these
technologies have descendants in the modern oilfield. Hydraulically driven reservoir deformation
was further recognized in water injection and cementing operations throughout the 1940s, as
summarized in the monograph by Howard & Fast (7).

The first hydraulic fracturing operation occurred in the Hugoton Gas Field in Kansas in 1947,
where a gelled gasoline was used as the fracturing fluid. In the decades since, hydraulic fracturing
has grown in scale and importance, following innovations in fluid chemistry and enhancements in
pumping capacity. Coupled with the ability to steer a drill bit horizontally over long distances, hy-
draulic fracturing has enabled the production of source rocks that were not considered producible
previously. In the United States alone, it is estimated that 986,000 wells received fracturing treat-
ments between 1947 and 2010 (8); 278,000 of these wells, mostly focused on the development of
source rocks, have been drilled since the year 2000. One reason for this uptick is the increased
lateral distances that can be drilled; contemporary wells routinely exhibit horizontal laterals (�h)
in excess of 1 mile (9–11). Operators are presently pursuing lengths in excess of 2.25 miles (12).
The increase in length is enabled by a decrease in cost per length drilled, which has fallen 57%
between 2012 and 2015 (9), current costs (2015) being approximately $1,000/ft, with some vari-
ability. Fractures are introduced along these laterals by injecting liquids at high flow rate [in excess
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d  Fracturing job, 2010s

b  First fracturing job, 1947a  Reservoir stimulation, 1935

c  Reservoir stimulation, 2015

ℓν ≈ 2 km

ℓh ≈ 3.5 km

Figure 1
Then and now. (a) Schematic diagram of fracturing during an acidizing treatment ca. 1935, from product
literature (6). (b) The first fracturing operation (1947) in Grant County, Kansas (courtesy Michael B. Smith,
credit: Robert C. Fast). (c) Schematic diagram of a contemporary fracturing job (courtesy Schlumberger).
(d) Layout for a contemporary fracturing operation. Pump trucks are arrayed at center, and outlying trailers
contain liquids ( c©CustomAerialImages.com).

Barrels (bbl)/min:
common rate of flow in
the oilfield, equivalent
to 0.111 m3 s−1; 1 bbl
is equivalent to 42
gallons

of 90 barrels (bbl)/min (13)], stimulating ever-increasing reservoir volumes from isolated wells,
recently termed super fracking (14).

Requirements for a Hydraulic Fracturing Fluid

The demands on a hydraulic fracturing fluid are many and are briefly mentioned here, from the
sourcing of the material all the way to the cleanup of the fracture after the treatment has stopped.
The material for the base fluid should be inexpensive, easy to source, of constant quality, and
environmentally harmless. The resulting fluid should be easy to mix/hydrate in water with varying
ion content—preferably on the fly—and easy to pump. It should exhibit a low friction pressure
drop in a pipe (typical pipe diameter is 4.5′ ′) in the turbulent regime, because it travels along the
wellbore for 1–5 miles. When it hits the perforations (aperture of approximately 1′ ′ in diameter
connecting the wellbore to the formation) in front of the rock to be stimulated, it should transport
proppant through these perforations, which make a 90◦ angle with the direction of the flow. After
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Porosity: a measure
of the open space in a
material, reported as
percent of void space

Kerogen:
a nanoporous material,
insoluble to both
alkaline and organic
solvents

going through the perforations, which behave like jets, it should recover viscosity thinned in the
high-shear perforation to create fracture width. It should suspend proppant in both dynamic and
static conditions and exhibit low leak-off into the formation. After pumping has stopped, it should
allow the fracture to close quickly and prevent proppant from settling. After the fracture has closed,
it should flow back to the surface easily, without impeding the flow of hydrocarbons either through
the matrix where it had previously leaked off or through the proppant pack. Finally, its properties
should be tunable to a wide range of downhole temperatures and chemical environments.

Let us note that, for simple Newtonian fluids, many of those requirements are contradictory in
nature, e.g., the low friction pressure in the pipe and the high pressure drop in the fracture, or the
proppant suspending capability and the ease of proppant pack cleanup. This is the main reason
why industry has turned to complex fluids to satisfy these requirements. In spite of this long list
of requirements, typical fluids cost less than $1/L (15).

HYDROCARBON RESERVOIR PETROLOGY

Sedimentary rocks form the majority of oil reservoirs. Sedimentary rocks can be formed by the
successive deposition of fluids and minerals from weathering (mechanical and chemical), evapo-
ration, or biogenic activity, which, over time, become continuous and porous structures, such as
sandstones, limestones, and mudstones (16, 17). We shall omit evaporites as they tend to have no
porosity or permeability. This sedimentation process occurs as a set of discrete depositions, and
the rock is formed by a combination of compaction and cementation (17). Sedimentary reservoirs
are porous and present many distinct and identifiable layers, with the precise nature of the sedi-
mentary rock determined by the depositional environment (e.g., a marine shale versus an aeolian
dune set), along with the thermodynamic and mechanical history of the reservoir as a whole.
The size, shape, and topology of sedimentary structures, along with the thermomechanical prop-
erties exhibited locally in the lithosphere, determine many of the pertinent reservoir properties
for hydrocarbon production (18). In some sediments, interspersed among clay, sand, and silt are
organic materials that will degrade to form oil and gas. Organics trapped within the sedimentary
rock experience progressively greater temperatures [increasing at a rate of approximately 2.5◦C/
100 m (19, 20)] and stresses as the layers travel deeper into the earth (20). The gradual degradation
of organics in these source rocks occurs in three stages: diagenesis, catagenesis, and metagenesis,
which can be loosely thought of as the heating, cooking, and burning of organic material. Dia-
genesis occurs in the relatively low-temperature region (<50◦C) up to a depth of several hundred
meters. Here, organic matter is converted to kerogen (20, 21). Kerogen is acknowledged to exist
in three types, delineated by origin, structure (aliphatic versus polyaromatic), and constitution
[atomic ratios of hydrogen to carbon and oxygen to carbon (20, 22, 23)]. Oil and gas molecules
are derived from kerogen during catagenesis, which occurs at temperatures between 50◦C and
150◦C. Gas is generated primarily at the higher end of this window. Organic material subjected
to yet greater temperatures continues to degrade into dry gas (i.e., methane), with carbon as the
ultimate endpoint of thermolysis.

Although kerogen is converted to oil and gas in such formations, called source rocks, traditional
drilling operations do not extract hydrocarbons directly from them, as the volume concentration
of hydrocarbon is low. Hydrocarbons may undergo primary migration, exiting the source rocks
where they originated, and then undergo secondary, buoyancy-driven migration to and within
distal porous layers. Eventually, further upward motion of the hydrocarbons is arrested by an
impermeable cap (16), and oil and gas are trapped. Conventional extraction targets oil and gas away
from source rocks in these secondary porous structures where hydrocarbons are concentrated—
hence the term reservoir.
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Darcy: permeability
carries units of length
squared, and is
typically cited in
Darcies, 1 D =
9.867 × 10−13 m2;
milli- and nanodarcy
permeabilities are
commonly reported

The most economically favorable reservoirs exhibit large porosities and permeabilities. Poros-
ity, hydrocarbon saturation, and reservoir volume set the available amount of hydrocarbons to be
extracted, whereas reservoir permeability sets the relative ease with which the hydrocarbons may
be removed. Early oil and gas drilling relied upon the pressure in the earth to expel hydrocarbons
directly or with minimal pumping from the wells (primary recovery). If the hydrocarbons are liq-
uid, this production technique produces only a minimal amount of the hydrocarbons in place, and
other methods have been developed to recover more of them. For example, because the pressure
in the reservoir will decrease as hydrocarbons are produced at the surface, positive displacement of
water can then be used to drive hydrocarbons to the surface, known as secondary recovery. Finally,
enhanced oil recovery (or tertiary recovery) makes use of chemical additives pumped downhole
to coax and recover oil that could not be removed in earlier stages. In all cases, the techniques
used are determined by the hydrocarbon content and flow properties of the reservoir—multiple
techniques may be used on the same reservoir over the course of its lifetime.

Fluid Flows in Reservoir Rocks

The sedimentary process endows reservoirs with widely varying porosity and permeability (18,
24–26). The initial sedimentation of material forms a porous structure that, through time, is
acted upon by chemical and mechanical forces (27–29) to provide (a) pores in organic material,
(b) pores in inorganic material, and (c) faults and fractures (30–32); all processes and features
yield widely variable porosity and permeability within the reservoir (18, 24–26). Additionally, the
sediment settling process results in anisotropic permeabilities such that transport is favored along
the sedimentary beds rather than along the direction of deposition (18).

Bernard & Horsfield (33) provide a detailed discussion of inorganic (i.e., mineral-based) and
organic (i.e., kerogen-based) pores in mature source rocks, highlighting the change in morphology
of the pore network as the source rocks age. Source rocks are distinguished from conventional oil
reservoirs by reduced pore size (34) and the role of nanoscale pores within kerogen trapped in the
rock. Nanoscale pores in kerogen may not form a formation-spanning connected network but do
form a local network on the scale of the organic deposit and are storage sites for gas (29, 35).

Many porous media flows are well-described by Darcy’s law,

〈ui 〉 = −ki j

η

∂p
∂x j

. 1.

Here, u is the local velocity of the pore fluid, and the brackets indicate that this velocity is an
averaged quantity. This velocity is proportional to the pressure gradient across the porous media
via a permeability tensor, kij, and a fluid viscosity, η. The quality of reservoirs is often quantified
using permeability values, along with the porosity and total amount of organics available for
extraction in the reservoir. Bear (36, table 5.5.1) tabulates permeabilities for soils and rocks.
Notably, 10 ≤ k ≤ 104 mD for “oil rocks”; 10−1 ≤ k ≤ 10 mD for sandstone; and k ≤ 1 mD is
listed as impermeable, or “tight” in contemporary parlance (18). Modern production technology
has significantly modified what we consider impermeable; see Table 1 for more contemporary
values and classification.

The linear Darcy relation generally holds for creeping flows of Newtonian fluids. Correc-
tions exist to accommodate larger Reynolds number flows (37), large-scale velocity gradients
(38), non-Newtonian effects (39–41), and pressure-dependent permeabilities (24, 37). Despite
these corrections, departures from strictly Darcian flow conditions remain an open problem.
Complications arise in time-dependent processes, like hydraulic fracturing, where the
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Table 1 Reservoir properties for shales, sandstones, and mudstones

Quantity (units) Range 〈representative value〉
Poisson’s ratio, ν (−) (18, 61, 62) 0.1–0.5 〈0.25〉
Young’s modulus, E (GPa) (18, 61) 5–95 〈30〉
Fracture toughness, KIC (MPa-

√
m) (61, 63) 0.17–1.73 〈1.0〉

Permeability, k (D)a (13, 18)

Shale gas ∼1 × 10−9

Tight gas <0.1 × 10−3

Conventional <500 × 10−3

Porosity (%) (13) 6–>25b

Formation depth, �v (m) (13) 1,200M–4,100EF

Formation thickness, h (m) (13) 6F–180B

a1D = 9.87 × 10−13 m2.
bSource rock and tight gas formations are at the low end of this range, conventional formations at upper; depth and
thickness range extremes from BBarnett Shale, FFayetteville Shale, EFEagle Ford Shale, and MMarcellus Shale.

