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Abstract

A wide range of experimental systems including gliding, swarming and
swimming bacteria, in vitro motility assays, and shaken granular media are
commonly described as self-propelled rods. Large ensembles of those enti-
ties display a large variety of self-organized, collective phenomena, including
the formation of moving polar clusters, polar and nematic dynamic bands,
mobility-induced phase separation, topological defects, and mesoscale tur-
bulence, among others. Here, we give a brief survey of experimental obser-
vations and review the theoretical description of self-propelled rods.Our fo-
cus is on the emergent pattern formation of ensembles of dry self-propelled
rods governed by short-ranged, contact mediated interactions and their wet
counterparts that are also subject to long-ranged hydrodynamic flows. Al-
together, self-propelled rods provide an overarching theme covering many
aspects of active matter containing well-explored limiting cases. Their col-
lective behavior not only bridges the well-studied regimes of polar self-
propelled particles and active nematics, and includes active phase separation,
but also reveals a rich variety of new patterns.
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1. INTRODUCTION

The topic of self-propelled rods grew out of the nonequilibrium extension of a well-known show-
case of liquid crystal physics—the study of the equilibrium phases of diffusive passive rods with
steric repulsion interactions—by assuming that such rods exhibit persistent self-propelled motion.
Nowadays, self-propelled rods have become one prominent example of so-called active matter
along with related topics like active nematics or collective motion of polar active particles (1, 2).
As a result, many experimental and theoretical studies have been carried out in recent years. In
this review, we give a brief account on progress in the understanding of self-propelled rod systems
and emphasize common aspects connecting many diverse applications.

The equilibrium physics of liquid crystals is a cornerstone of condensed matter theory (3). The
structures and phases formed by these mesomorphic materials—combining properties of fluids
and solids—are essentially classified on the basis of their symmetries and conservation laws (4).
Liquid crystals are composed of anisotropic entities such as elongated, rod-like molecules (5); in
simplified terms, one can think of them as passive rods. Phase transitions toward nematic and
smectic order associated with critical phenomena as well as nontrivial dynamics of topological
defects, controlled externally by temperature, particle density, or solvent dynamics via external
shear or electromagnetic fields, for example, were studied extensively from the perspective of sta-
tistical mechanics, nonlinear dynamics, and pattern formation (4). This knowledge is now used in
technological applications like liquid crystal displays.

The phase transition from a disordered collection of passive rods interacting via volume exclu-
sion toward uniaxial orientational ordering as a function of the rod density was first understood
by Onsager theoretically within a simplified model of hard rods (6, 7): As two, close-by rods align
in a parallel or antiparallel fashion (uniaxial, apolar, or nematic alignment), the excluded volume
is minimized thereby maximizing positional entropy. Accordingly, nematic orientational order
emerges as the particle density is increased. How will this ordering transition change if individ-
uals possess an internal energy reservoir that enables them to move persistently along their body
axis in a unidirectional fashion—thereby breaking the apolar symmetry of the interactions in the
corresponding equilibrium system—by means of a self-propulsion mechanism, i.e., if they are ac-
tive particles or more precisely self-propelled rods (see the sidebar titled Self-Propelled Rods for
a definition)?

In general, a particle is called active or self-propelled if it can transduce energy into persistent
motion (11). Large ensembles of these active particles have been labeled as active matter (1, 2,
11). Due to the nonequilibrium nature of self-propulsion at the particle level, all forms of active
matter can exhibit a large variety of collective behaviors and pattern formation processes that
are fundamentally different from their equilibrium counterparts as these systems evade the con-
straints of energy conservation, the action–reaction principle or standard fluctuation–dissipation
theorems. Examples of active matter include all forms of living matter ranging from the cellular
self-organization via dynamics of biological tissues and bacterial aggregation to fish schools, bird
flocks, and herds of large mammals (1, 2). First attempts to engineer active matter systems artifi-
cially include diverse fields ranging from active colloids (14) to granular active matter (15–17). As
a result, the field of active matter has experienced rapid growth throughout many disciplines: sta-
tistical physics and soft matter theory as well as nonlinear dynamics and fluid dynamics have
contributed to the development and analysis of model systems as well as to the general understand-
ing of emergent phenomena in active materials. However, an encompassing active matter theory
framework, analogous to thermodynamics for equilibrium systems, has not been established yet.

Interacting self-propelled rods are a paradigm of active matter as a broad variety of active sys-
tems belong to this class.Themost frequent realization of self-propelled rods in nature are bacteria
gliding on surfaces or swimming in fluids (for a recent review article on the statistical physics view
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SELF-PROPELLED RODS

Self-propelled rods are a class of active particles: They are persistently self-propelled in a unidirectional (polar) way
along their body axis. On the basis of their interaction, two subclasses are distinguished from each other.

Dry Self-Propelled Rods

Self-propelled rods are spatially extended objects with a well-defined aspect ratio χ (length-to-width ratio) persis-
tently moving in a dissipative, fluctuating environment interacting by short-ranged, repulsive interactions dictated
by their shape. The interaction is, at the microscopic level, apolar in the sense that it is invariant with respect to
inversions of the body axis of a rod (uniaxial symmetry). Limiting cases include self-propelled discs (χ = 1) that may
display so-called motility-induced phase separation (8) as well as dry active nematics for vanishing persistent self-
propulsion displaying isotropic-nematic ordering locally and giant number fluctuations (9, 10; for reviews, see 2,
8, 11). Away from these limits, self-propelled rods display a larger variety of collective behaviors, including the
formation of moving polar clusters, giant aggregates, polar bands, and laning.

Wet Self-Propelled Rods

In addition to their characteristic short-ranged repulsion, wet self-propelled rods in fluid environments are coupled
via the surrounding flow field of the solvent. This long-ranged hydrodynamic interaction together with the incom-
pressibility of the flow changes fundamentally the physics of the problem, leading to the emergence of irregular
vortex dynamics and topological defects, which are characteristics of mesoscale turbulence (12, 13).

of bacterial swarming, see 18). The typical rod-like shape of bacteria is maintained by a feedback
between cell curvature and cytoskeletal localization (19). Inside single cells, biopolymers such as
actin or microtubules are often self-propelled by molecular motors such as myosin, kinesin, or
dynein. In vitro motility assays of biopolymers propelled by motors attached to a surface allow
well-defined studies of actin filaments (20, 21) and microtubules (22) behaving like self-propelled
rods. Artificial particles behaving as self-propelled rods are shaken cylindrical granular particles
with unequal weight distribution (23, 24) or chemically driven rod-shaped Janus particles (25).

A variety of collective phenomena has been reported in the experimental realizations of self-
propelled rods mentioned above. The formation of polar clusters with a characteristic size dis-
tribution within which rods move in parallel and related giant number fluctuations were found
in experiments employing monolayers of swarming Bacillus subtilis (26) and inMyxococcus xanthus
mutants (27–29; see Figure 1a). The formation of narrow, elongated, high-density regions called
bands along which rod-shaped bacteria move was observed in the wild type ofM. xanthus (28, 29)
and in Paenibacillus dendritiformis (30; see Figure 1b).Multilayers of nematically orderedmyxobac-
teria give rise to counter-propagating density waves known as rippling that has been linked to cell
reversals due to chemical signaling (31–33; see Figure 1c). Studies in motility assays have revealed
traveling polar bands (20) as well as moving polar cluster and stationary nematic bands (21) for
the case of actin and myosin (see Figure 1d), as well as vortex arrays for the tubulin-dynein sys-
tem (22; see Figure 1e). Long-range nematic order was reported in experiments with fibroblasts
(34), on monolayers of spindle-shaped cells (35), and for filamentous swimming Escherichia coli (36;
see Figure 1f ). Mesoscale turbulence governed by irregular vortex dynamics was the most typical
pattern for many suspensions of swimming bacteria, e.g., B. subtilis (12, 37–41; see Figure 1g),
P. dendritiformis (42), and Serratia marcescens (43, 44; see Figure 1h).

