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Abstract

In this review, we discuss recent progress in the explorations of topo-
logical materials beyond topological insulators; specifically, we focus
on topological crystalline insulators and bulk topological supercon-
ductors. The basic concepts, model Hamiltonians, and novel elec-
tronic properties of these new topological materials are explained.
The key role of the symmetries that underlie their topological proper-
ties is elucidated. Key issues in their materials realizations are also
discussed.

361

mailto:y_ando@sanken.osaka-u.ac.jp
mailto:liangfu@mit.edu
conmatphys.annualreviews.org


1. INTRODUCTION

In the past decade, there has been remarkable progress in our understanding of topological states
of matter. A quantum state may be called topological when its wavefunctions bear a distinct
character that can be specified by some topological invariant—a discrete quantity that remains
unchanged upon adiabatic deformations of the system.Materials realizing such topological states
in their bulk may be called topological materials. Since the 1980s, quantum Hall systems (1) and
superfluid helium3 (He-3) (2) have been recognized to be topological, but it was long believed that
such topological states are rather exceptional in nature and exist only in quantum liquids under
extreme conditions (under high magnetic fields or at low temperatures). However, after the
discovery of topological insulators (TIs) (3–13), it has come to be widely recognized that topo-
logical states of matter can actually be widespread. In this sense, TIs have established a new
paradigm about topological materials. It is generally expected that studies of topological materials
would deepen our understanding of quantum mechanics in solids in a fundamental way.

By now, the theoretical aspects of TIs are reasonably well understood; hence, major challenges
on the theoretical front concern expansions of our notion of topological materials. On the ex-
perimental front, however, TIs are still far from being sufficiently investigated; materials issues in
three-dimensional (3D) TIs are being solved (13), and there are serious ongoing efforts to realize
theoretically predicted novel phenomena, such as topological magnetoelectric effects (14) and
proximity-induced topological superconductivity hosting the non-AbelianMajorana zeromode in
the vortex core (15). At the same time, newmaterials discoveries are still crucially important in this
rapidly developing field, and the search for new types of topological materials is in progress
worldwide (13).

In this review, we mainly focus on two new classes of topological phases of matter beyond TIs,
namely, topological crystalline insulators (TCIs) and topological superconductors (TSCs). The basic
concepts and effective models are concisely summarized so that experimentalists can grasp the es-
sential physics of these topological matters to accomplish new material discoveries. We also discuss
actual (candidate)materials for each category andmention the issues to be addressed in future studies.

1.1. Z2 Topological Insulator

Before going into the main topics of this review, TCIs and TSCs, let us briefly summarize the
current status of the TI research. As the first class of materials identified to exhibit topological
properties preserving time-reversal symmetry, TIs are characterized by the topological invariant
called the Z2 index (3, 16). The concept and definition of the Z2 index are pedagogically sum-
marized in a recent reviewarticle (13). Lately, theoreticalworks onTIs aremostly focused on either
the effects of electron interactions or the phenomenological consequences of their topological
character. On thematerials front, all TImaterials confirmed to date are narrow-gap semiconductors
with an inverted band gap (13). Such band inversionsmust occur at an odd number of time-reversal-
invariantmomenta (TRIMs) to obtain a nontrivialZ2 index. Both two-dimensional (2D) and 3DTI
materials have been studied, and the materials efforts can be summarized as follows.

Among 2D systems, there are two cases that have been confirmed to be 2D TIs. Those two 2D
TI systems are both realized in artificial quantumwell structure, and the band inversion takes place
at the center of the Brillouin zone, i.e., at theG point. The first system confirmed to be a 2D TI was
a thin layer ofHgTe sandwichedbyCdTe (4, 5), and the second onewas InAs/GaSbheterojunction
sandwiched by AlSb (17, 18). In HgTe, the band inversion is naturally realized due to the large
spin-orbit coupling stemming from the heavy element Hg, but the cubic symmetry of this material
causes the valence and conduction bands to be degenerate at theG point; the quantum confinement
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and the resulting formation of sub-bands removes this degeneracy and leads to the realization of
a true 2D TI state. In InAs/GaSb heterojunction, however, the band inversion is achieved by the
broken (type-III) gap alignment between InAs and GaSb, and the band gap in the hybridized band
structure is created by the anticrossing of the inverted electron and hole sub-bands stemming from
InAs and GaSb, respectively. Experimentally, although the materials are difficult to grow in both
cases, it is relatively easy tomake the transport through the helical edge states becomepredominant
in those 2D TIs by using electrostatic gating.