Volume fraction:
typically, φ = V solids

V total
;

industrial
specifications of solids
concentration are
typically in pounds
added per fluid
volume; pounds added
per gallon, ppa, is
common

Brine: a salt
solution typically at a
concentration greater
than seawater

permeability may vary owing to components adsorbed onto the porous matrix from the fluid and/or
variations in the pressure difference between the matrix and fluid modulating the pore structure.

The Darcy law (Equation 1) is invalid for gas flows in nanopores, such as those found in kero-
gen. For these flows, the mean free path (λ) of gas within the pores is large as compared with a
characteristic diameter of the pores, dp, and the continuum Darcy law is strictly inapplicable. The
ratio of these lengths forms the Knudsen number, Kn = λ

dP
, revealing whether the flow may be

described using classical continuum descriptions of transport (Kn � 1), whether slip effects must
be included (10−3 ≤ Kn ≤ 10−1), or whether free-molecule flow (Kn ≥ 101) must be used to
describe gas transport. Several models have been proposed (42–44), starting with the Klinkenberg
relation (42), which introduced an empirical permeability, ks, slip corrected to augment the per-
meability in the Darcy law, ks = k∞(1 + Kb/p), so that decreases in thermodynamic pressure
(p) will augment the permeability; here, k∞ is a liquid permeability in the same medium, p is the
pressure in the pores, and Kb is the Klinkenberg constant.

There is no universal relation to connect the porosity, φ, to the permeability, kij, in rocks or
porous media in general. This failure arises from the inherent dependence of the permeability on
the detailed geometry of the pores and the distribution of pore sizes, whereas the porosity is a
scalar measure that does not include pore-scale information beyond the volume fraction of solids.
Strikingly, the permeability in mudstones can vary over three orders of magnitude for the same
value of porosity (26)! Despite this limitation, several empirical correlations and analytical models
exist (26, 37). The success of the various models depends upon how well the underlying assumptions
match physical characteristics of the targeted reservoirs. Katz & Thompson (45), recognizing the
self-similarity of pore spaces for several sandstones, developed a predictive permeability model
(46), k = c �c G/G0, where c is a numeric constant; �c is a length scale from mercury injection
measurements; and G and G0 are electrical conductivities of the brine-saturated porous media and
brine, respectively. The Katz & Thompson model includes two important components: (a) a single
characteristic length, �c , which dominates momentum transport, determined by the inflection
point of pressure during a mercury injection test (37), and (b) a measure of the pore connectivity
through the independent electrical conductivity measurements of brine.

Natural fractures can also contribute to the porosity and permeability. Fractures in rocks form
from stresses and natural fluid motion. These fractures and associated fracture networks have been
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identified as major contributors to shale gas reservoirs (47–49); it is therefore desirable in these
systems to intersect the natural fracture network during the drilling and hydraulic fracturing pro-
cess (50). Natural fractures can be characterized by orientation, length, aperture, and roughness
(32, 49, 51, 52). Similar to the porous media described above, the natural fracture network can
exist in a percolated or unpercolated state and can also be both anisotropic and heterogeneous
(51). Percolated fractures within hydrocarbon reservoirs do not necessarily conduct liquids or
gases; the fractures may be filled with calcite, or are otherwise sealed (48, 50). Transport mod-
els for fractures and fracture networks suffer similar limitations to the porous media discussed
previously—the geometry of the networks and individual fractures is strongly variable and typi-
cally unknown. These uncertainties aside, individual fractures (53) and fracture networks in porous
matrices (52, 54–56) have been analyzed to elucidate estimated flows and permeabilities for Darcy
flows.

Despite all the complications associated with the description of multiphase flow in rocks (brine,
liquid and gaseous hydrocarbons), one can infer that the total flux that can be drained from
a reservoir into a well is a function of the rock permeability, viscosity of the reservoir fluids,
pressure gradient, and surface area over which that pressure gradient is applied. Rock permeability
is provided by geology and can only be altered locally (e.g., by the injection of reactive fluids).
Mobility of the flowing fluid(s) is also given by the nature of the fluids in place and the temperature
and pressure conditions in the reservoir—even if it can be modified in some cases by heat (e.g.,
injection of steam) or injection of surfactants. The magnitude of the pressure gradient that can
be applied is also limited, roughly by the difference between the initial fluid pressure of the
reservoir and the weight of the hydrostatic column in the wellbore. It is therefore natural to
look at the surface area over which a pressure gradient can be applied from the well to the
reservoir.

A vertical well drilled in a hydrocarbon reservoir drains the reservoir fluids through a small
contact area with the producing layers: The intersection of a 0.2-m-diameter well with a
15-m-thick producing layer results in approximately 10 m2 of contact area. The magnitude of
this contact area can be increased if the well is drilled with a long portion following the producing
layer: A 1,000-m lateral drain placed in the same producing layer would have a contact area with
the reservoir of approximately 630 m2. Another means is hydraulic fracturing, the goal of which is
to create a large surface area in contact with the reservoir. For example, the creation of a 100-m-
long bi-wing fracture in contact with the same reservoir would result in a contact area of 3,000 m2.
If the permeability of the fracture is large enough that the pressure in the fracture is close to that in
the wellbore, hydraulic fracturing is extremely effective at promoting flow from low-permeability
reservoirs. One of the goals of hydraulic fracturing is thus to create a fracture with a permeability
that is infinitely large compared with that of the reservoir that it is draining. Let us remark, finally,
that for reservoirs with extremely poor flow characteristics (e.g., with permeabilities of the order
of 100 nD or less), lateral drains can be hydraulically fractured to create enough drainage area to
concentrate sufficient flow into the wellbore.

Mechanical Attributes of Rocks

Hydraulic fractures arise from fluid–solid interaction resulting in mechanical failure of the for-
mation. The orientation, geometry, and extent of these fractures depend strongly on the intrinsic
mechanical properties and state of stress of the reservoir rock. As one wishes to both limit the ex-
tension of the created hydraulic fracture to the producing layers of interest and extend the fracture
as long as required to obtain the desired producing area, we briefly describe the mechanical system
formed by both reservoir rocks and their bounding layers. Reservoir rocks are usually modeled
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as linear elastic materials. This is not strictly true for rocks in general (18); elevated temperatures
and the presence of pore fluid can lead to plastic rather than elastic failure (57, 58). However, for
the hydraulic fracturing process, this has proved extremely effective, mostly because of the loading
path followed by the material during the fracturing process.

Within the linear elastic framework, reservoir rocks are characterized by a modulus of elas-
ticity, E, and Poisson’s ratio, ν. Note that anisotropy of the rock can also be taken into account.
Measurements of these properties can be performed on drill cores removed from the earth, al-
though the cost can be prohibitive, and care must be taken to preserve the in situ rock conditions
(water/fluid content, overburden pressure) when tests are performed (58). Sonic logging tools
permit direct interrogation of rocks downhole (59), accomplished by measuring the propagation
speed of waves through rock and using the density to recover elastic moduli and Poisson’s ratio.
These and other dynamic methods typically yield larger values of both the Poisson’s ratio (60) and
elastic moduli (60, 61) as compared with measurements using static methods, as would be done in
the lab on core samples in gradual compression. Correlations have been developed to allow the
transformation of the parameters obtained under small-strain/large-frequency (dynamic) condi-
tions to parameters corresponding to large-strain/low-frequency (static) conditions required for
modeling the hydraulic fracturing process. Beyond variations in these values owing to test type
and configuration, mechanical properties also vary substantially from reservoir to reservoir and
within rock layers forming the reservoirs, as presented in Table 1, and in the references cited
therein. Tensile failure in rocks can be characterized by a fracture toughness, KIC . Contrary to
the variation in the elastic parameters, the value of the fracture toughness does not vary strongly
between rocks and is of the order of 1 MPa

√
m.

The lithostatic stress determines the orientation and, along with rock properties and the in-
jection pressure, the extent to which the reservoir may be fractured. Lithostatic stresses can be
highly anisotropic. These stresses arise chiefly from the weight of rock atop any given point in the
reservoir. Typically, the lithostatic stress is highest in the vertical direction (aligned with gravity),
with a horizontal stress that varies as a function of depth. Brown & Hoek (64) tabulate the ratio
as r = σv

σh
and write the empirical bounds as 100

z + 0.3 ≤ r ≤ 1500
z + 0.5, where z is the vertical

depth in meters. Because the density of rocks is not a strongly varying quantity, the vertical stress
at the same vertical depth z correlates with σv = 27 × 103z, with σv in pascals. Complexities arise
owing to the combination of gravitational body forces as well as tectonic activity and thermal
and fluid pressure effects on the potentially complex geological structure hosting the reservoir of
interest. For example, these forcing mechanisms can vary the relative dominance of the horizontal
and vertical stresses, to the point where the (once) dominant vertical stress becomes subordinate.

Let us note that the (possibly large) variations of both mechanical (including the lithostatic
stress state) and flow properties from one layer to the next, along with often poorly constrained
variations of these properties along a layer, 100 m away or more from the wellbore, put a very
strong requirement of robustness on the design of a hydraulic fracture to such variations, and thus
on the fluid systems that will be used to create them.

MECHANICS OF HYDRAULIC FRACTURING

The mechanics of fracture generation and arrest have been studied extensively in the decades fol-
lowing the first field tests. Because the choices of fluid and pumping rate are the main design levers
to achieve the desired fracture geometry in a given geological setting, these studies have high-
lighted the (often conflicting) requirements placed on hydraulic fracturing fluids. In the following
section, we review the phenomena specific to the fluid–solid interactions in hydraulic fracturing.
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Mineback: excavation
of a fractured
formation to measure
fracture geometry and
extent

Fracture Orientation and Geometry

The fracture orientation conspires with the flow properties of the reservoir rock to determine the
efficacy of the fracturing operation. Reservoirs have anisotropic permeability. The permeability
is generally smallest through the plane of bedding; thus, the desired flow path is perpendicular to
the formation bedding. The orientation of hydraulic fractures is predominantly controlled by the
in situ stresses of the reservoir (61, 65), and fractures tend to propagate perpendicular to and open
in the direction of the minimum compressive stress. Hubbert & Willis (66) clearly demonstrated
this in a set of laboratory experiments using a gelatin mold as the reservoir and liquid plaster as the
fracturing fluid; after curing of the plaster, fractures of vertical and horizontal orientation were
observed, consistent with compressive stresses applied to the mold. A study of the rank ordering
of the stresses in the reservoir is thus a prerequisite to decide whether hydraulic fracturing can be
applied. If the minimum stress is near perpendicular to the reservoir bedding, a hydraulic fracture
parallel to bedding will be created regardless of the fluids being used. Thus, during production,
flow through the fracture face proceeds along the direction of minimal permeability, limiting the
benefit of the fracturing process.