Several of the collective patterns found in experimental self-propelled rod systems were first
predicted by early models, namely the formation of polar clusters (45) and the emergence of
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Figure 1

Experimental examples of collective dynamics and pattern formation in self-propelled rods: (a) polar clusters
in submonolayer ofMyxococcus xanthus; (b) nematic bands in Paenibacillus dendritiformis; (c) standing waves in
multilayers ofM. xanthus; (d) coexisting polar clusters and nematic bands in an actin-myosin motility assay;
(e) vortex arrays in a tubulin-dynein motility assay; ( f ) long-range nematic order in filamentous Escherichia
coli; (g) mesoscale turbulence in densely packed Bacillus subtilis in a solvent fluid; (h) mesoscale turbulence in
Serratia marcescens. Panel a adapted with permission from Reference 27; Copyright 2012 American Physical
Society. Panel b adapted with permission from Reference 30; Copyright 2013 American Society for
Microbiology. Panel c adapted with permission from Reference 31; Copyright 2002 American Physical
Society. Panel d adapted from Reference 21 with permission from AAAS. Panel e adapted with permission
from Reference 22; Copyright 2012 Springer Nature. Panel f adapted with permission from Reference 36;
Copyright 2017 American Physical Society. Panel g adapted from Reference 39, available for reuse under the
CC-BY-3.0 license. Panel h adapted from Reference 43, available for reuse under the CC-BY-4.0 license.

(nematic) bands (46), as well as the possible existence of long-ranged nematic order in two spatial
dimensions (46, 47). Those early studies revealed that an essential aspect of the microscopic dy-
namics that has a strong impact on the emergent macroscopic patterns is whether rods can crawl
over each other. If this occurs—a situation commonly observed in experiments with swarming
bacteria in quasi-two-dimensional systems—the dynamics of the system can be reduced to that of
self-propelled point-like particles with nematic interactions1 (46, 47). Then, the formation of dy-
namic nematic bands and long-ranged nematic order (currently a subject of debate) are observed.
However, if rods cannot cross each other, the physics of the problem is fundamentally different.
Polar moving clusters (45) and even highly dynamic, polar bands (49, 50) emerge and dominate the
large-scale dynamics of the system. There are other microscopic details that affect the large-scale
properties of these nonequilibrium active systems. From the many models developed to under-
stand the variety of collective patterns observed in motility assays (21, 22, 51–53), it is evident that
the flexibility of the rods (21, 22) can affect the large-scale properties of these systems. Finally,
models (39, 54, 55) developed to shed light on bacterial mesoscale turbulence (12, 13) indicate that
hydrodynamic interactions also have a strong impact on the macroscopic, emergent dynamics of
these systems.

Beyond the relevance of self-propelled rod systems to understand a large variety of experi-
mental systems, these systems provide an overarching theme in the broad context of active matter,

1We refer the reader to Reference 48 for the first systematic investigation of self-propelled point particles with
polar alignment from a physical point of view.
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containing most classes and collective phenomena reported in active systems (1, 2, 8, 11). In the
limit of vanishing active propulsion and for mobility coefficients and fluctuations obeying the
standard fluctuation–dissipation relation, we recover Onsager theory for passive rods (6, 7). By
restoring active propulsion and in the limit of aspect ratio one, corresponding to isotropic inter-
actions, rods become discs and motility-induced phase separation (MIPS) (8) is expected to be
observed. As the aspect ratio is increased, anisotropic interactions among the rods lead to active
torques and alignment, in turn destabilizing MIPS (56, 57). The presence of anisotropic inter-
actions, as mentioned above, can lead, counterintuitively, to the emergence of both nematic and
polar patterns (49, 50, 56, 57). Thus, the symmetry of the emergent order is a dynamical property
of the system in self-propelled rods and not a consequence of the (built-in) interaction potential
symmetry like in Vicsek-type models (46, 48). Finally, in the limit of vanishing active propulsion
and for nonthermal fluctuations (cf. 9, 10, 58, 59), the dynamics of self-propelled rods reduces to
that of active nematics (2, 11, 13). It is important to stress that self-propelled rods exhibit a much
richer phenomenology than active nematic systems—a mapping onto active nematics is possible
in limiting cases only. The observation of polar patterns in self-propelled rod systems or MIPS
provides a good hint about how profound the differences between these classes of systems are. In
terms of hydrodynamic equations, the difference between self-propelled rods and active nematics
can be understood as follows: The large-scale properties of active nematics are described by two
slowly varying fields, namely the local density and nematic order parameter (2, 60); however, a de-
scription of the large-scale properties of self-propelled rods requires, in general, the use of three
fields—local density, nematic order, and polar order parameter—and it involves convective mass
transport.

This review is organized as follows. Section 2 deals with dry self-propelled rods, i.e., rods that
exhibit short-range interactions. Results on self-propelled rods with steric repulsion as well as
on self-propelled rods with nematic alignment interaction are discussed in detail. In Section 3,
we consider self-propelled rods embedded in a fluid and discuss the cases of short-range polar
and nematic alignment in combination with long-range hydrodynamic coupling. In Sections 2
and 3, kinetic theories and derivations of continuum hydrodynamic equations from the stochastic
Langevin-type dynamics of single self-propelled rods are provided.We close with a summary and
a brief sketch of future research topics.

2. DRY SELF-PROPELLED RODS

2.1. Nonequilibrium Dynamics of Dry Self-Propelled Rods

The term self-propelled rod was introduced in physics in 2006 (45) for rod-shaped objects with
anisotropic repulsive interactions that drive their motion actively through a dissipative medium.
As self-propulsion requires a perpetual energy influx at the particle level, the dynamics is far from
thermodynamic equilibrium, thereby allowing for a plethora of nontrivial self-organization and
pattern formation phenomena that could not emerge in ensembles of passive rods.

To get an intuition for this novel physics, consider a binary collision as shown in Figure 2: Rods
colliding under an acute angle align their direction of motion parallel due to the combined effect
of anisotropic repulsion and self-propulsion. Once aligned, they move together in the same direc-
tion for some time. This simple picture illustrates the interrelation of self-propulsion, anisotropic
interactions, density instabilities, the emergence of local order, and the tendency toward
clustering.

The binary collision reveals yet another important nonequilibrium aspect of the dynamics: As
rods move at a nonvanishing, characteristic speed before and after the collision but align their
direction of motion, the dynamics does not conserve momentum. The momentum difference is
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Figure 2

A binary collision of self-propelled rods: The interplay of active motion and anisotropic repulsion effectively
implies alignment of their velocities.

transferred to the environment, e.g., a surrounding fluid or a surface, that acts effectively as a
momentum sink.

We classify self-propelled rod systems in which this type of contact-mediated, anisotropic re-
pulsive interaction is dominant as dry self-propelled rods, which we review in this section. Their
wet counterparts—ensembles of self-propelled rods with long-ranged hydrodynamic interactions
mediated by a solvent flow—are the topic of Section 3.

2.1.1. Equations of motion. The full nonequilibrium dynamics of an ensemble of N dry self-
propelled rods in two spatial dimensions with positions r j (t ) and orientations ϕj(t) is described by
the following set of Langevin equations:

ṙ j (t )= μ̂[ϕ j] ·
⎡
⎣F(act)

j +
∑
k�= j

f2
(
rk − r j;ϕk,ϕ j

)⎤⎦ + η j (t ), 1a.

ϕ̇ j (t )= μϕ

∑
k�= j

m2
(
rk − r j; ϕk,ϕ j

) +√
2Dϕ ξ j (t ). 1b.

Central elements determining the dynamics include the following:

� Anisotropic repulsion: Self-propelled rods repel each other, as reflected by the anisotropic,
binary force f2.

� Aligning torque: Self-propelled rods align their body axis in a uniaxial way upon colli-
sion (Figure 2) described by the torque,m2, that explicitly depends on rod shape.

� Self-propulsion: A typical model (45, 56, 61, 62) for the persistent, ballistic motion of rods
at short timescales contains a force oriented along the long body axis e‖[ϕ j] with a nonzero
average amplitude: F(act)

j =F0e‖[ϕ j].
� Fluctuations: Noises with the amplitudes D‖, D�, and Dϕ account for inherently stochas-

tic self-propulsion or spatial heterogeneities of the substrate on which rods move. Con-
sequently, these parameters are independent and differ from the corresponding diffusion
coefficients of passive rods in a fluid. Translational fluctuations are generally anisotropic:

η j (t )=
√
2D‖e‖[ϕ j]η‖, j (t )+

√
2D⊥e⊥[ϕ j]η⊥, j (t ). 2.

� Dissipation: The mobilities μ̂[ϕ j] and μϕ are interpreted as inverse friction coefficients.
They depend on the rods’ aspect ratio. A standard fluctuation–dissipation relation usually
does not hold, and the equipartition theorem does not apply to the nonequilibrium dynam-
ics of self-propelled rods, e.g., if friction and fluctuations are of nonthermal origin.