Among 3Dmaterials, the first one to be confirmed as 3DTIwas a Bi1�xSbx alloy (9, 10). In this
material, the band inversion occurs at three TRIMs, the L points; the surface band structure is
rather complicated, consisting of an odd number of Dirac cones and additional states (10, 19).
Other 3DTImaterials found to date have the band inversion only at theGpoint, andhence they are
associated with simpler surface band structures consisting of a single Dirac cone. Among such
simpler 3DTImaterials, themostwidely studied are the binary tetradymite compounds Bi2Se3 and
Bi2Te3 (20–22), inwhich the band inversion is due to a strong spin-orbit coupling that switches the
order of two pz-orbital-dominated bands with opposite parities at the G point.

Unfortunately, most of the known 3D TI materials are not really insulating in the bulk due to
unintentional doping. Hence, an important experimental issue has been to find suitable materials
that present sufficiently high bulk resistivity so that the surface transport properties can be reliably
probed (13). In this regard, the ternary tetradymite compound Bi2Te2Se was the first material that
achieved a reasonably large bulk resistivity with a high surface mobility, allowing clear obser-
vations of surface quantum oscillations (23, 24). Later, in an alloyed tetradymite compound
Bi2�xSbxTe3�ySey, a series of special compositions to achieve minimal bulk conduction was
identified (25), and surface-dominated transport was demonstrated for the first time in bulk single
crystals of a 3D TI (26). In thin films of 3D TIs, similar surface-dominated transport has been
achieved in strainedHgTe (27) and in Bi2�xSbxTe3 (28). Also, in exfoliated thin flakes of Bi2Se3, it
was reported that the deposition of strongly electron-affine molecules called F4TCNQ makes it
possible to achieve the surface-dominated transport (29). With those advancements in materials,
experimental studies of the intrinsic properties of 3D TIs have become possible.

1.2. Symmetry-Protected Topological Phases

The advent of TIs draws wide attention to the broad notion of symmetry-protected topological
(SPT)phases (30), of which TI is an example. Generally speaking, a SPT phase exhibits topological
characteristics (e.g., topological invariants and gapless boundary states) that rely crucially on the
presence of certain symmetry (e.g., time-reversal symmetry), and it can be adiabatically deformed
to a trivial phase (e.g., an atomic insulator) after this underlying symmetry is removed. In recent
years, the search for other SPT phases has attracted tremendous activities on both theoretical and
experimental sides (31). The twonew topological phases treated in this review, i.e., TCIs andTSCs,
are subsets of SPT phases, and for both of them several material realizations/candidates are
currently under study. Similar toTIs, TCIs andTSCs are defined by topological invariants encoded
in the wavefunctions of Bloch electrons and of Bogoliubov quasiparticles, respectively.

2. TOPOLOGICAL CRYSTALLINE INSULATOR

2.1. General Concept

TCIs (32) are topological phases of matter that are protected by crystal symmetries, including
rotation, reflection, etc.; for example, the C3v point group requires threefold rotation and
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reflection symmetries. A TCI cannot be adiabatically deformed to an atomic insulator while
preserving certain crystal symmetry. Several theoretical examples of such crystal-symmetry-
protected topological phases have been studied in the context of TIs (3, 6, 7, 33) and related
systems (34). A systematic search for TCIs requires the classification of topologically distinct band
structures within each crystal class. Given the richness and complexity of crystallography, the full
classification of TCIs has not yet been attained and is an active area of current research. In this
review, we largely focus on a class of TCIs that has been experimentally realized (35–38), whose
topological character is protected by reflection symmetry with respect to a crystal plane, or
equivalently, mirror symmetry.