Preexisting fractures, joints, and faults can, however, redirect or modify the propagation di-
rection of induced fractures (65, 67–70). In conventional reservoirs, this reorienting effect is not
generally strong enough to override the global fracture orientation that is dictated by lithostatic
stresses (71). In unconventional reservoirs (often fractured source rocks), the interaction between
the hydraulic fracture, the bedding planes, and the preexisting fractures and faults has tremen-
dous importance, directly impacting the amount of stimulated reservoir area. Whether a hydraulic
fracture ignores a preexisting fracture/bedding plane is a function not only of the geomechanical
setting but also of the fracturing fluid (72), which adds another dimension to the selection of
fracturing fluids.

Measurement of hydraulic fracture geometry is challenging, requiring remote downhole or
direct measurement from mineback experiments (71). A wide range of fracture lengths, widths,
and heights are reported in the petroleum literature and, along with treatment and reservoir pa-
rameters (50), are highly variable (73, 74); see Tables 1 and 2 for ranges of natural and engineered
parameters.

The width of the fracture is the smallest lengthscale in the system; it is largest at the wellbore,
where the pressure is greatest, and decreases toward the fracture tip. Cipolla et al. (74), in a
discussion on the relation between fracture complexity and dimension, provide fracture widths
varying from 2.5 mm to 185 mm when fluids ranging from waterfrac/slickwater [basically dilute
polymer solutions with η ∼ O(1) mPa-s] to gel-like fluids [η ∼ O(100 –1,000) mPa-s] are used. The
fracture length is typically hundreds to more than a thousand meters, and the fracture height may
be 50–100 m. The flow may branch during stimulation, forming a tortuous network of fractures.
Treatments of the same reservoir with different viscosity fluids have been observed to follow the
general expectation that lower-viscosity fluids produce longer (and thinner) fractures than thicker
gel-based systems (74). The footprint in a reservoir of multiple fracture treatments staged along
a horizontal wellbore can be inferred from microseismic measurements (75), where the seismic
activity is assumed to coincide with fracture progress.

Simple Models for Hydraulic Fracture Geometry

One of the strong peculiarities of hydraulic fracturing is the robust coupling between fluid flow,
reservoir deformation, and fracture growth. We discuss here insights provided by the two-
dimensional Perkins-Kern-Nordgren (PKN) and radial and Khristianovic-Geertsma-de Klerk
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Table 2 Operational scales in hydraulic fracturing

Quantity (units) Range Remarks

Fracture height (m), h 10–100 Set by the rock formation and local stresses

Fracture width (mm), w 2–185 2–10 is typical

Fracture length (m), � 100–1,000 Can form complex network

Fluid viscosity (mPa-s), η 1–1,000 Impacts fracture width, length, network complexity

Proppant diameter (µm), a 100–850 Highly variable and polydisperse

Proppant concentration (%), φ 0–20 Variable during injection, correlated with η

Fluid injection rate (m3 s−1), Q 0.05–0.27 20–100 bbl/min

Shear rate (s−1), γ̇ 0–1,000 The magnitude of γ̇ is important for controlling proppant
settling and the local fluid rheology

Rew = ρ f w
2γ̇ /η 0–5,000 Flow can be turbulent in wellbore, where Rer ∼ 10,000

Wi = λγ̇ 0–1,000 Difficult to quantify at downhole temperature, where the
relaxation time λ may be hard to determine

Rep = Rew
a
w

≤100 From upper limit on Rew

Pea = 6πηγ̇ a3/(kB T ) >103 Proppant is noncolloidal and viscous stresses dominate

(KGD) models. These models are physical and geometrical simplifications of the full transient
and three-dimensional fluid–structure interaction problem. These approaches, following a variety
of assumptions, provide analytical solutions to the fracture problem illustrating the dominance
of dissipation mechanisms and how these mechanisms translate to fracture geometry and fluid
design. Regardless of their simplifying assumptions, these models are used to validate hydraulic
fracture simulations (76) and inform fracturing job design where applicable.

PK, PKN, KGD, and radial fracture models. Models by Perkins & Kern (PK) (77), later
modified by Nordgren (78) (PKN), and a plane-strain model by Khristianovic (79) and Geertsma
& de Klerk (80) (KGD), along with a radial model (80, 81), all present simplifying assumptions in
the state of strain and dissipation. Many of these assumptions are revisited in later refinements.

In the PKN model, a bi-wing fracture with an elliptic cross-section emanates from the wellbore.
The height h (ellipse major axis) of the fracture is set a priori to a constant. The fracture width, w

(ellipse minor axis), is determined via a plane-strain elasticity relation (82):

w(x, t) = 2h
(1 − ν2)

E
(p(x, t) − σ⊥). 2.

Here, the pressure in the invading fluid, p(x, t), balances against the far-field solid stress, σ⊥, in
the formation and compression of the linear elastic reservoir with Poisson’s ratio, ν, and Young’s
modulus, E. Note that only the difference is significant, �p = p(x, t) − σ⊥. The plane-strain
condition in each vertical plane constitutes a crucial simplifying assumption—the elliptical de-
formation profiles in the direction of the fracture propagation become uncoupled. Whence, the
fracture width (minor ellipse axis) is determined uniquely by the local fluid pressure, reservoir
stress, Young’s modulus, and Poisson’s ratio at each location along the fracture. Furthermore, in
this model, fracture behavior at the propagating tip is completely neglected; the fracture toughness
does not appear in the solution.

The pressure in the fluid is given by a lubrication approximation to the Navier-Stokes equations,
inherently assuming laminar flow prevails. Here, the pressure drop along the fracture depends
linearly on the viscosity, η, and flow rate, while depending more strongly on the fracture width,
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so that,
∂�p
∂x

= −64η

π

Q
w3h

. 3.

Note that the flow rate in the fracture, Q, and the width, w, are functions of position and time.
The flow rate varies in time and space along the fracture by any combination of (a) a change in
pumping rate (or flow schedule) at the surface, (b) leak-off of fluid through the porous fracture
walls into the formation, and (c) accumulation in the fracture as the width varies in space and time.

With the assumption of an incompressible fluid, a statement of mass conservation connects
the fracture width (Equation 2), pressure drop (Equation 3), flow schedule, and other system
properties to enable prediction of fracture geometry as a function of time:

∂ Q
∂x

+ qL + π

4
h

∂w

∂t
= 0. 4.

The first term accounts for the change in volumetric flow as a function of position along the
fracture; the second term, qL, is the volumetric flow rate of leak-off per unit fracture length from
the fracture into the formation; and the final term accounts for the expansion or contraction of
the fracture width as a function of time.

The early work by Perkins & Kern (77) assumed ∂ Q
∂x = 0, neglecting both changes in

fracture aperture and leak-off. Nordgren (78) recognized that both leak-off and evolution of
the fracture aperture must be included, resulting in a nonlinear partial differential equation for
the fracture width:

− 1
128η

E
1 − ν2

1
h

∂2

∂x2
(w4) + 4

π

1
h

qL + ∂w

∂x
= 0. 5.

This equation is subject to the initial condition w(x, 0) = 0 and the distal boundary condition
w(x, t) = 0 when the coordinate x ≥ �(t), where �(t) is the fracture length at arbitrary time. The
problem is closed by an additional boundary condition on the flow into the fracture as a function
of time. In the absence of leak-off, the fracture length and width and pressure difference in the
fracture have all been determined analytically for a constant injection rate at the wellbore (83).
These results are shown in Table 3. Note that this model corresponds to the limiting case of
a height-constrained fracture—perfectly contained—with a length much larger than the height,
akin to a tunnel crack.

Models for other limiting cases include that of Geertsma & de Klerk (80), incorporating work
from Khristianovich (79), who developed models that include the influence of the fracture tip to

Table 3 Perkins-Kern (PK), Perkins-Kern-Nordgren (PKN), Khristianovic-Geertsma-de Klerk (KGD), and radial model
predictions for an impermeable formation (qL = 0), following References 80, 83, and 221

Model �(t), R(t) w(0,t) �p

PKa, PKNb

C1

(
E Q3

2(1−ν2)ηh4

)1/5
t4/5 C2

(
2(1−ν2)ηQ2

Eh

)1/5
t1/5 C3

1
h

(
E3 Qη�(t)
8(1−ν2)3

)1/4

KGDc

C1

(
E Q3

2(1−ν2)ηh3

)1/6
t2/3 C2

(
2(1−ν2)Q3η

Eh3

)1/6
t1/3 C3

1
2h

(
E3 Qηh3

8(1−ν2)3�(t)2

)1/4

Radial
0.64

(
E Q3

2(1−ν2)η

)1/9
t4/9 1.36

(
η2 Q3(ν2−1)2

E2

)1/9
t1/9 3.38

(
E6η3

(ν2−1)6

)1/9
t−1/3

Coefficients for single and bi-wing fractures (single wing, bi-wing).
aC1 = (0.60, 0.395), C2 = (2.64, 2.00), C3 = (3.00, 2.52).
bC1 = (0.68, 0.45), C2 = (2.50, 1.89), C3 = (2.75, 2.31).
cC1 = (0.68, 0.48), C2 = (1.87, 1.32), C3 = (2.27, 1.19).
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describe the fracture geometry. As before, laminar flow is assumed within a fracture embedded in an
isotropic linear elastic solid. Models were developed for both linear (KGD) and radial fractures.
The KGD case considers plane strain along the propagation direction and corresponds to the
limiting case where the height of the fracture is much larger than its length, whereas the radial
case corresponds to the propagation of a hydraulic fracture in an infinite isotropic medium. In
each, the fracture width is determined nonlocally by the fluid pressure and far-field stress. Both
are constrained by a smooth fracture closure condition (79, 84), for the radial case: ∂w

∂r

∣∣
r=R(t) = 0,

although other asymptotes that incorporate the mode 1 stress intensity factor can be considered,

for example, w ∼
√

32
π

K1(1−ν2)
E

√
R − r for the radial case (85). We present results for both the

linear and radial fractures (Table 3) but consider only the radial fracture in detail, as it is the
simplest, but most complete, model for practical applications.

The radial model assumes a penny- (or disc-)shaped fracture of radius R, emanating from a well
of radius rw, with a local width, w(r). The closure condition places a constraint on the pressure,∫ 1

rw/R

sp(s )√
1 − s 2

ds = σ⊥. 6.

This mechanical condition is combined with a description of the hydrodynamics in the fracture.
A piecewise pressure profile is assumed in the fracture to satisfy Equation 6. It consists of two
regions: a section with logarithmic pressure decay owing to viscous dissipation and expanding flow
area along the radius and a zero-pressure region near the fracture tip:

p(r) = p(rw) − 6ηQ
πw̄3

ln
r
rw

, rw ≤ r < rc .

p(r) = 0, rc ≤ r ≤ R. 7.

Here, w̄ is the average fracture width. Equation 7 implies a gradual decrease in pressure outward
along the fracture followed by a severely dissipative region near the tip, and a zero-pressure region
to satisfy the tip closure condition. The length scale corresponding to this dissipation region, rc,
is found through the tip closure condition (83), rc /R ≈ 1 − 0.368[ E3ηQ

σ 4
⊥(1−ν2)3 R3 ]1/3.

The pressure, fracture width, and radius are determined via an analysis of the strain induced
by the pressure and the hydrodynamic model of laminar flow in a radial fracture (80, 83). These
results are shown in Table 3, where both storage and leak-off are neglected. The pressure varies
weakly with radius, except near the tip through the step function in Equation 7.