A characteristic feature of self-propelled rods is the symmetry of their dynamics: the interaction
force and torque, dissipation, and fluctuations obey a uniaxial symmetry; i.e., they are invariant
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Table 1 Classification of self-propelled rods within the realm of dry active matter

Isotropic shape Anisotropic shape
Persistent self-propulsion Self-propelled discs (d = 2);

self-propelled spheres (d = 3)
Self-propelled rods

Undirected driving Granular spheres Dry active nematics

if the head and tail of a rod are interchanged (ϕj → ϕj + π ). The polar self-propulsion force
breaks this symmetry. Accordingly, the emergence of polar patterns is inherently related to this
nonequilibrium driving at the particle level breaking uniaxial symmetry.

2.1.2. Self-propelled rods within the realm of dry active matter. Self-propelled discs (in
two spatial dimensions, d = 2) and self-propelled spheres (in three dimensions, d = 3) as well as
anisotropic particles without directed self-propulsion are limiting cases of self-propelled rods, in
turn representing well-studied subclasses of dry active matter. This is summarized in Table 1.

In the limit of spherical particles, sometimes also called active Brownian particles,2 the aligning
torque vanishes, assuming that interfacial friction is negligible. Consequently, orientational order
cannot emerge. Ensembles of self-propelled discs may, however, phase-segregate at high levels
of activity and exhibit MIPS (8). For aspect ratios close to one, the phenomenology displayed by
self-propelled rods is related to ensembles of active dumbbells (64).

If the self-propulsion force tends to zero but particle shape remains anisotropic, the dry active
nematics class is recovered (2, 9, 10). The stochastic back and forth motion at the particle level
implies diffusive dynamics on all timescales in contrast to persistent propulsion of self-propelled
rods. If stochastic reversals of the self-propulsion force, as observed for the soil bacterium
M. xanthus (65), are included in the model defined by Equation 3, the dynamics reduces to dry
active nematics in the limit of high reversal rates (59).

2.2. Emergent Patterns in Ensembles of Dry Self-Propelled Rods

Central parameters that control pattern formation of self-propelled rods are the aspect ratio (45),
the overall rod density, and their softness, i.e., the strength of self-propulsion with respect to
repulsion (56). In the following, we first consider cases in which repulsion is dominant and then
turn to the limit of strong self-propulsion.

2.2.1. Weak self-propulsion: self-propelled rods that push each other. The forces and
torques that spatially extended self-propelled rods exert onto each other need to be derived from
a specific model for their interaction. Some variants are illustrated in Figure 3, e.g., represent-
ing rods by rectangular (45) or elliptical objects (57, 66, 67), spherocylinders (56), needles (68),
or chains of spheres (49, 50, 61, 69). All models have in common that interactions are purely re-
pulsive and short-ranged. Some models assume pairwise repulsion along the axis of the shortest
distance (70, 71), whereas others assume a potential energy penalizing overlap (45, 57).

Usually, there is a trade-off between the accuracy of the description and numerical effi-
ciency: Representing rods as a chain of spheres is a popular and simple model (49, 50, 61, 69);
however, this substructure may induce shear friction or blocking of close-by, aligned rods that
would not be present if rods could slide along each other during a collision. Typically, soft
interactions are numerically simpler to handle than hard repulsion potentials or volume exclusion

2The term active Brownian particles is sometimes used synonymously in a more general context for self-
propelled motion far from equilibrium (63).
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a b c d

Figure 3

Selection of models for the interaction of self-propelled rods: representation by (a) rectangles (45), (b) chains
of spheres (69), (c) spherocylinders (56), or (d) anisotropic phase fields (57).

because forces may become arbitrarily large if the potential energy diverges for small interrod
distances in the latter case.

First, numerical works on self-propelled rods (45) revealed nonequilibrium clustering above a
critical aspect ratio, i.e., for long rods (Figure 4a,b) at a critical density that is, notably, smaller than
the percolation threshold and the isotropic–nematic transition expected in two-dimensional equi-
librium nematics (72).Due to the inherent tendency of self-propelled rods tomove in parallel after
a collision (Figure 2), clusters are polar andmotile, and theymay have a smectic (layered) substruc-
ture (Figure 4b). This type of aggregation driven by anisotropic repulsion and self-propulsion is
observed in a plethora of microbiological systems (27, 73, 74).

At the mesoscale, clusters may organize themselves into system-spanning polar bands as-
sociated with macroscopic polar order (Figure 4d) in simulations with periodic boundary
conditions (49, 50, 56, 57). These structures are not stable as the system size is increased but

a bb c

ee ff gg hh

dd

Figure 4

Phenomenology of dry self-propelled rods in which the dominant interaction is short-ranged, anisotropic repulsion. (a) Polar clusters
with local smectic order as highlighted by the image section (b); (c) giant aggregates; (d) polar bands; (e) nematic chaos, particularly
showing a nematic defect; ( f ) laning at high density; (g) accumulation of self-propelled rods at walls; (h) a wedge-shaped trap for
self-propelled rods. Panels a–c adapted with permission from Reference 49; Copyright 2015 American Physical Society. Panel d adapted
with permission from Reference 50; Copyright 2013 American Physical Society. Panels e–f adapted from Reference 56 with permission.
Panel g adapted with permission from Reference 61; Copyright 2008 American Physical Society. Panel h adapted with permission from
Reference 75; Copyright 2013 American Physical Society.
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break apart above a critical system size, and disordered, high-density aggregates (Figure 4c) form,
within which polar clusters of rods exert nonequilibrium stresses and torques on each other (49).
From time to time, an aggregate loses macroscopic fractions of its mass via the ejection of polar
clusters. The physics of these aggregates thus differs crucially from the high-density drops that
emerge during MIPS in self-propelled discs (8), which are due to a density-dependent slowdown
in high-density areas. This type of quorum sensing interaction was explicitly addressed in the
context of self-propelled rods in Reference 76.

At high densities, a plethora of collective states were found in finite-sized systems, includ-
ing (percolating) turbulence (56, 69) and nematic chaos (56)—highly dynamic regimes in which
defects move and reorganize constantly (Figure 4e)—as well as laning (50, 69–71) represented in
Figure 4f, i.e., states that display nematic order at the global scale but local polar order, active
smectics (77), and jammed states together with reentrant fluidization (71). Recently, laning was
reported to be observable in finite systems only in Reference 56 as oppositely moving lanes slowly
coarsen in time; in large systems, compression of lanes results in sparse areas in which fluctua-
tions generate small, transversely moving clusters destroying the laning pattern, leaving nematic
chaos. As many of these patterns are genuinely novel nonequilibrium phenomena, the terminol-
ogy is not used consistently. At high packing fractions, the phenomenology depends crucially on
details of the model under consideration because rods are constantly in contact. Phase diagrams
can therefore not be mapped one to one (49, 50, 56, 69, 71).

Self-propelled rods have a specific type of interaction with boundaries and obstacles (61): In
contrast to a passive particle in which collisions (against a wall or obstacle) are assumed to
be instantaneous inducing a reflection, self-propelled rods push persistently against confin-
ing walls. Consequently, they spend a nonnegligible time close to walls and may accumulate
there (Figure 4g), as observed in granular self-propelled rods (23). However, a torque is induced
due to their anisotropic shape, implying their alignment with walls; as a result of this, they will slip
off collectively (cf. Figure 4g, middle). This implies anomalous fluctuations of the force exerted
on confining walls. Consequently, the mechanical pressure is not a state function in contrast to
self-propelled spheres (78); i.e., there is no equation of state for self-propelled rods. Another con-
sequence is the nontrivial influence of boundary conditions or spatial inhomogeneities (disordered
environments) on the macroscopic emergent patterns. The tendency of rods to form clusters and
accumulate at walls enables the construction of traps (75, 79), as shown in Figure 4h, or allows
them to be used to propel microgears (80, 81).

The self-propelled rod concept has been extended in several regards:

� Soft deformable particles with an elliptical shape may be considered self-propelled rods
(see Reference 82 for a recent review). These particles organize themselves into lanes (83)
for high aspect ratios. For different parameter values, however, it turned out that the large-
scale phenomenology is analogous to the original Vicsek model for polar particles (48): The
emergent large-scale order is of polar nature, and soliton-like waves were found, as in Ref-
erences 84 and 85 for the Vicsek model.