Leak-off in the PKN and radial models. Substantial complications in the mass conservation
statement for both the PKN and radial models are introduced by fluid leak-off into the formation.
The leak-off term qL is often given by the Carter law [originating in an appendix to a conference
proceeding by Howard & Fast (86)], and is typically of the form qL = 2hCL√

t−texp
when the height

is constant. The leak-off rate varies as a function of the elapsed exposure time at the fracture
face, t − texp, where texp is the time when fluid exposure occurs on the newly fractured rock; this
decrease in leak-off is due to the progressive buildup of a hydraulic resistance in the reservoir to
the invasion of the fracturing fluid, be it by simple diffusion gradient or by the formation of a
filter cake, either at the fracture wall or in the near-fracture region of the reservoir. In the case
of filter cake formation, material is deposited on the wall and/or within the pores. The leak-off
coefficient, CL, typically depends on the fluid viscosity, the pressure difference between the fluid
in the fracture and the far-field pressure of the fluid in the pores, and the permeabilities of the
filter cake and reservoir. Models using Darcy’s law can be used to construct the leak-off coefficient
(37). However, because the process relies on the detailed pore-scale structure of the rock averaged
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over large surfaces where the variation of such details is unknown, the leak-off rate is typically
determined experimentally, both in the field and in the laboratory.

The fracture problem with leak-off can be solved numerically in the general case, as Nordgren
(78) originally did for the PK model. These results indicate a matching at long and short times
with restricted versions of the full mass-transport equations. Nordgren’s characteristic time
scale, t∗ = π2( (1−ν2)ηQ2

64C5
LhE

)2/3, developed by making the PKN equation set dimensionless, indicates

early times, t < t∗, where leak-off is minimal and late times, t � t∗, where fluid loss to the
formation is significant. Limiting results for the fracture length, width, and pressure following
this early/late time approach appear in work by Nordgren (78) and Geertsma (83) for the PKN
fracture.

The rapidly increasing complexity of solving the coupled equations for this nonlinear moving
boundary problem leads very quickly to fully numerical solutions, be it for the radial geometry (87)
or for more complex planar or even fully three-dimensional geometries (88). Another approach
to the problem is to focus on what is happening at the tip of the fracture. Here, the coupling of
the various processes at play yields a series of multiscale solutions highlighting mechanisms that
control energy dissipation as the fracture propagates.

Asymptotic Solutions

Following the KGD and radial results outlined above, Spence & Sharp (89) more carefully ap-
proached the fracturing fluid–structure interaction problem through a similarity solution for flow
into a penny- (or lens-)shaped cavity. Related approaches have been adopted by Spence & Turcotte
(90) to explore the formation of dykes (magma-driven fractures), and also for studying buoyancy-
driven propagation [Spence, Sharp & Turcotte (91) and Lister (92)]. These analyses highlight the
importance of various physical processes in determining the final geometry of the fracture and,
crucially, the localization of processes at the fracture tip.

Lister (92) notes that when the crack tip is saturated with liquid, large pressures are required to
fill the fracture; instead, it can be supposed that there is a region of fluid lag with inviscid material
filling the remainder of the fracture between the liquid front and fracture tip. Desroches et al. (93)
further discussed this distinction between fluid filling and fluid lagging the fracture tip, indicating
that fluid approaching the fracture tip implies a solution of zero stress intensity factor (K1 = 0)
in the leading order term, with a stress singularity weaker than predicted by linear elastic fracture
mechanics. The dominant dissipation mechanism is due to the pumping of viscous liquid into the
fracture tip (Poiseuille flow) rather than the fracture process itself.

The strength of the singularity at the crack tip indicates the dominant physical process (94–
97). In 2004, Detournay (95) summarized this work for fracturing in impermeable rock, qL = 0,
considering both the radial and plane-strain KGD fractures. Absent of leak-off, a dimensionless
toughness K = ( Lm

Lk
)p identifies whether the fracture process is dominated by viscosity (K ≤ 1)

or fracture toughness (K ≥ 4). The exponent p is 5/2 and 3/2 for the radial and KGD fracture,
respectively. Expressions for Lm and Lk, along with the controlling ratio K, are presented in
Table 4. These scalings show that the KGD fracture is dominated by the same physics for all
time, as determined by the temporal invariance of the parameter K. The radial fracture exhibits

a t
1
9 time dependence, indicating that the dominant dissipation mechanism changes from viscous

dissipation to fracture toughness dominated at long times.

Asymptotics with leak-off. Inclusion of leak-off for permeable formations adds an additional
dissipation mechanism; relaxation of the impermeability condition permits fluid accumulation
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Table 4 Length scales for viscosity and toughness in Khristianovic-Geertsma-de Klerk (KGD) and radial models under
constant injection rate Q, from Reference 95

Lm Lk K
KGD (

E ′ Q
η′

)1/6
t2/3

(
E ′ Q
K ′

)2/3
t2/3 K ′

(E ′3η′ Q)1/4

Radial (
E ′ Q3

η′
)1/9

t4/9
(

E ′ Q
K ′

)2/5
t2/5 K ′

(η′5 Q3 E ′13)1/18 t1/9

Here, η′ = 12η, E ′ = E/(1 − ν2), and K ′ = 4(2/π )
1
2 KIC . KIC is the fracture toughness.

in the formation, in addition to the fracture. Lenoach (98) considered leak-off with a viscosity-
dominated fracture, and Bunger et al. (99) considered leak-off in the toughness-dominated case.
Subsequently, Garagash et al. (97) presented a generalized approach where leak-off and storage
in the fracture, along with viscous and toughness losses, are all active within the fracture and at
the tip. This unifying approach verifies that previous analyses (as detailed in Reference 97) are
obtained as limiting cases of the general problem. Tip asymptotics can be used to indicate the
dominant mechanisms in planar fracture propagation. Detournay (100) provides a recent review
highlighting the multiscale and time dependence of the leading phenomena at play during creation
of a hydraulic fracture. Verifying the regime in which a hydraulic fracture will be propagating is
of crucial importance in the design of laboratory tests and small-scale experiments to understand
the behavior of a hydraulic fracture. Improper scaling of the dominant physics yields results that
are purely of academic interest and cannot be practically exploited.

Transport of Solids in Hydraulic Fracturing

Solid particles are injected to sustain fractures of the desired geometry against closure stresses
imposed by the reservoir. A straightforward dimensional analysis provides insight to the transport
phenomena at play during creation and propagation of the hydraulic fracture. The geometry of
the fracture (w, h, �), the injection rate (Q, or shear rate γ̇ ), fluid rheology (chiefly viscosity η,
relaxation time λ, and fluid density ρ f ), and proppant properties (solids volume fraction φ, radius
a, density ρ s) frame the geometric and dynamic scales. Application of the Buckingham Pi theorem
to the variables (w, h, a, φ, ρs , ρ f , η, λ, γ̇ ) forms a set of six dimensionless groups, two purely
geometric (1 = w/h, 2 = w/a), three dynamic (Rew = ρ f w

2γ̇ /η, Wi = λγ̇ , Sk = �ρawγ̇ /η),
and the volume fraction, φ. Here, �ρ = |ρs − ρ f | is the density difference. The geometric
parameters define the aspect ratio of the fracture (w/h) and the aperture as measured by the
particle size (w/a). The relevant dynamic conditions of the flow are indicated by the dominance
of viscosity versus inertia through the Reynolds number (Re), the flow timescale versus the fluid
relaxation time through the Weissenberg number (Wi), and the importance of particle inertia
in unsteady flows via the Stokes number (Sk). The shear rate, γ̇ , varies throughout the fracture
and can be computed from the flow rate and the fracture geometry. Here, we choose the simple
relation, γ̇ = Qw−2h−1, assuming flow in a slit. Note also that a particle-based Reynolds number
can also be defined, Rep = −1

2 Rew.
Additional physical variables give rise to additional dimensionless groups. These groups will

reflect the important physics of the transport process and the rheology of the complex fluid in the
fracture. A Shields parameter (see section on Particle Settling), for example, captures the ability
of a slickwater treatment to transport proppant particles settled along the bottom of a fracture.
Further, we could quite reasonably specify a particle settling velocity to compare against the flow
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velocity, a wall roughness or channel bend radius to compare against the channel width or particle
size (53, 101), a thermodynamic energy scale to compare against viscous dissipation around the
particle (102), or additional timescales for the fluid rheology or pumping schedule.

Implications for Fracturing Fluids

These models highlight expected geometric and dynamical scalings associated with fluid selection.
Parameterization of the particle-laden fracturing fluid is often relegated to the magnitude of the
viscosity only, occasionally also capturing shear-rate dependence (93). The fracture geometry
depends weakly on the viscosity: For a PKN fracture geometry, the length scales with the viscosity
as � ∼ η−1/5, width as w ∼ η1/5, and pressure as �p ∼ η1/4. Fluid viscosity must thus be varied
by orders of magnitude to significantly alter length and width. However, assuming simple Darcy
flow into the formation, the leak-off will scale as CL ∼ 1√

η
, and Nordgren’s crossover timescales

as t∗ ∼ (ηC−5
L )2/3 ∼ η7/3, indicating a strong viscosity dependence for leak-off. Settling also

depends strongly on the viscosity; the Stokes settling velocity of a suspension with volume fraction
φ scales as u ∼ η−1(1 − φ)5 (103).

These scaling considerations highlight contradictory fluid requirements and the need for com-
plex fluids in hydraulic fracturing. The demands on the fluid are significant: A fracture job designed
to generate a large fracture width (placing large amounts of proppant per fracture area) will require
a high-viscosity fluid during injection. As a result, the fluid will exhibit low leak-off and result in
a long fracture closure time. This long closure time favors proppant settling, leaving the top part
of the fracture mostly unpropped and prone to closure. This can decrease the final contact area
between the fracture and the reservoir. Thus, a large viscosity is required during pumping and a
small viscosity is required to favor leak-off after shut-in. Further examples of competing require-
ments include (a) low pressure drop in the pipe and the simultaneous creation of fracture width;
(b) low leak-off during fracture creation but fast fracture closure after pumping has stopped, with
low damage of the rock permeability (104); and (c) transport of solid particles while providing
maximum permeability of the placed proppant pack to hydrocarbon fluids.

Three main routes exist to optimize between these conflicting requirements. A train of fluids
is often used; for example, creation of fracture complexity requires a thin, solids-free fluid. A
slurry created by adding solids to the base fluid will not create enough fracture width to admit
large concentrations of proppant particles. Therefore, a sequence of at least two different fluids
is preferred: a low-viscosity fluid to propagate the leading edge of the fracture, followed by a
particle-laden fluid with a larger viscosity. A second route to address this fluids design challenge
is the use of additives to decouple fluid properties; for example, starch particles can be added
to control leak-off. A third route is to use fluids whose properties can be altered with time and
temperature.