� Flexibility of individual rods, relevant for the description of motility assays (20, 52) but also
observed in recordings of bacteria (27),was addressed regarding the individual and collective
dynamics in Reference 86.

� The transition toward orientational order in three dimensions was addressed in Refer-
ence 67.

In short, self-propelled rods display a variety of nonequilibrium patterns controlled by shape
and density, including polar clusters, lanes, bands, aggregates, and topological defects as well as
macroscopic orientational order.
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Figure 5

Phenomenology displayed by self-propelled rods with nematic alignment interactions: (phase I) fluctuating nematic phase;
(phase II) phase-segregated state composed of a nematic band in a disordered gas; (phase III) transversally unstable nematic band;
(phase IV) disordered, spatially homogeneous state. Figure adapted with permission from Reference 46; Copyright 2010 American
Physical Society.

2.2.2. Strong self-propulsion: alignment-based description of self-propelled rods. We
now turn to another realm of dry self-propelled rods, namely the limit where self-propulsion
is stronger than repulsion, thereby giving rise to quasi-two-dimensional dynamics. In this limit,
the force term f2 in Equation 1a can be neglected, but not the interaction torque, which, as ex-
plained below, plays an essential role in the emerging collective patterns. Though the (aligning)
torque should be deduced from a specific interaction mechanism (Figure 3), strictly speaking, it
may heuristically be simplified recalling Onsager’s argument (6) regarding its uniaxial (nematic)
symmetry (47):

ṙ j (t )� v0e‖
[
ϕ j (t )

]
, ϕ̇ j (t ) � γ

N∑
k=1

β
(
rk − r j

)
sin

{
2
[
ϕk(t ) − ϕ j (t )

]}
+√

2Dϕ ξ j (t ). 3.

Mathematically speaking, the full dynamics (Equation 1) is reduced to an effective point–particle
model with nematic alignment. The sine coupling is the first nontrivial mode of a Fourier expan-
sion of the torque with respect to the rod orientation.3 There exists a variety of real-world rod
systems with quasi-two-dimensional dynamics for which alignment-based descriptions are ade-
quate, for example, motility assays (21, 22) or filamentous bacteria confined to move within a thin
fluid layer (36).

The phenomenology displayed by Equation 3 (Figure 5) depends not on the specific functional
form of the torque but on its symmetry (46, 56, 57). We are reviewing an implementation of the
dynamics in the spirit of the seminal Vicsek model (48), introduced in References 87 and 46.

For low noise or high particle density, the system orders nematically at the scale of the simu-
lation box (Figure 5, phase I). In this phase, density fluctuations are anomalously high: The stan-
dard deviation σ n of the particle number in a subsystem scales with the corresponding mean 〈n〉 as
σ n ∼ 〈n〉 α with α > 1/2 in contrast to α = 1/2 in equilibrium systems. These so-called giant num-
ber fluctuations are a hallmark of phases with orientational order in active matter that were first
pointed out in the context of the Vicsek model for collective motion of polar particles (88). In nu-
merical simulations of self-propelled rods, α ≈ 0.8 was inferred (46). A fluctuating nematic phase
was observed in filamentous, nontumbling mutants of E. coli (36), where α ≈ 0.6 was measured.

3Recent work has, however, identified additional torques to be relevant that couple the relative position of
rods with their orientation (57).
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The question of whether nematic order is of long-range nature, i.e., whether there is a finite
level of nematic order in the thermodynamic limit, has not been fully answered yet. Recall that
continuous symmetry breaking in corresponding equilibrium systems, e.g., the XY-model, leads
to quasi-long-range order via a Berezinskii–Kosterlitz–Thouless transition, but long-range order
is absent (89–91). A finite size scaling within particle-based simulations of self-propelled rods
suggest the emergence of true long-range order; however, the accessible system sizes are of the
order of the persistence length of particle trajectories within the nematic phase (46). A conclusive
stochastic field theory for self-propelled rods answering these questions is still missing.

For intermediate noise levels, rods phase-segregate into a high-density band with nematic or-
der that is surrounded by a disordered, low-density gas (phase II). These bands are only observ-
able if the system is large enough. This phenomenon is a consequence of the intrinsic coupling
of local ordering and density instabilities. The width of bands decreases as the noise is increased.
Thin, elongated, narrow bands undergo a transversal instability, giving rise to intermittent dy-
namics: global disorder with large fluctuations (phase III). Corresponding kinetic theories suggest
that the phase-separation process at the mesoscale is analogous to liquid-gas phase separation (59);
however, bands are always transversally unstable in the thermodynamic limit (58, 59). Recently,
another type of band instability leading to its breakup in transversal segments was reported (92).
Finally, a spatially homogeneous, disordered state (phase IV) is found for high noise levels.

Several extensions of the model class described above were addressed:

� Besides nematic order, chiral states were reported (93) for self-propelled rods in three di-
mensions: The system organizes into stacked sheets, where nematic order exists in each
sheet, but the nematic director rotates from one to another.

� Vortex lattices and active foams can be observed if the white Gaussian noise (cf. Equation 3)
is replaced by anOrnstein–Uhlenbeck process (94) (correlated noise)—amodel that explains
pattern formation in motility assays (22).

� Trapping and localization phenomena were addressed for the dynamics of self-propelled
rods in disordered environments (95).

2.2.3. Discussion: effective polar versus nematic alignment for dry self-propelled rods.
Comparing the phenomenology reviewed so far, we note that the effective alignment interaction
dictating the symmetry of the emergent nonequilibrium patterns in ensembles of self-propelled
rods can be of either polar or nematic symmetry—in contrast to their equilibrium counterparts—
depending on the strength of self-propulsion, though the microscopic interactions are strictly
uniaxial in all cases: If repulsion dominates, colliding clusters of rods may impede each other’s
motion, rods slow down, and the clusters fragment or fuse into one single polar cluster; if self-
propulsion dominates or if rods can slide over each other, however, they simply walk through
each other. Penetrable self-propelled rods, as studied in Reference 50, that do repel each other
via a soft-core potential are an intermediate case. Only recently, the transition from self-propelled
rods with volume exclusion (Section 2.2.1), on the one hand, and the alignment-dominated regime
(Section 2.2.2), on the other hand (56, 57), was studied. Notably, a bistable regime in which polar
structures coexist with nematic bands was recently reported in Reference 57, which is similar to
the observed polar-nematic coexistence in motility assays (21) where, furthermore, the effective
alignment was measured by analyzing binary collisions (21). Intermittent switching between polar
and nematic bands was observed before in Vicsek-type models with competing polar and nematic
alignment (96). In short, uniaxially invariant interactions of self-propelled rods do not exclude the
emergence of macroscopic polar order.
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2.3. Kinetic Theories for Self-Propelled Rods

Considerable work has been invested in deriving kinetic descriptions for ordering (47) or cluster-
ing (45, 97, 98) as well as hydrodynamic theories (33, 57–59, 62, 99–102) for self-propelled rods
reviewed in this section. The term hydrodynamic refers in this context to the large-scale dynam-
ics on slow timescales and should not be confused with the long-ranged interactions via a solvent,
which is the topic of Section 3.

2.3.1. Fragmentation–coagulation equations for clustering of self-propelled rods. A ki-
netic theory for clustering of self-propelled rods was proposed in References 45, 97, and 98, which
consider clusters to be quasiparticles that may (a) fuse upon collision or (b) lose single rods at their
boundary stochastically. Formally, these coagulation–fragmentation processes can be considered
reactions of the form

Ck +Cj
c j,k−→Ck+ j , Ck

fk−→Ck−1 +C1, 4.

where Ck denotes a cluster containing k rods. The fragmentation rate fk = kβ/τ is determined
by a characteristic time τ during which single rods stay at the boundary of a cluster and by the
number of rods at the boundary.The parameter β accounts for cluster shape: β = 1/2 corresponds
to circular clusters, whereas β � 1 is justified for elongated ones. The coagulation rate cj, k ∝
qsσ 0( jα + kα)vc/L2 is given by the probability qs that a collision event leads to successful fusion,
the scattering cross section of an individual rod σ 0, the size and shape of the respective clusters, the
characteristic speed vc at which polar clusters move—which is approximately equal to the speed
of individual rods—and the cluster density.

Assuming that the system is well-mixed and globally disordered4 such that (spatial) correlations
are irrelevant, the rate equations

ṅ j (t ) =

⎧⎪⎪⎨
⎪⎪⎩

2 f2n2 + ∑N
k=3 fknk − ∑N−1

k=1 ck,1nkn1, j = 1,

− fNnN + 1
2

∑N−1
k=1 ck,N−knknN−k, j = N ,

f j+1nj+1 − f jn j −
∑N− j

k=1 ck, jnkn j + 1
2

∑ j−1
k=1 ck, j−knkn j−k, else

5.

describe mean number nj(t) ofCj clusters (45). In the homogeneous phase, the cluster size distribu-
tion P(k) = nkk/N—the probability of finding a rod in a cluster of type Ck—decays exponentially,
whereas the emergence of a second peak (bimodal distribution) signals clustering (Figure 6). At
the transition,P(k) decays like a power law if α = β, and the corresponding exponent was reported
to depend on the underlying cluster shape via the exponent β (98).The fragmentation–coagulation
equations can reproduce the clustering transition observed in mutants of the soil bacterium
M. xanthus (27, 29).

2.3.2. Hydrodynamic field theories for dry self-propelled rods. Now,we turn to continuum
field theories derived from the microscopic dynamics of self-propelled rods (Equation 1) that pro-
vide the basis for identifying phases of self-propelled rods, the linear stability of patterns, associated
phase transitions, and a characterization of the full nonlinear dynamics at the macroscale. Novel
theoretical concepts to describe the observed nonequilibrium phenomenology are needed because
these systems, by virtue of being driven, evade the constraints of fundamental physical laws from

4Clustering in phases with orientational order is discussed in References 97, 98, and 103.
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Figure 6

(a,b) Cluster size distributions P(m), predicted by the kinetic theory (Equation 5). The scaling of the cluster size distribution at the
transition depends on the shape of clusters (see discussion in Reference 98): (a) round clusters (β = 0.5); (b) elongated clusters (β = 1).
In each panel, the clustering transition as a function of the packing fraction η is shown. (c) The distribution found experimentally for
nonreversing mutants ofMyxococcus xanthus. The inset illustrates a similar transition found earlier in simulations of self-propelled
rods (45). Panels a and b adapted from Reference 29; permission conveyed through Copyright Clearance Center. Panel c adapted with
permission from Reference 27; Copyright 2012 American Physical Society.

equilibrium systems, like the conservation of energy or momentum, the action–reaction principle,
or fluctuation–dissipation relations.

2.3.2.1. The objective of kinetic theory. A typical way to construct continuum equations from
particle-based models or observations is the definition of the microscopic particle density,5

P (r,ϕ, t ) =
N∑
j=1

δ(r − r j (t ))δ(ϕ − ϕ j (t )), 6.

and its ensemble averaged analog p (r,ϕ, t ) = 〈P (r,ϕ, t )〉. The sum over δ-functions basically
counts how many rods there are at position r with an orientation ϕ. Given these distributions,
all order parameters of interest could be calculated, such as the particle density, ρ(r, t ), as well as
fields for the level of local polar and nematic order, P(r, t ) and Q(r, t ), respectively, via

ρ = 1, ρP = e‖[ϕ], {ρQ}μν = 2 e‖,μ[ϕ] e‖,ν[ϕ] − δμν , 7.

with f (ϕ) = ∫ π

−π
dϕ f (ϕ)p(r,ϕ, t ). In general, all three order parameters are relevant, as polar

and/or nematic order is observed in ensembles of self-propelled rods, and the emergence of or-
der is inherently related to density instabilities. Note that the ansatz to describe the large-scale
dynamics of self-propelled rods via order-parameter fields differs fundamentally from the com-
plementary approach based on cluster statistics discussed in Section 2.3.1; a hybrid approach com-
bining elements of both types of theories was suggested in Reference 33 to describe clustering of
myxobacteria qualitatively.

5In this section, we restrict the discussion to two-dimensional systems; two- and three-dimensional systems
are examined in Section 3.
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2.3.2.2. Variants of kinetic theories. There are several ways to construct kinetic theories: One
may propose or derive an equation for the fluctuating field, P (r,ϕ, t ), directly (104) or perform
some temporal, spatial, or ensemble-averaging procedure. The type of coarse graining determines
whether the resulting partial differential equations are stochastic or deterministic (105). Kinetic
theories for self-propelled rods mostly build upon a Fokker–Planck (Smoluchowski) (47, 57, 59,
62, 99, 100, 102) or a generalized Boltzmann approach (58, 101).

A direct way to obtain a kinetic equation for the fluctuating particle distribution P (r,ϕ, t ) is
the application of stochastic calculus rules to the change of variables given by Equation 6, yield-
ing (104)

∂tP + v0e‖[ϕ] · ∇P = Dϕ∂
2
ϕP − ∇ · {PF[P]} − ∂ϕ{PM[P]} + ∇ · {D[ϕ] · ∇P} + �[P]. 8a.

The rod–rod interaction turns this equation into a nonlinear integro-partial differential equation:

F[P] =
∫
d2r′dϕ′P (r′,ϕ′, t )f2(r′− r; ϕ′,ϕ), M[P] =

∫
d2r′dϕ′P (r′,ϕ′, t )m2(r′− r; ϕ′,ϕ). 8b.

Formally, this equation is exact. It involves, however, a noise �[P] that is difficult to handle due
to its multiplicative nature. Macroscopic noise terms were shown to be of importance to address
questions such as pattern selection (106) and the stability of orientationally ordered phases in
related nonequilibrium systems (107, 108); however, the direct application of Equation 8 to self-
propelled rods remains a challenge.

2.3.2.2.1. Fokker–Planck approach. A nonlinear Fokker–Planck equation is obtained by
ensemble-averaging Equation 8a or, equivalently, taking a marginal probability of the N-particle
distribution function (109) corresponding to the Langevin dynamics (Equation 1a,b), similar to
the BBGKY hierarchy for Hamiltonian systems (110). The main complication is that an appropri-
ate closure relation is needed: Upon averaging, the products 〈P (r,ϕ, t )P (r′,ϕ′, t )〉 represent the
pair-correlation function that is, in turn, coupled to the three-particle distribution, etc.Commonly,
the factorization 〈P (r,ϕ, t )P (r′,ϕ′, t )〉 ≈ 〈P (r,ϕ, t )〉〈P (r′,ϕ′, t )〉 corresponding to a mean-field or
molecular chaos approximation is assumed (47, 59, 99, 100, 102). This ansatz may be justified if
the system is well-mixed and one rod interacts with many neighbors, such that fluctuations are
rendered irrelevant.

In the context of self-propelled rods pushing each other as described in Section 2.2.1, mean-
field arguments become less reliable, as distinct correlations emerge if rods block each other’s
motion. A work-around is the derivation of order-parameter equations in which transport coef-
ficients depend on integrals over the pair-correlation function to be measured numerically (57,
111). The prediction of pair-correlations from first principles, as it was done for self-propelled
discs (112), is an open theoretical challenge.

2.3.2.2.2. Boltzmann approach. Complementary to the Fokker–Planck ansatz, generalized
Boltzmann equations were proposed for alignment-based active particles (113), and so they
were also generalized for self-propelled rods with nematic alignment (58), which were origi-
nally developed in the context of the classical Vicsek model (48, 114). The basic structure of the
Boltzmann equation is analogous to the kinetic theories discussed before; however, the integral
operators (Equation 8b) describing collisions are constructed in a different way, based on two
physical elements: (a) what happens if rods collide and (b) the collision frequency. The latter is
a complicated object that depends on particle density, the structure of the system (clustered or
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nonclustered), particle speed, etc.The Boltzmann approach relies on the molecular chaos assump-
tion, i.e., the negligence of precollisional angles.

2.3.3. Predictions, results, and open questions. We believe that having an all-encompassing
understanding of dry active matter is tantamount to solving Equation 8a,b because self-propelled
discs and dry active nematics are certain limiting cases of dry self-propelled rods (cf.Table 1). Up
to now, only some limiting cases are well understood.

2.3.3.1. Spherical particles. Torques are absent, implying M[P] = 0 for self-propelled discs.
In this limit, the full theory is reduced to well-studied field theories for MIPS (8). Notably, the
understanding of MIPS requires taking interparticle correlations into account (111, 112). Some
equilibrium concepts like pressure or Maxwell constructions are applicable in this case (115).