FRACTURING FLUIDS

The formulation and properties of hydraulic fracturing fluids vary greatly in response to per-
formance requirements that are set by constraints on the surface and downhole (105, 106). The
choice of fracturing fluid is largely set by reservoir properties, which are strongly variable across
different reservoirs (if not within a particular reservoir). Thus, a complex design of the base
fluid must be performed for each job. Today, this design is largely empirical and is guided by
return on experience, even as numerical simulators are used to inform the design of hydraulic
fractures.
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As described in the above section Requirements for a Hydraulic Fracturing Fluid, fracturing
fluid design is highly constrained, and successful fluid designs are complex. Additives, both chem-
ical (such as polymers) and physical (e.g., spherical particles and fibers), endow the fluid with a
non-Newtonian response in which the stress varies nonlinearly with the shear rate, and changes
also as a function of mechanical (and thermodynamic) variables. Other important non-Newtonian
characteristics include strain-dependent stresses, viscoelasticity, thixotropy, and a finite yield stress
during shearing, among others (107, 108). Importantly, non-Newtonian fluids can also exhibit nor-
mal stress differences that are not observed in Newtonian fluids; normal stresses give rise to several
important phenomena, including elastic tension along streamlines (107, 109), particle migration
(110, 111), and elastic instabilities (112, 113). The various processes described here, and how they
manifest in the fracturing process, are shown schematically in Figure 2.

The majority of fracturing fluids used today are aqueous (8). Diesel, alcohol, and other organic-
based fluids, although desirable because they tend not to cause formation damage and are easily
viscosified, tend not to be used because they are hazardous to pump at high pressures and in
large volumes (106). Both aqueous and organic fluids can be foamed (or energized), and most are
eventually filled with proppant. Owing to the proprietary nature of fracturing fluids, definitive
information on components and concentrations is not generally available. Also, the chemical
structure of components can be ambiguous. Reviews by Barati & Liang (114), Montgomery (15,
106), Gulbis & Hodge (115), and Ely (105) describe many chemical and physical properties of
commonly used fracturing fluids.

Polysaccharide-Based Fluids

Polysaccharide-based fluids are inexpensive and effective viscosifiers, achieving desired fracture
widths and reduced proppant settling. Most of these materials are well studied (116). Guar is the
most common polysaccharide used in hydraulic fracturing (15). It is mostly soluble in water (the
residue varies depending on the source and preparation) and biodegradable, presents low health
concern (it is commonly used as a food additive), and can be readily broken. Xanthan gum and
cellulosic materials are also used. Xanthan is less common owing to its higher cost. Materials
modified from cellulose (which is itself not soluble in water) are also used because they have fewer
impurities than guar (115) and easily form gels when derivatized (e.g., hydroxyethyl cellulose)
(116). Here, we focus on guar exclusively, as guar-based fluids can answer all of the requirements
enumerated above and have been the fracturing fluid of choice for decades.

Uncrosslinked, or linear, guar consists of a mannose backbone substituted with galactose side
chains to an average ratio of 1.8:1 mannose:galactose (117). Uncrosslinked guar behaves as a
viscoelastic shear-thinning fluid (118). The galactose units are commonly modified (115) to change
(a) the solvation properties of the guar, (b) the availability of crosslinking sites and chemistries, and
(c) the performance of the material at elevated temperature. Borate and various metal ions crosslink
the linear material to form a physical or chemical gel. Crosslinking with borate requires elevated
pH (�7.5) (114, 119), resulting in a dynamic ionic bond in which the borate ion connects cis-
diols on the galactose. The dynamics of these crosslinks have been studied extensively (120, 121),
and they give rise to a classical Maxwell-like linear viscoelastic response of the material (119)
and a more viscous solution (as compared with the uncrosslinked case) in steady shear that can
also display shear thickening above a critical shear rate (122). Crosslinking with metal ions is
performed over a larger range of pH (depending on the ion) (115), and gels crosslinked with
zirconate can tolerate a higher downhole temperature than those crosslinked with borate (114).
Because the metal crosslinked guar forms a chemical gel, shearing disrupts the bonding network,
and the gels do not completely reheal (114, 123). Temperature and pH accelerate the crosslink
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Schematic diagram of the fracturing process (above) and various transport phenomena involved in hydraulic fracturing. In the Shields
parameter σp is the stress exerted on the particle by the flow.
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Breaker: additive to
degrade the fluid
microstructure and
reduce the viscosity

Screenout: growth of
a jammed proppant
pack obstructing the
flow in the fracture

reaction, whereas the addition of organic molecules (ligands) that screen the crosslinking sites can
delay it. Pressure also affects the rheology: A decrease of 70% was reported in the viscosity of
0.3wt% hydroxypropyl guar crosslinked with diboronic acid when pressure was increased from
atmospheric to 10,000 psi (124). Water chemistry (pH and ion content) must also be monitored, as
species like bicarbonate, phosphate, magnesium, iron, and silicate can affect the crosslink density
and hydration state of the guar (115, 125).

Guar is often injected with delayed crosslinker and a breaker to modify the fluid rheology
away from surface equipment. Ideally, crosslinking would occur immediately before the fluid
transits the perforation to the fracture for the following reasons: (a) Crosslinking in the wellbore
subjects the fluid to high rates of shear (typically 500–1,500/s), and may irreversibly damage the
crosslinked network. (b) Crosslinked guar is more viscous and more difficult to pump, limiting
the pumping rate (115). (c) Crosslinked guar more effectively carries proppant into the fracture,
preventing sand from settling to the bottom of the pipe instead of entering the fracture. Even when
crosslinking is delayed, the gel is exposed to extremely high shear rates in the jetlike flow through
the perforation. Thus, the ability of the gel to heal and recover must be quantified to ensure that
the desired rheological properties of the fluid are retained in the fracture. The breaker is added to
degrade the guar (crosslinked or uncrosslinked) once the fracture has closed (115). Degradation is
necessary to ensure that the ultimate conductivity of the fracture is not hindered by the presence
of a viscous fluid or residual polymer. Oxidizers and enzymes (such as β-mannanase) can be
used to cleave the acetyl linkages connecting mannose–mannose and mannose–galactose groups
(105, 126).

Viscoelastic Surfactant-Based Fluids

Micellar surfactants in water constitute the so-called viscoelastic surfactant (VES) class of fluids.
Introduced because of simplicity in design, preparation, and breaking requirements, the rheology
of VES can be tuned by varying the surfactant concentration and the amount and type of salt
or co-surfactant added to water. Because the surfactant molecules are amphiphilic and relatively
short chained (as compared with polysaccharides), these fluids do not require time to hydrate and
generally build structure rapidly upon addition to water. Above the critical micelle concentration,
the VES forms long, wormlike structures that continuously break and reform, endowing the fluid
with a Maxwell-like viscoelastic response (127). This microstructure is perturbed and the fluid
thins when flowing through the perforation (high-shear region). Because the proppant-carrying
ability depends critically upon the viscosity, the crucial design parameter is the fluid rehealing
time versus the proppant settling time in the near-perforation region. If the fluid does not recover
sufficiently quickly, the proppant will settle, accumulate, and occlude the perforation, resulting in
screenout. The micellar fluid rheology is also strongly temperature sensitive; VES are typically
used only in formations below 115◦C.

VES has additional benefits: A breaker is not required when the formation contains mobile
water, as VES can be broken by dilution with water (114). Permeability damage is reduced in
the formation and proppant pack, as the surfactant micelles can dissolve in both aqueous and
organic liquids. The strain-hardening extensional viscosity of VES reduces leak-off in formations
with small pores. Furthermore, the rheology of such systems can be tuned such that the very
high shear rate rheology translates into low frictional pressure losses in the pipe (in the turbulent
regime). Purportedly owing to their strong elastic character, micellar fluids are recognized within
the industry to transport proppant more effectively than Newtonian fluids with the same viscosity
at identical flow conditions in the fracture. The main disadvantage, however, is the low pressure
drop they create in the fracture (related to their shear banding). To remediate this issue and ensure
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enough fracture aperture for proppant placement, VES are generally foamed. Although much is
known about unladen VES, the current body of knowledge has not enabled a clear link between
the structure of the surfactant and the resulting properties of the slurry, limiting the development
of this family of fluids.

Energized Fluids, Foams, and Emulsions

All of the fluids described above can be energized (foamed) with nitrogen and/or carbon dioxide,
and can also be added as inclusions in an immiscible organic fluid to build an emulsion (15, 114).
Energized fluids and foams have the advantage of reduced water usage, while maintaining proppant
transport ability. Furthermore, energized fluids require little or no breaker (the foam life can be
controlled by surfactant chemistry) and tend not to damage the formation because a majority of
the material (by volume) pumped downhole is gas and not water or oil (115). The rheology of
foams and emulsions can be tuned through the fraction of the various phases, distribution of the
size of the dispersed phase, and the interfacial tensions of the phases (108). Foams can exhibit
viscosities far greater than the liquid phase and can exhibit a yield stress (128); they thus suspend
proppant adequately, provide enough viscosity to create fracture width, and can provide adequate
leak-off control.

Temperature and pressure variations from the surface to the fracture tip yield changes in the
rheology of the foam and changes in the overall gas volume fraction. Foams must be designed to ac-
commodate these changes, requiring interrogation at variable temperature, pressure, and mechan-
ical stimuli. These materials are difficult to characterize in the lab, chiefly owing to slip and related
artifacts (128, 129). Furthermore, the structure of foams, although shown to strongly control flow
properties in both straight channels and porous media, is difficult to replicate in the laboratory.

Foams have been used historically to decrease the hydrostatic pressure in the wellbore, enabling
hydraulic fracturing treatments in depleted reservoirs (with low reservoir fluid pressure and low
reservoir stress). Despite strong potential benefits in reservoirs generally, the use of foams remains
restricted to lower-pressure regions and low-volume treatments. Fluid selection is (again) mainly
based on empirical experience, largely because of the lack of systematic understanding noted above.
More recently, liquefied gas has been used as the liquid phase (to decrease formation damage) (130,
131), but this approach has not yet been comprehensively developed.

Slickwater and Waterfracs

The simplest materials used in hydraulic fracturing are the slickwater/waterfrac fluids. These
materials target very-low-permeability reservoirs, where leak-off is minimal and generation of
fracture surface area is paramount (132). These fluids are dilute polymer solutions [usually poly-
acrylamide (15) or propylene oxide] in which the polymer acts as a friction reducer (133) in the
pipe, and not a viscosifier. Salts, clay-control additives (to mitigate clay swelling and permeability
reduction), and other components may be added in small amounts (106). Mitigating pumping
losses is a key issue, as these fluids are pumped at high rates to treat multiple fractures at once
(upward of 120 bbl/min for 4 to 6 concurrent hydraulic fractures). Of all the fracturing fluids,
proppant settling occurs most rapidly in slickwater. Because the carrying ability of these fluids is
minimal, proppant concentrations 0 ≤ φ � 0.07 are typically used.

The main advantage of slickwater fluids is their low cost, which has enabled economical
production of unconventional reservoirs in North America. The main drawbacks are the min-
imal proppant-carrying ability, minimal fracture width generated, and challenges in fracture
containment. Slickwater has been used recently in hybrid jobs, where slickwater is first pumped
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to create narrow fractures in a complex network and is followed by a more viscous fluid to widen
the fractures and carry higher concentrations of proppant (134). As with other fluids, the design
of slickwater and hybrid jobs is largely guided by experience, even if fully numerical models are
used to help with the design.