2.3.3.2. Alignment-based models for rod-shaped objects. If self-propelled rods are soft or
the self-propulsion is strong, steric hindering is rendered irrelevant, implying F [P] ≈ 0 in
Equation 8b. Alignment-based models are applicable in this regime, as discussed in Section 2.2,
which are analytically tractable.

Based on a spatially homogeneous Fokker–Planck approach, the isotropic–nematic mean-field
transition for self-propelled rods interacting by velocity alignment was analyzed in Reference 47
at the level of the distribution function. Subsequent works deduced predictions from order-
parameter equations (57–59, 62, 99–101) that are nonlinearly coupled among themselves and,
furthermore, to higher-order moments. Therefore, another hierarchy problemmust be overcome
by appropriate closure relations. The type of decoupling determines nonlinear terms in the re-
sulting field equations (101). There is no unique way to obtain closed sets of equations, but the
type of closure depends on the parameter regime under consideration.

An essential advance was the derivation of the nonlinear field equations (58, 101),

∂tρ =−v0∇ · P̄,

∂t P̄=−
[
α − β

2
tr

(Q̄2)]P̄ − v0

2

(
∇ρ +∇ · Q̄

)
+ γ

2
(Q̄ · ∇) · Q̄ + ζ P̄ · Q̄, 9.

∂tQ̄=
[
μ − ξ

2
tr

(Q̄2)]Q̄ − v0

2
(∇P̄

)st + ν

4
�Q̄ + ω

(
P̄P̄

)st + τ
∣∣P̄∣∣2Q̄ − χ̃

2
∇·(P̄Q̄)st − κ̃

2
P̄·(∇Q̄)st ,

for P̄ = ρP and Q̄ = ρQ, which predict the phenomenology shown in Figure 5; the shape of
bands was, notably, analytically obtained (58). As the mesoscale patterns are nematic on the lo-
cal and global scales, the relevance of the polar order parameter for this type of point–particle
system with alignment has been questioned (59)—the shape of bands, their transversal instabil-
ity in the thermodynamic limit (59, 116) and the phase diagram for finite-sized systems (59) are
also obtained from a reduced set of equations for density and nematic order parameter, derived
via the Fokker–Planck approach. An in-depth comparison of the Boltzmann and Fokker–Planck
approaches for self-propelled rods can be found in Reference 101. The theoretical question of
whether the fluctuating nematic phase is stable in the thermodynamic limit, i.e., whether true
long range exists in this system, is, however, unanswered.

Self-propelled rods with velocity reversal were analyzed in one dimension with regard to bacte-
rial self-organization (117); their relation to dry active nematics and the observed defect dynamics
was addressed (118, 119), and their mesoscale pattern formation was reconstructed from numerical
continuation of the underlying continuum theory (59).
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Figure 7

Flow orientation fields extracted from experiments and simulations (2D slice from a 3D system). (a) Turbulence of fluorescent tracer
particles in suspension of Bacillus subtilis. (b) Suspension overlaid with particle image velocimetry flow fields. (c) Streamlines and
normalized vorticity field. (d) Snapshot of continuum simulations. (e) Snapshot of a 2D particle simulation (see 54). Panels a–d adapted
with permission from Reference 39, available for reuse under the CC-BY-3.0 license.

2.3.4. Outlook. The full phenomenology displayed by self-propelled rods with anisotropic re-
pulsive interactions and aligning torque (Figure 4) is less well understood. Particularly the ex-
planation of large-scale polar structures remains a theoretical challenge as correlations—beyond
mean-field or, equivalently, molecular chaos approximations—need to be considered. Early
theoretical works considered self-propelled rods within generalized Onsager theories (62, 99,
100): an enhanced tendency toward nematic ordering due to activity (shift of the critical point
of the isotropic–nematic transition known from passive rods), novel types of instabilities in the
nematic phase, and the crucial influence of boundaries were predicted. Furthermore, the impor-
tance of a polar order parameter field has been pointed out; however, states with macroscopic
polar order were not expected to emerge (99) as the dynamics of the polar order parameter was
found to be fast. Recently, a semianalytical theory that takes orientational correlations into ac-
count suggested, in contrast, that the polar order parameter may become unstable at the spatially
homogeneous level and may, thus, turn into a slow hydrodynamic variable (57). At the moment,
there is no conclusive theory that accounts for all phenomena displayed by self-propelled rods, in-
cluding laning, polar clustering, polar bands, giant clusters, and nontrivial interaction with bound-
aries of the system. In particular, understanding jamming and glassy dynamics at high densities—
where rods are constantly in contact and microscopic details of the interaction mechanisms matter
consequently—remains a theoretical challenge.

3. WET SELF-PROPELLED RODS

The dynamics of microswimmers, e.g., swimming bacteria, is strongly influenced by long-ranged
hydrodynamic interactions. Hydrodynamics together with the incompressibility of the flow
changes fundamentally the physics of the problem leading to novel emergent states, including
irregular, seemingly turbulent vortex dynamics and topological defects with an intrinsic length
scale—the characteristics of mesoscale turbulence (12) as illustrated in Figure 7 for a three-
dimensional bacterial suspension (39). Hence, a model of self-propelled swimming rods must
include the surrounding fluid and its impact on the dynamics of rods. Henceforth, we refer to
this type of system as wet self-propelled rods.

We saw in the previous section that contact-mediated interaction of dry self-propelled rods
effectively leads to polar or nematic alignment. That is why we focus in this section on the inter-
play and competition between either polar or nematic near-field alignment of active swimming
particles and hydrodynamic coupling via a solvent. Using simplified alignment-based interactions
enables the derivation of coarse-grained continuum equations that describe the large-scale behav-
ior of wet self-propelled rods, which are reviewed in this section.We concentrate on the ability of
different models of wet self-propelled rods to reproduce mesoscale turbulence.
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3.1. Nonequilibrium Dynamics of Wet Self-Propelled Rods

In contrast to that of fishes, mussels, and humans, the motion of microswimmers is dominated by
viscous dissipation and the absence of inertia—the Reynolds number of the flow is very small (120).
The velocity field u(r, t ) generated by a microswimmer is thus approximately described by the
Stokes equation in conjunction with the incompressibility condition

μ0�u = ∇ p− ∇ · σ, ∇ · u = 0. 10.

Recently, the far-field flow around motile bacteria and microalgae was measured (121, 122). Both
studies reported that the fluid flow far from the swimmer is well approximated by a force dipole.
Therefore, we consider wet self-propelled rods as elongated objects suspended in a fluid and
equipped with a force dipole (123–125).

A collection of wet self-propelled rods is characterized by short-range contact and long-range
hydrodynamic interactions mediated by the solvent fluid. Short-range interactions of microswim-
mers are very complex due to elastic deformations, lubrication effects, chemical signaling, and
near-field hydrodynamics. For an effective alignment-based description of these pair interactions,
one can consider the angle before and after collisions of two self-propelled rods that can have
nematic and polar contributions (21; cf. the discussion in Section 2.2.3). The dynamics of a col-
lection of N wet self-propelled rods in two or three spatial dimensions is thus described by an
extension of the overdamped Langevin Equation 1a,b in which anisotropic repulsion and torque
are recast into an effective velocity-alignment rule, and coupling of the rods’ orientation e‖ to the
flow u is included. For convenience, we neglect the anisotropy of diffusion (D‖ = D� = D) in this
section (55).

The coupling of the orientation to the solvent motion is assumed to be in line by Jeffrey’s
theory for the oscillatory tumbling motion of elongated passive rods (126). The coupling to
fluid rotations, � = [∇u − (∇u)T

]
/2, is different from coupling to fluid strain deformations,

� = [∇u + (∇u)T
]
/2, due to the particle shape given by the aspect ratio χ . The coupling pa-

rameter a0 = (χ2 − 1)/(χ2 + 1) for passive rods is oftentimes assumed (55), but it may be different
for microswimmers (127).