Fiber-Endowed Fluids

Fiber-endowed fracturing fluids are a relatively recent innovation, developed to improve proppant
transport (135). Benefits of fiber-endowed fluids lie in their ability to partially decouple proppant
transport ability from the base fluid rheology. This enables independent control of viscosity to
achieve fracture width and fracture containment. The addition of fibers is particularly useful
for high-temperature applications, where maintaining the fluid viscosity with chemical modifiers
can prove difficult. Furthermore, fibers strongly reduce the effect of proppant diffusion during
transport, both in the pipe and in the fracture. This ensures that the schedule of proppant concen-
tration imposed at the surface is preserved along the wellbore and into the fracture. Specifically,
this feature permits the pulsing of proppant-laden slugs with particle-free fluid, enhancing the
post-treatment fracture conductivity.

Despite the success and wide use of fiber-endowed fluids, fundamental understanding of these
systems is scant. This knowledge gap is likely the largest among all commonly used fracturing
fluids. System design is complex, but based on experience at the lab- and field-scale, adequate
systems typically consist of a polysaccharide (guar) base fluid, flexible fibers in the semidilute to
concentrated regime, and proppant. The properties of these systems have not been comprehen-
sively studied in the literature. Typically, simpler canonical systems have been studied, focusing
on rigid fibers in Newtonian matrix fluids, in the absence of other solid particles (i.e., proppant).

The Need for Measurements

Fracturing fluids operate at high shear, high temperature, and high pressure; are laden with dense
particles and potentially long, flexible fibers; and can be foamed. In isolation, each of these presents
challenges. In conjunction, the experimental task is daunting. Regardless, measurement and theory
are required to enable model-based fluid selection and design, rather than Edisonian approaches
guided by empirical experience. Parametric exploration of the rheology of these materials, and
measurements at high pressure and high temperature under both steady and dynamic forcing,
would advance the field substantially.

COMPLEX FLUIDS IN HYDRAULIC FRACTURING

Fracturing fluid characterization is essential both for the design of new fracturing fluid systems
and for the optimization of hydraulic fracturing treatments. It can be decomposed into two parts:
The first goal is to provide an understanding of how (and if ) the fluid answers the tremendously
complex and often contradictory engineering requirements encountered in hydraulic fracturing.
The second goal is to inform and validate fracturing and proppant transport models that are used
to design and optimize hydraulic fracturing treatments. Tests associated with these goals should
be standard protocols, as they need to be repeated for any new fluid formulation and (ideally)
before any new fracture design. Such standard tests should be guided by the knowledge developed
in the former, more detailed characterization. In this section, we consider the rheology of the base
fluids (that also constitute the pad) and that of the particle-laden fluids (slurries).

Propping the fracture is an essential outcome of the hydraulic fracturing treatment. In addition
to initiating and propagating the fracture, the fracturing fluid must transport and enable an even
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distribution of particles to the instant of fracture closure. Avoidance of particle settling is thus a
major consideration in particle transport—settling results in inhomogeneous placement along the
length and height of the fracture and can cause the fracture to close in a wedge-like shape (136).
Transported particles must navigate the vertical and horizontal wellbore, the perforation, and the
fracture width and height, as well as the bifurcations and tortuosity encountered along the fracture
length; nearly every point along the flow path is an opportunity for occlusion by the proppant.

Rheology and Rheometry of Fracturing Fluids

The response of the fluid stress as a function of shear rate and temperature is an important input to
fracturing models (76) to determine both the geometry of the fractures and the power required to
pump fluids downhole. Most numerical codes model the slurry as a continuous fluid using a shear-
thinning viscosity model (76). Oilfield operators argue that determining a precise fluid viscosity is
unnecessary owing to the weak dependence of fracture dimensions on the viscosity, as described
in the section Implications for Fracturing Fluids. Even as the viscosity strongly influences leak-off,
knowledge of the exact value may not be paramount, as the necessary rock properties are often
a priori unknown, and independent tests must be carried out to characterize leak-off. Critically,
these tests should also reveal the importance of fluid rheology (e.g., shear thinning), which has a
non-negligible influence on fracture dimensions and deserves further attention. The flow behavior
of suspensions, however, is critical to optimize proppant transport, as described in the next section.

Complex fluids exhibiting a dependence of stress on shear rate only (absent material mem-
ory and strain dependence) are classified as generalized Newtonian fluids. We provide a set of
commonly used constitutive laws governing these fluids in Table 5. Common fracturing fluids
are also often viscoelastic in character, exhibiting normal stress differences, memory, and other
effects. More accurate descriptions and fits can be obtained by viscoelastic equations of state like
the Giesekus or Kaye-Bernstein-Kearsley-Zapas models accounting for memory and strain ef-
fects (107, 109, 137), but these models are more challenging to implement both analytically and
computationally.

Fracturing fluid rheometry. The bespoke design of fracturing fluids, coupled with the absence
of universally predictive structure–function relationships, necessitates the direct measurement
of complex fluid properties. Rheometers are used to measure the stress response to well-defined
shearing motions generating (a) steady applied rate or stress, (b) steady-state and transient response
to oscillations in amplitude and frequency (capturing both linear and nonlinear viscoelastic material

Table 5 Expressions for viscosity as a function of shear rate and particle volume fraction in generalized Newtonian fluids

Model Expression Remarks

Newtonian η(γ̇ ) → μ Constant viscosity

Power law η(γ̇ ) = kγ̇ n−1 Easiest to implement

Carreau η(γ̇ → ∞) = η∞,
η(γ̇ → 0) = η0

η(γ̇ ) − η∞
η0 − η∞

= (1 + (λγ̇ )2)
n−1

2
Captures low/high shear plateau and power
law thinning at intermediate rates

Bingham (n, k = μ),
Herschel-Bulkley (n �= 1, k
consistency)

η

η0
=

{
∞ τ ≤ τy

kγ̇ n−1 + τy
η0 γ̇

τ > τy

Thinning above τ y; finite yield stress and
shear thinning

Krieger-Dougherty
η(φ) = ηs

(
1 − φ

φmax

)−[η]φmax ηs is the solvent phase viscosity
(φ → 0)
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response), and (c) start-up and cessation of stress or strain. Pressure-driven flows through slits,
pipes, and constrictions can also be used to measure properties of pure fluids and suspensions
under kinematic conditions closer to those downhole. Fewer commercial instruments exist to
probe the extensional properties of complex fluids (useful for flow through perforations and porous
media), with most being custom built (138). This is mainly due to difficulties in eliminating no-slip
boundary conditions and in controlling the kinematics and flow strength (139).

Rheometric tests quantify several material functions: the shear viscosity η(γ̇ ), normal stress
differences N1(γ̇ ) and N2(γ̇ ), viscoelastic storage and loss moduli in response to imposed oscil-
lations (at frequency ω and amplitude γ 0) G′(γ0, ω) and G′′(γ0, ω), compliance J(t), relaxation
modulus G(t), extensional viscosity ηE (γ̇ ), and CaBER relaxation time (140), among others (107,
141). Measures of linear viscoelasticity are relatively well-defined and can be reproduced across
different techniques, whereas numerous alternate measures of nonlinear viscoelasticity can be
made and are often chosen to closely mimic the process that the data will inform.

Despite the availability of commercial fluids-characterization tools, care must be taken to
properly execute experiments and interpret results. Several effects, generic to all complex fluids,
are present and should be anticipated when performing experiments:

� Slip and shear banding. Slip, adhesive failure, and shear banding on the measuring instrument
will compromise results. Unavoidable in many cases, they can be quantified with direct
measurement (142) or inferred by repeated measurements varying the gap between parallel
plates (129).

� Instabilities. Strongly viscoelastic fluids can exhibit spurious shear thickening owing to elastic
(141, 143) or inertial instabilities (141). Predictive theories for the onset of instabilities are
available in most geometries (113, 141) as a function of material properties and experiment
parameters.

� Particle migration. Gradients in shear rate and elastic stress and nonzero streamline curva-
ture promote particle migration; most rheometric shear flows have circular streamlines. The
measurement time should be short as compared with the timescale for particle migration.

� Boundary effects. In addition to slip, rheometer boundaries can induce ordering and disturb
the orientation of nonspherical particles (144). The geometry should be large as compared
with the particle size, typically greater than 10 particle diameters (141).

� Measurement at elevated temperature and pressure. Reproducing downhole temperature
and pressure introduces problems in sample drying and containment and is generally avail-
able only for steady measurements above 100◦C (transient and dynamic measurements are
challenging).

� Repeatability and mixing. Care must be taken to properly hydrate and mix additives in
fluids (145), and also to ensure that the materials have not degraded or biologically de-
composed when used over several days. In all cases the material should reflect the state of
hydration/homogeneity used in the actual process.

In addition to shear, pressure-driven, and extensional rheometry, simpler index-based measures
of rheological properties are also used (141). Common outside of academic laboratories, indicial
measurements provide a simple diagnostic metric corresponding to pressure drop or torque in
response to a poorly defined flow field. They are difficult to connect to models and microstructural
material theories. Such indices are useful, however, in that they can provide rough quality-control
checks that the target fluid will answer all requirements adequately. Common examples include
friction factor–Reynolds number correlations and relative recovery of viscosity following extreme
shear (15). These measures do not connect the microstructure of the fluid to its rheological
properties.
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Rheology of particle-laden fluids. Proppants are transported to the fracture to maintain con-
ductivity after cessation of the flow/pressure from the surface. Proppants are classified by their
strength (i.e., how much fracture-closure stress the proppant pack can sustain), average grain size
and statistical distribution, the quantity of fines (that may reduce the pack permeability), roundness
and sphericity, and density. Sand is commonly used, as are other materials, like resin- or polymer-
coated particles, ceramics, or carbides, and hollow glass spheres may be added as proppants or as
components in a mixture. As mentioned in the section on Fracturing Fluids, fibers are also added,
not as proppant per se, but to modify fluid rheology and decrease settling rates (135), although
fibers can also mechanically bridge the fracture. At the pump, the volume fraction (vol/vol) of the
flowing suspension can range from 0% to 5% for waterfrac/slickwater applications (146), and to
upward of 20% in treatments using more viscous fluids (147); these values increase along the frac-
ture owing to leak-off. The size of the proppant particles used is guided by the expected width of
the fracture during pumping and proppant concentration by the desired width during production,
which is directly linked to the final amount of proppant per fracture area after closure. Particle size
is specified by using the mesh size of a sieve; larger mesh values correspond to smaller particles.
A 40/70 mesh sand is commonly used, corresponding to particles with approximate diameters
between 210 µm and 420 µm.

Addition of particles will thicken the fluid owing to the additional viscous dissipation that arises
at the no-slip boundary of each particle. This effect is well-characterized in Newtonian fluids and
has been worked out to first order by Einstein and to second order by Batchelor: η/ηs = 1+ 5

2 φ +
C2φ

2. The constant C2 depends on the flow type and the Péclet number (103, 148). At larger
concentrations, no analytical solution is known; several empirical fits to data for monodisperse
suspensions of spheres exist (102, 148), typically of the form given by the Krieger-Dougherty
equation (Table 5), where φmax is the maximum packing fraction for spheres in the suspension
and [η] is the specific viscosity (a function of particle shape), with [η]φmax ≈ 1.6 for spheres. The
viscosity diverges at φmax and is very sensitive to small changes in particle concentration, except
for small values of φ/φmax.