The solvent velocity is determined by Equation 10 with an averaged stress tensor σ composed
of a passive and an active component: σ = σ p + σa. The passive stress σ p is also present for non-
moving rods: It consists of an isotropic contribution and a part explicitly depending on the rod’s
orientation. The anisotropic part is proportional to the Landau–de Gennes potential from liquid
crystal theory (128) and can be approximated by σ p ≈ pkinϑ (ρ )Q, where ρ is the number density,
pkin is the equilibrium kinetic pressure, ϑ(ρ) is the coefficient of the first term (lyotropic liquid
crystals), and Q is the nematic order parameter tensor. The isotropic part describes the viscosity
change of a fluid when spherical colloidal particles are added that depend strongly on the den-
sity of colloids as given by the Batchelor–Einstein equation (129): μ∗ = μ0(1 + k1ρ + k3ρ2). The
description of the active stress σa goes back to two seminal papers that demonstrated the active
stress of wet rods to be proportional to the nematic order parameter with a sign depending on the
forcing of the individuals, i.e., pusher or puller (130–132). Recently, the representation of the ac-
tive stress tensor, similar to the approach used in Reference 133, was extended by including higher
derivatives (55) via a Taylor expansion of point forces yielding

σa ≈ − f0ρ
{
ξ1Q + 2ξ2(∇P)st + 2ξ4�(∇P)st + . . .

}
, 11.

where f0 is the force of microswimmers onto the surrounding fluid. The second and third terms in
the bracket on the right-hand side of Equation 11 describe higher-order effects that do not vanish
if local polar order is present. The coefficients ξ i depend on the length of the microswimmer.

www.annualreviews.org • Self-Propelled Rods 457



CO11CH20_Baer ARjats.cls February 13, 2020 11:48

The Langevin dynamics for particles that interact purely by hydrodynamic interactions (no ori-
entational alignment) was derived from slender body theory in References 134 and 135 in which a
kinetic equation for the polar order parameter coupled to the number density and the Stokes equa-
tion was obtained (134). It was demonstrated that such suspensions are always unstable to fluctua-
tions (136, 137). This approach was later extended to include orientational alignment interactions
mimicking steric effects (138). A related Langevin approach including models for short-ranged
interactions was used for simulations (139), demonstrating the need to include hydrodynamics to
describe experiments in confined suspensions (140).

3.2. Continuum Models

Collective phenomena of wet self-propelled rods can be studied at different scales. For investiga-
tions of the large-scale collective behavior, continuum equations for mesoscopic or macroscopic
order parameter fields are often considered just as they are for dry self-propelled rods (Section 2.3).
To obtain continuum equations for variables like the number density and the polar and nematic
order parameters, one uses coarse graining as described in Section 2.3.2. As the resulting moment
equations are hierarchically coupled, higher moments must be expressed in terms of lower mo-
ments in explicit closure relations to obtain a closed set of equations. As discussed in the context of
dry self-propelled rods, there is no unique closure condition (cf. 141), but symmetries of patterns
can oftentimes simplify the task. In the following, two different symmetry classes are considered
for the special case of a high, nonfluctuating swimmer density as suggested experimentally (ρ ≈
ρ0 = const.).

3.2.1. Active nematic case. A generalized quadratic closure relation was proposed in Refer-
ence 142 for situations in which ensembles of wet self-propelled rods display local nematic, but
no polar, order, which is the case, for example, for certain types of microswimmers (143). In this
case, one obtains the following equation for the nematic order parameter (142),

∂tQ + u · ∇Q − 2� · Q − κ (� · Q)st + 2a0� : (QQ)st = −�Q +D�Q + λK�, 12.

where λK is the tumbling parameter, and �Q is the derivative of the Landau–de Gennes poten-
tial,�(Q) = A(ρ )tr[Q2] + Btr[Q3] +Ctr[Q2]4, well known from liquid crystal theory (4). The co-
efficient A(ρ) can change its sign for different densities, indicating the isotropic–nematic phase
transition. The obtained equations are reminiscent of the order parameter equation of pas-
sive liquid crystal subjected to an external flow. The activity enters through the flow field u
that is generated by an active stress. Employing head–tail symmetry to the stress, one obtains
σa = (pkinϑ (ρ ) − ρ f0ξ1)Q as a generic model for active nematics (2, 145). There are several mod-
els of active nematics in which either the constitutive equation for the stress tensor and the or-
der parameter equation were modified or the Navier–Stokes instead of the Stokes equation was
used (146, 147). Remarkably, all these models for active nematics have a long-wavelength insta-
bility of the nematic state (136) in common that results in creation, annihilation, and motion of
topological defects in the nematic order parameter field (148, 149). Consequently, these models
explain spatially inhomogeneous states, but they cannot account for the characteristic length scale
found in the mesoscale turbulent state of bacterial suspensions.

3.2.2. Active polar case. For suspensions with polar symmetry like certain collections of push-
ers or pullers, the first nontrivial term in the expansion of the probability distribution function is
the polar order parameter P. The following dynamical equation for the polarization was derived
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using an extended Doi-closure approximation forQ that takes the generation of nematic order by
the solvent flow into account (142),

(∂t + u · ∇ − � · P − κ� · P + λ0P · ∇ )P = −�P − ∇ p∗, 13.

where �P is the derivative of a functional � = αP2/2 + βP4/4 + �2(�P)2/2 − �4(��P)2/2
representing a vectorial generalization of the scalar potential used for the Swift–Hohenberg equa-
tion (150). A characteristic feature of this potential is that the sign of �2 =D+ a1ρv0 − a2v0f0/μeff

(a1 > 0, a2 > 0) can become negative. Note that �4 was found to be always negative (142). The
contributions of the coefficients related to the polar alignment interaction (a1) and to the hydro-
dynamics (a2) indicate that large-scale hydrodynamic interactions give rise to a negative sign of
�2 that is significant for the emergence of patterns with a characteristic length scale that is given
by � � √

�4/�2 (12).
The related active and passive stress contributions were derived as μeff∇2u = ∇ · σ , where

μeff = μ∗ − k2�f0ρ is the effective bulk viscosity. The coefficient k2 > 0 depends on microscopic
details. Remarkably, the effective viscosity is increased or decreased by the swimmer density ρ

depending on the sign of f0. Indeed, a corresponding increase of the effective viscosity was observed
for pullers (127) and a decrease for pushers (38). For intermediate densities, the effective viscosity
observed can reach very low values reminiscent of the behavior of superfluids (151).

3.2.3. Outlook. Dry self-propelled rods are a limiting case of wet self-propelled rods if the
active flow-field generation is absent ( f 0 = 0) or, alternatively, the fluid flow is neglected. In that
limit, the coefficient �2 in Equation 13 is strictly positive; accordingly, the characteristic instability
due to long-ranged hydrodynamics as observed in collections of wet self-propelled rods cannot
emerge in their dry analogs (Section 2).

Just like for dry self-propelled rods, a coarse-grained theory derived from the microscopic
interactions of wet self-propelled rods including anisotropic repulsion and torque instead of
alignment-based descriptions—which would require the inclusion of interparticle correlations
beyond the restrictions of mean-field (molecular chaos) assumptions—remains a theoretical chal-
lenge for further investigations in the near future (see discussion in Section 2.3.4).

3.3. Phenomenology of Mesoscale Turbulence

The self-driven flow of bacterial suspensions has substantially different characteristics from high-
Reynolds-number Navier–Stokes flow due to the nonequilibrium driving at the microscale. The
statistical properties of the self-sustained mesoscale turbulence state in active suspensions were
first addressed in detail in Reference 12 combing experimental particle image velocimetry (PIV)
analysis, using B. subtilis as a model organism, together with the following phenomenological con-
tinuum equation that reproduces the experimental observations well:

(∂t + λ0P · ∇ )P = −∇ p− αP − β |P|2P + �2�P + �4�
2P, ∇ · P = 0. 14.