Similar results follow for multimodal suspensions (149, 150). Chang & Powell (150) review
and study the rheology of bimodal suspensions of spherical particles; at an identical total volume
fraction, the viscosity of a bimodal suspension is lower than that of a monodisperse suspension,
and this difference grows as the mismatch between particle sizes becomes larger. The same result
follows for multimodal suspensions, as described by Farris (149), for whom the effect is named. This
result is significant for fracturing—solids loading can be increased without sacrificing pumping
power by selectively controlling the size distribution—provided the permeability of the proppant
pack is preserved (151).

The dynamics of a fiber are drastically different than for spheres, even in the dilute limit. Jeffery
(152) solved for the motion of an isolated, axisymmetric ellipsoid in a shear flow, demonstrating
that particles orbit and sweep out a volume dependent upon the initial orientation of the ellipsoid.
Rigid fibers fit well into this framework—they can be modeled as ellipsoids where the aspect
ratio rp = major axis

minor axis = L
d � 1. Suspensions of fibers may be classified according to the nature of

interactions among the fibers (144). Suspensions are considered dilute when the distance between
fiber centers avoids contact and hydrodynamic interactions are negligible (>L), satisfied when φ �
r−2

p . Incorporating hydrodynamic interactions with minimal particle–particle contacts establishes
the semidilute window, r−2

p � φ � r−1
p ; everything above this window (φ > r−1

p ) is considered
the concentrated regime, in which interactions between fibers contribute strongly to the fluid
rheology.

In the dilute regime, fibers viscosify the fluid less than spheres at the same volume fraction,
as they spend most of their existence aligned with the flow during their Jeffery orbit. This is
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communicated quantitatively through the specific viscosity of fiber suspensions (ellipsoids
with rp → ∞), found by Jeffery to be [η] = 2; similar results have been computed by many
others [see table 1 in Petrie’s review on fiber suspension rheology (153)]. In the semidilute regime,
for the same solids concentration, suspensions with larger rp will exhibit a larger viscosity (154).
The aspect ratio and concentration are not the only controlling parameters, however, as the fiber
length has been shown to influence the viscosity for fixed rp and φ (154); this length effect is
presumably due to the presence of flocs formed by adhesive contacts and between the particles
and is mitigated at large stresses (155). Other effects, like the orientation and buckling of fibers,
contribute strongly to suspension rheology and stress growth in the start-up of shear flows.

The volume fraction required to form a mechanical contact network (φc) decreases strongly
as the particle becomes less spherical (156), scaling as φc ∼ 0.6r−1

p to lowest order in the aspect
ratio for prolate ellipsoids. This suggests that mechanically connected networks of fibers can be
formed at smaller volume fractions as compared with spheres, where φc ∼ 0.28 (156). This result
has been exploited in fiber-endowed fracturing fluids (135).

Shear thickening is also observed in some fracturing fluids. Particle-laden flows will exhibit an
increase of viscosity with increasing shear rate provided the suspension is above approximately 40%
solid particles; the magnitude of shear thickening becomes increasingly severe as the concentration
of particles increases (102, 157). The shear thickening described here is dynamic and distinct from
the viscosity enhancement that arises from simply adding particles to a fluid (where no slip on the
particle surfaces enhances the local viscous dissipation rate as the volume fraction of the solid phase
increases). Recent reviews by Denn & Morris (158) and Stickel & Powell (148) and monographs by
Guazzelli & Morris (103) and Mewis & Wagner (102) provide extensive discussion of suspension
rheology and mechanics for non-Brownian particles.

Describing the rheology of filled non-Newtonian liquids is significantly more complex owing
to the variety of fluid behaviors and constitutive laws available—experiments and theory required
to classify and describe each are extensive and difficult. Barnes (159) provides a recent review of
particulate suspensions in non-Newtonian fluids. Although generalized statements are difficult to
justify for particles in non-Newtonian matrix fluids, many viscoelastic particle-laden systems dis-
play a magnification of viscoelastic effects in the fluid phase owing to the increased local shear rate
resulting from the presence of solids. Gleissle and coworkers (160, 161) explored this effect, show-
ing that a shift factor dependent on volume fraction can accurately predict material functions of
many particle–fluid systems. Dagois-Bohy et al. (162) have recently explored the non-Newtonian
rheology of a suspension in a yield-stress fluid and showed that extension of Newtonian results to
these fluids is promising but nontrivial.

Particle Migration

The oilfield community started to investigate particle migration under fluid flow in the late 1980s
(163). There was a concern that settling would be accelerated if particles migrated to the center
of the fracture width, both under flow and at rest. Another concern is the increased velocity of the
particles in the fracture midplane, which may reach the tip of the fracture and cause bridging (164).
Particle migration arises from several forces present in both Newtonian and non-Newtonian fluids.

Segré & Silberberg (165, 166) studied the migration of a dilute suspension of particles in low–
Reynolds number flow of Newtonian fluids, observing particle concentration at approximately
60% of the tube radius. Theory applied to migration in this dilute limit generally agrees with
experiment (167, 168), revealing that a balance between an inertial lift force and a repulsion near the
wall is responsible for the equilibrium distribution. At higher Reynolds numbers, the concentrate
annulus moves toward the wall. Matas et al. (169) characterize this behavior for 67 ≤ Re ≤ 2,400
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and observe a second equilibrium position at the tube center when Re ≥ 600, which is also a
function of particle size. Asmolov (170) provides a theoretical description of particle migration in
this limit but does not predict the second equilibrium region.

Non-dilute suspensions under flow exhibit particle migration owing to gradients in viscosity,
shear rate, and particle concentration. Acrivos and coworkers (171, 172) observed these effects in
the rheometry of suspensions, where particles migrated to regions of low shear rate in a Couette
cell. Similar effects have been observed in duct flows of suspensions (173, 174), showing the
transport of particles toward the channel centerline and a blunting of the velocity profile with
increasing volume fraction. Oh et al. (175) determined that the center region could reach φ =
0.64, the random close packing limit of monodisperse spheres, demonstrating that these domains
progressively compact.

The driving mechanisms are well-described in constitutive models by Phillips et al. (176)
and Mills & Snabre (177). Phillips et al. (176) use a diffusive flux approach, in which particle
concentration plays the role of an active scalar that diffuses as a result of several gradient terms.
Particles migrate away from regions of high collision frequency, corresponding to regions of large
shear and/or particle concentration, Jp−p ∼ −∇(γ̇ φ). Further, particles migrate away from regions
of large viscosity; a colliding particle pair in a region of inhomogeneous φ [and therefore η(φ)]
will exhibit a net displacement toward the region of lower viscosity, Jη ∼ −∇(η(φ)). Mills &
Snabre (177) predict migration based upon gradients in the stress [rather than upon local particle
collision rates as considered by Phillips et al. (176)]. Recent analyses (178, 179) employ the frictional
rheology model of Boyer et al. (180). Both capture the migration of particles toward the center and
resultant blunting of the parabolic flow profile. The distribution of particles has been measured
(175) and demonstrates the applicability of these models (178, 180).

In viscoelastic fluids, migration can also occur due to an elastic force orthogonal to the direction
of shearing. Elastic (normal) forces are largest in regions of large shear rate; gradients in the shear
rate across a particle will result in a net elastic force pushing particles to regions where the gradient
in shear rate—and resulting elastic stress gradient—is small. In a Poiseuille flow, particles therefore
migrate toward the apex of the velocity profile. This effect has been described in a second-order
fluid by Ho & Leal (110) and experimentally verified by Tehrani (181). Leshansky et al. (111)
performed experiments showing particle focusing in a microdevice and derived a scaling argument
identical to Tehrani’s for the migration speed, v ∼ − a2

6πη

∂N 1
∂γ̇

∂γ̇

∂y , where N1 is the first normal stress
difference and y is the cross-channel dimension. Tehrani also illustrated the importance of the
shear rate, observing the absence of particle migration in the plug-flow region of an elastic solution.

Elastic forces also give rise to subtle and surprising particle–particle interactions. Feng &
Joseph (182) studied these interaction effects in torsional shearing flow between parallel plates,
observing the formation of annular rings using both spheres and fibers in a polyox solution;
interestingly, fibers can rotate inward or outward depending on whether the fiber is free to rotate
about the vorticity axis or is stuck in a state aligned with the flow. Lim et al. (183) explored these
effects in rigid microfluidic devices at high Reynolds number. Iso, Koch & Cohen (184, 185)
studied semidilute concentrations of fibers in fluids of varying elasticity in a Couette flow and
highlighted the competition between particle–particle hydrodynamic interactions and elasticity-
driven fluid effects. Fibers tend to align toward the vorticity axis in weakly elastic fluids (Wi � 1,
log rolling) but become increasingly randomized when the fiber concentration increases, whereas
fibers tend to align in fixed orientations (along and slightly offset from flow) in strongly elastic
fluids [Wi � O(1)].

The nature of the non-Newtonian fluid determines the nature of the particle–particle
interactions. In a study of particle–particle interactions in a shear flow, Snijkers et al. (186)
detailed these differences in both the rheology of the fluid and resulting particle trajectories. A
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unifying theme of elastic fluids, however, is the tendency to exert an inward compressive force
normal to curved streamlines, which can explain particle–particle kissing, streamwise orientation
of elongated particles, and particle motion toward walls (187). An improved understanding
of these effects may provide insight into the trajectory of proppants in a complex network of
fractures, e.g., which components of a proppant will effectively move from the main fracture into
an adjacent fracture, making a sharp angle with it.

Particle Settling

Proppant settling occurs under both dynamic (during flow) and static conditions. Elimination and
mitigation of settling are important to ensure a uniform distribution of proppant particles along
a fracture; settling will occur unless the proppant and fluid are density matched. The presence of
boundaries, non-Newtonian base fluids, and other particles all modify the settling of proppants
within a fracture.

Two distinct regimes of settling behavior are recognized to exist during the fracturing process:
(a) rapid settling coupled with successive rolling, saltation, and resuspension of the sediment bed
and (b) gradual settling absent a moving sediment bed. In all cases, descriptions of particle transport
are dominated by empirical correlations, except where exact zero Reynolds number results can
be applied (188). In 1959, Kern et al. (189) recognized the sediment transport described in the
first regime. The relevant physical parameters are the shear stress acting on the grain compared
with a gravitational stress, θ = τp

2ag(ρs −ρ f ) (the Shields parameter), and the particle Reynolds

number Rep = ρ f awγ̇

η
. Sediment transport is anticipated in waterfrac/slickwater operations (190),

the onset of which can be predicted using a Shields plot (191). This process, specific to the
fracturing configuration, was studied in more detail by Patankar et al. (192) and Wang et al. (193),
who developed power law correlations to describe static and fluidized bed heights in a fracture.