This equation can be considered a generalization of the Swift–Hohenberg equation (150) for a vec-
torial orientation field, including an additional nonlinear advection term on the left-hand side (12).
The interrelation of the full hydrodynamic model (Equations 10, 11 and 13) and Equation 14, rep-
resenting it as an approximate limiting case when fluid flow and orientational dynamics decouple,
was discussed in detail in Reference 142.Note, however, that the dynamics defined by Equation 14
as it stands does not resolve the hydrodynamic flow explicitly but does contain hydrodynamic
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Figure 8

Comparison between continuum theory and experiments. (a) Correlation functions of the solvent (PTV), bacterial flow (PIV), and
continuum simulations (theory) for different energies: (i) equal-time VCF indicates a characteristic vortex radius, and (ii) VACF
collapse when the time lag τ is rescaled by the enstrophy timescale. (ii, inset) The flow memory decreases with increasing activity. (b) 3D
spectrum for bulk turbulence is plotted (red squares). Spectra of 2D continuum theory and quasi-2D experiments are in good agreement.
(c) Bacterial vortex lattice stabilized by periodic array of pillars. A snapshot of swimming bacteria overlaid with color plot indicating the
rotational direction of vortices. The emergence of a vortex lattice depends on the lattice constant of the pillar array. Abbreviations: PIV,
particle image velocimetry; PTV, particle tracking velocimetry; VACF, velocity autocorrelation function; VCF, velocity correlation
function. Panel a adapted from Reference 39, available for reuse under the CC-BY-3.0 license. Panel b adapted from Reference 12 with
permission. Panel c adapted from Reference 152, available for reuse under the CC-BY-4.0 license.

interactions via the transport coefficients and may therefore be considered a hybrid model in be-
tween the realms of dry and wet active matter. Its applicability is only given, strictly speaking, in
the presence of a momentum sink such as a substrate. Its phenomenology is summarized in this
section (cf. Figures 7 and 8).

Equation 14 has one fixed point |P| = 0 corresponding to a disordered isotropic state and,
for α < 0, a family of fixed points with |P| > 0 describing dynamic states with local polar or-
der. A linear stability analysis shows that an unstable band of modes appears for �2 < 0 when
4α < |�2|2/|�4|, where the isotropic fixed point becomes unstable and is replaced by a square
vortex lattice for small values of λ0 (153). The periodicity of the lattice, i.e., the vortex size, is
given by the fastest-growing mode corresponding to a wavelength � � √

�4/�2 obtained in the
linear stability analysis. The stability of the square lattice was assessed by amplitude equations in
Reference 154. In the presence of strong enough nonlinear advection, i.e., if the parameter λ0 is
larger than a critical value, the regular periodic vortex lattice is destabilized and a new chaotic
dynamic state with irregular vortex dynamics, called mesoscale turbulence, emerges. Mesoscale
turbulence is still characterized by a distinct length scale. In contrast to conventional turbulence
in Newtonian fluids at high Reynolds numbers, energy spectra at large scales are nonuniversal but
depend on finite size effects and physical parameters (155). By increasing the advection strength λ0

even further, a new hexagonal vortex pattern arises that spontaneously breaks the clockwise and
anticlockwise rotation symmetry of the vortices. Distinct from classical pattern formation, the
dominant length scale describing the hexagonal vortex lattice is given by the neutral mode of the
dissipation from the linear stability analysis (154).

The mesoscale turbulence state—irregular collective motion of creation and annihilation of
vortices of a similar size—was found in suspensions of motile bacteria (69). A snapshot gallery (2D
slices of a 3D system) of measured fluid flow (moving fluorescent tracer, via PTV), bacterial ve-
locity (PIV), and numerical simulations indicates good agreement (Figure 7a–d). In particular,
the extensive comparison of the dynamics of dense B. subtilis suspensions with numerical simula-
tions of Equation 14 in two and three spatial dimensions revealed quantitative agreement at the
level of velocity correlations, autocorrelation functions, and energy spectra by simply adjusting
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the typical vortex size, �, the advection strength, λ0, and the coefficient of the linear term α (39,
69; cf. Figure 8a,b).

There are different particle-based approaches addressing the dynamics of wet self-propelled
rods. The interplay of shape and hydrodynamics was studied in Reference 66. An effective active
particle model—a particle-based analog to Equation 14—based on the competition of short-range
polar alignment and antialignment at larger distances that mimic the hydrodynamic interactions
had been proposed: Particle-based simulations and systematic coarse graining of the equations
of motion revealed a variety of patterns from square vortex lattices and mesoscale turbulence to
hexagonal vorticity arrays (54, 156; Figure 7e).

The typical vortex size determined by the fastest growing mode � is selected by the interplay
between long-range hydrodynamics, short-range alignment, and self-propulsion. The properties
of this new type of turbulence depend onmicroscopic details of the swimmer and theirmicroscopic
interactions and are therefore properties of the active fluid itself. For increasing self-propulsion
speed (v0), the vortex size increases and saturates at large v0 as predicted by the theory (55) and
confirmed experimentally (157). In the limit of large self-propulsion speeds, the vortex size is pro-
portional to the length of individual rods. Such a dependence was recently found in experiments
with B. subtilis (41). Recently, the interaction of a (mesoscale) turbulent B. subtilis suspension with
an array of pillars was investigated experimentally: A square lattice of vortices can be stabilized if
the pillar spacing roughly matches the characteristic length scale indicated by the minimum of the
correlation functions (152). This finding, in turn, substantiates the existence of an intrinsic length
scale in mesoscale turbulence.

In summary, we note that long-range hydrodynamic interactions among wet self-propelled
rods, reviewed in this section, lead to several novel phenomena in addition to the emergent col-
lective behavior of dry self-propelled rods as reviewed in Section 2. In particular mesoscale tur-
bulence and vortex lattices appear as possible large-scale patterns.

4. SUMMARY, OUTLOOK, AND FUTURE CHALLENGES

We have reviewed experiments, models, theory, and simulation results for self-propelled rods as
a paradigmatic class of active matter. The main parts of this review dealt with (a) the dynamics
of ensembles of dry self-propelled rods, i.e., self-propelled rods moving on a surface and having
mostly short-range, contact-related steric or alignment interactions among each other and (b) the
collective motion of wet self-propelled rods, i.e., rods swimming in a fluid that also are coupled
through long-range dynamic interactions mediated by the flow field in the solvent.We close with
a list of main results as well as future topics in the field of self-propelled rods.

Altogether, the reviewed research on self-propelled rods has already brought to light many
surprising phenomena; it is a rich variety of patterns and dynamical states related to the nonequi-
librium nature of this form of active matter. The achieved consensus is a good starting point for
a deeper exploration of the fascinating world of biological self-organization. Future research will
open the door to many important applications in material science and medicine.

SUMMARY POINTS

1. Dry self-propelled rods dominated by steric interaction can organize into polar clusters
at low densities; the characteristic cluster size distributions are well reproduced by kinetic
fragmentation–coagulation equations.
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2. Dry self-propelled rods with steric interaction at intermediate and high density show
laning and formation of large clusters and polar bands.

3. Dry self-propelled rods in quasi–two dimensions, i.e., rods that can slide over each other,
are dominated by nematic alignment interactions and thus form nematic bands that are
well described by coarse-grained continuum field equations.

4. Wet self-propelled rods at high densities exhibit predominantly a state of mesoscale tur-
bulence, i.e., a disordered lattice of vortices with chaotic dynamics and a typical selected
length scale (average distance between vortices) that is well described by a continuum
model. It can be derived from particle-based descriptions with short-ranged polar in-
teraction and long-ranged interaction mediated through the flow field generated by the
moving rods.

5. Density, activity, and shape are generic parameters that are important for all self-
propelled systems. The knowledge of the specific nature of interactions between rods
is essential for both the dry and the wet cases as they often determine the emerging
patterns or collective motion type (polar or nematic). The relevant macroscopic order
parameters and the symmetry of the coarse-grained equations will crucially depend on
emergent patterns.

FUTURE ISSUES

1. Little is known about self-propelled rods in three dimensions—the transition fromquasi-
two-dimensional systems representing monolayers or thin stripes of rods to multilayer
systems is an important aspect of bacterial aggregation and biofilm formation yet to be
explored.

2. In many living systems, additional aspects like biochemical communication, chemotaxis,
switching between passive and (often multiple) active states, trail following, gene ex-
pression, synchronization of internal clocks, or adhesion between active rods will have
important implications for the dynamics and functionality of collective motion of self-
propelled rods and will inspire improved and extended models as well as careful experi-
mental studies.

3. Although first successful attempts to control the often chaotic and unpredictable dynam-
ics of rods by confinement, added heterogeneities, or external fields have been presented,
a full understanding and exploitation of the potential of active rod assemblies as novel
materials will require better characterization of the transitions between different pat-
terns together with coordinated experimental effort.

4. Descriptions related to self-propelled rods may be used to build a better understand-
ing of medical applications regarding, e.g., the dynamics of tissues and the spreading of
cancerous cells.

5. Tools from the emerging fields of data-driven modeling and machine learning are likely
to be used routinely for better classification of the multitude of possible dynamical states
as well as for direct determination of the rules of motion and interaction from sufficiently
large numbers of measurements.
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