Proppant particles in more concentrated polymer and gel-like fluids will experience reduced
settling, owing to the enhanced viscosity of the fluid. Sedimenting particles experience frictional
drag and a variety of particle- and wall-driven retarding phenomena prior to deposition in a pack
on the bottom of the fracture. The convecting particles experience all of the migration forces
described above, and additionally feel a gravitational body force. This body force drives particles
downward to the fracture floor; conservation of mass and the migration of neighboring particles
drive a recirculation (103), which retards the settling speed. A result by Richardson & Zaki (103,
194), u = us (1 − φ)−n, predicts the decrease in the Stokes settling speed, us, as a function of
volume fraction, φ. The power-law exponent n ≈ 5 is determined empirically (103, 195). In
this expression, the volume fraction is uncorrected for maximum packing and will lose predictive
capability at higher particle concentrations; Chang & Powell (196) introduce a modified version
of this law to correct for the maximum packing limit, u = us (1 − 0.05φ/φmax)5.3±0.2.

Particles sediment differently under both static and flowing conditions when embedded in non-
Newtonian fluids (Figure 3). This aspect of fracturing fluids has been studied in the petroleum
industry since at least the 1970s. Some efforts have focused on the development of empirical
correlations to predict settling of particles in shear-thinning or Carreau-like fluids (188, 197, 198),
whereas others have tackled the static versus dynamic settling problem directly. Novotny (199)
performed experiments in a Couette cell using a polyacrylamide fluid and observed enhanced
settling when the suspension was sheared, even remarking that particles that appeared to be
completely stagnant in a “highly non-Newtonian fluid” will sediment once sheared. McMechan
& Shah (200) studied the static settling of particles in a 14-ft-tall cell using a variety of metal and
borate crosslinked guar fluids and remarked on the suspending ability of the various crosslinkers.
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Figure 3
Single- and many-particle effects under settling and shear. (a) Trace of the conformation tensor surrounding
a settling particle under shear (201) illustrating regions of pronounced molecular stretching length and
regions of elastic stress (reprinted from Reference 201, c©2013, with permission from Elsevier). (b) Settling
of particles through a stationary (γ̇ = 0) and sheared fluid [reprinted with permission from Tonmukayakul
et al. (202) c©2008, AIP Publ. LLC] illustrating increased drag on a settling suspension when γ̇ > 0. Many-
particle interactions induce particle chaining and fluid channeling from a homogenous state (c) in a periodic
triangle wave Couette flow (203) (reprinted from Reference 203, c©2004, with permission from Elsevier) and
(d) under settling (204) (reprinted figure with permission from Reference 204, c©2005 Am. Phys. Soc.).
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In particular, they noted variability in the time for the proppant-carrying capacity of the materials
to recover following pumping and shearing to fill the cell.

Extensive experiments using Couette and slit-flow geometries indicate that fluid elasticity
is required to retard settling in dynamic conditions, and that the microstructure of the non-
Newtonian fluid and shear conditions are essential to determine the ability of the fluid to retard
(or enhance) settling under dynamic conditions. Gheissary & van den Brule (205, 206) studied
Newtonian, constant-viscosity elastic fluids (i.e., Boger fluids) and a viscoelastic shear-thinning
fluid. They found that settling is retarded in the Boger and viscoelastic shear-thinning fluids, with
the highest-elasticity fluid (as measured by the first normal stress difference) giving the slowest
settling rates, even if the fluid shear-thins. They also commented on flow-induced anisotropy:
Flow of fluids that shear-thin owing to alignment of polymer molecules (hydroxyethyl cellulose,
for example) will exhibit slower settling than shear-thinning fluids that decrease their viscosity as
a result of the breakdown in the internal microstructure (such as Carbopol). Tonmukayakul et al.
(202) tuned the amount of borate crosslinker in a guar gum solution and showed that at lower
crosslinker concentration (corresponding to a weakly elastic, shear-thinning fluid), the settling
rate increases with shear rate, whereas at higher crosslinker concentration (a viscoelastic gel-like
fluid), the settling rate markedly decreases with shear rate. The experiments by Hu et al. (207–
209) focus on differences between borate and metal crosslinked guars, with high-concentration
crosslinkers. Microstructurally, these materials differ in the nature of the crosslinks: Addition of
borate introduces dynamic crosslinks, enabling the material to reheal following breaking (119,
120), whereas the metal-based crosslinks are irreversible and do not reform once broken (115,
123). Settling in each gel under shear then proceeds differently. Settling in the borate crosslinked
guar is retarded by imposed crossflow, and both N1 and η increase as a result of shear. Conversely,
minimal settling is observed in metal crosslinked gels at low or zero shear rates, but above a critical
shear rate, the proppant-carrying ability of the material is lost, and substantial settling is observed.

The retarded settling of particles within non-Newtonian fluids subjected to shear flow has also
been examined computationally and analytically. Tanner, Housiadas, and coworkers (210, 211)
have studied the drag on a sphere, pointing to an added elastic stress contributed by the distortion
of streamlines induced by the settling particle. Padhy et al. (201, 212) performed computations
using FENE-P and Giesekus models to mimic a Boger fluid and a guar solution lightly crosslinked
with borate [which shows enhanced settling with increasing shear rate in experiments (202)]. Their
computations captured the retarded settling observed in experiments and also captured the result
of Housiadas & Tanner (210) when walls bounding the flow are removed (infinite domain). Padhy
et al. (201, 212) examined individual contributions to the total drag and highlighted the competi-
tion between elasticity (which increases frictional drag) and shear thinning (which decreases drag).
They further noted that these phenomena scale differently with polymer concentration, and an
optimum concentration exists to minimize the sedimentation speed (212).

The complexity of the nonlinear transport phenomena presented here, compounded with
complex temperature, pressure, and shear-rate history experienced by a slurry during a hydraulic
fracturing treatment, yields very conservative assumptions in the design and optimization of hy-
draulic fracturing treatments. For example, settling rates are typically overestimated to make sure
that the design will result in an acceptable distribution of proppant in the fracture. Acceptable
fracture extensions are then limited as a result, to make sure that proppant does not settle at the
bottom of the fracture.

Bridging and Jamming Events

Proppant occasionally becomes stuck, or jammed, during fluid injection. This event is known
to occur both in the immediate vicinity of the wellbore and close to the fracture tip. In narrow
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Jam: a particle pack in
the fracture with
enhanced hydraulic
resistance
accumulating proppant
but permitting fluid to
filter through

Bridge:
a fracture-spanning
group of stuck
particles, around
which other particles
and fluid may flow

apertures, jamming events may start after the formation of a localized force chain or bridge of
particles between the fracture walls. Bridged proppant will redirect the local flow around it and may
either become destabilized (unbridged) or grow. Under continuous pumping of slurry, the jammed
proppant pack may grow, creating a region of locally magnified resistance, until the fracture and
the wellbore are filled with proppant—or pumping is stopped. The pressure at the surface can
increase rapidly during jamming and may reach the maximum pressure capacity of the equipment.
Growth of a jammed pack, termed a screenout, constitutes failure if it prevents completion of
the treatment, especially when it happens in the near wellbore, as it halts the fracturing job and
requires well cleaning. On the contrary, a screenout can be planned to happen further down the
fracture, ideally with limited pad left if the fracture design is perfect, stopping the fracture from
growing and allowing more packing of the fracture with proppant than would be possible without
this event taking place (tip-screenout technique). A myriad of particle migration mechanisms have
been implicated, along with fluid-phase leak-off, in suspension flow, bridging, jamming, and tip
screenout in the fracturing process. Chekhonin & Levonyan (213) consider suspension flow in a
KGD fracture to establish parameters for tip screenout, computationally modeling the suspension
concentration along the fracture length only and dividing the flow into regions that are Poiseuille–
like (φ < φmax) or Darcy–like (φ = φmax). Dontsov & Peirce (214, 215) consider both KGD and
pseudo-3D fracture models using a frictional rheology model incorporating slip and settling within
a fracture. These results confirm that proppant screenout (owing to leak-off-driven concentration
and settling) can drive strong changes in fracture geometry, which was established in industry
through a combination of treatment monitoring and simpler modelling efforts.

Control and prediction of bridging and jamming are critical to avoid and program screenout.
Jamming is predicted sufficiently well when solids reach a maximum volume fraction. As for
bridging, fracture models typically predict bridging events when the ratio of slot width/particle
size is below 3 to 10—a number that is tuned by experience but consistent with bridging studies in
granular (216) and non-Brownian (217) systems, which reveal the stochastic nature of the process.
The difficulty comes partially from the physics controlling the phenomena: Bridging is a discrete
event governed by probabilities of occurrence that are not resolved by continuum models or
accurately predicted by discrete models. The sphericity and frictional properties of the particle
certainly play a role, and the pronounced effects such properties have on suspension rheology
are now beginning to be considered (218). In addition to tip-screenout designs, the dramatic
consequences of bridging/jamming have been advantageously applied in diversion techniques,
where a fracture is locally jammed and the particle-laden fluid is redirected to stimulate other
parts of the oilfield reservoir (219), or in the form of a fluid loss control additive, where operators
want to locally eliminate leak-off to the formation (220).

CONCLUSIONS

Hydraulic fracturing, and hydrocarbon recovery operations in general, presents a grand challenge
for non-Newtonian fluid dynamics. Complex fluids used in fracturing operations encompass
essentially all aspects of rheology and non-Newtonian fluid dynamics—linear and nonlinear
viscoelasticity, physicochemical gelation, transport and orientation of spherical and fibrous
particles, control of slip/shear banding, and migratory and many-body particle interactions
are present in abundance and intimately affect the ultimate hydrocarbon recovery that can
be achieved. These manifold effects match the spectrum of specific fluids employed to target
rock formations of widely varying permeability, porosity, mechanical properties, depth, and
temperature. Understanding and integrating non-Newtonian fluid mechanics with reservoir
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attributes and statistical variability is a key contributor to improved resource recovery and
constitutes an intellectually rich and economically relevant research problem for years to come.

SUMMARY POINTS

1. Hydraulic fracturing is a key stimulation technique in hydrocarbon recovery, primarily
targeting reservoirs of low intrinsic permeability.

2. Hydrocarbon reservoirs exhibit widely variable mechanical, chemical, and environmental
properties.

3. Particle-laden complex fluids with a wide range of rheological characteristics are used to
open and sustain hydraulic fractures.

4. Quantitative descriptions of non-Newtonian fluid mechanics are essential to predict
complex fluid (and hence fracturing) performance.

FUTURE ISSUES

1. Improvement and development of constitutive (particularly nonlinear) models for physi-
cal gels and supramolecular systems to model crosslinked and associating complex fluids.

2. Mechanistic descriptions of particle–particle (both proppant and fiber) and particle–fluid
interactions under pressure- (or shear-)driven flow with superposed gravitational settling.

3. Material property measurements under representative temperatures and pressures and
shear rates to match downhole conditions.

4. Development of laboratory (milli- and microfluidic)-scale experiments quantifying
reservoir–fluid–proppant interactions in flow regimes representative of hydraulic frac-
turing dynamics, geometry, and materials.

5. Creation of coupled, multiscale, time-dependent simulations capturing complex fluid
rheology and particle transport during pumping, fracturing, leak-off, and fracture closure.
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