ReflectionM is equal to a product of spatial inversionP and the twofold rotationC2 around the
axis perpendicular to the plane of reflection (hereafter, denoted by z¼ 0):M¼ PC2. In spin-orbit-
coupled systems, C2 is a combined rotation of an electron’s spatial coordinates and spin. Thus,
reflection acts on a spinful wavefunction as follows:

M

 
c↑ðrÞ
c↓ðrÞ

!
¼
 
�ic↑ðrÞ
ic↓ðrÞ

!
, 1:

where r ¼ ðx, y, �zÞ. Note that to defineM properly requires picking an orientation for the plane
of reflection that distinguishes theþz and�z directions. Owing to the sign reversal of spinor under
2p rotation, M2 ¼ �1 and hence eigenvalues of M are either i or �i.

The presence of mirror symmetry in a crystal has implications for its energy eigenstates in
momentumspace, i.e., Bloch states jckæ. For a 2D crystal that is invariant under z→�z, jckæ can be
chosen to be eigenstates of M for all k. This yields two classes of Bloch eigenstates with mirror
eigenvalues h ¼ 6i, denoted by jck,hæ. For each class of Bloch eigenstates, one can define cor-
responding Chern numbers Nh. This leads to two independent topological invariants: the total
Chern number N [ Nþi þ N�i determines the quantized Hall conductance, and a new invariant
called mirror Chern number: NM [ (Nþi � N�i)/2 (33). Importantly, even when the total Chern
number is zero, themirror Chern number can be a nonzero integer, which then defines a TCI phase
protected by the mirror symmetry.

The above idea can be generalized to 3D crystals that have one or multiple mirror planes. The
presence of a given mirror symmetry, say x → �x, implies that the Bloch states jckæ at the kx ¼ 0
and kx ¼ p/a planes in the 3D Brillouin zone are mirror eigenstates. Each such mirror-invariant
plane in momentum space is then indexed by its own mirror Chern number. The complete set of
mirror Chern numbers classifies 3D TCI phases with mirror symmetry.

The topological character of a TCI leads to gapless states on the boundary. Importantly, be-
cause the boundary can have lower symmetry than the bulk, not all crystal surfaces of the above
3D TCI are gapless; only those surfaces that preserve the underlying mirror symmetry are gapless.
The dependence of boundary states on surface orientations is a generic property of TCIs (32, 34)
and enriches topological phenomena in solids, as we show below.

2.2. Models and Materials

In 2012, Hsieh et al. (35) predicted the first class of TCI materials in IV–VI semiconductors, with
SnTe as a representative. These materials crystallize in rock-salt structure. The symmetry re-
sponsible for their topological character is the reflection symmetrywith respect to the (110)mirror
planes. In stark contrast, the isostructural compound PbTe in the same IV–VI material family is
predicted to be nontopological. We describe below the important difference between SnTe and
PbTe in electronic structures and its implication for TCIs.

364 Ando � Fu



Both SnTe and PbTe have small direct band gaps located at four symmetry-related TRIMs, the
L points. The low-energy band structure, consisting of the doubly degenerate conduction and
valence bands in the vicinity of L, is described by a four-band k × pHamiltonianH(k) (35), which
can be regarded as the low-energy limit of a microscopic six-band model in the early work of
Mitchell &Wallis (39). Alternatively, in the spirit of modern condensed matter physics,H(k) can
be regarded as an effective Hamiltonian, whose analytical form can be derived entirely from the
symmetry properties of energy bands. The little group that keeps each L point invariant isD3d, a
subgroup of the Oh point group of the rock-salt structure. The group D3d consists of three in-
dependent symmetry operations: spatial inversion (P), reflection with respect to the (110) plane
(M), and threefold rotationaround the (111) axis (C3).The conduction andvalencebands at a given
L point form two sets of Kramers doublets with opposite parity eigenvalues, denoted by jcþ

L,aæ
and jc�

L,aæ, respectively. The twomembers of a Kramers doublet denoted bya¼ 1, 2 have opposite

total angular momenta Jz ¼ 6
Z

2
, respectively. Because the axis of rotation is parallel to the plane

of reflection, Jz changes sign under reflection, i.e., Mjc6
L,1æ ¼ ijc6

L,2æ and Mjc6
L,2æ ¼ ijc6

L,1æ.
The aboveband symmetries dictate the formof thek × pHamiltonianH(k), where k is measured

from a given L point.H(k) is a 43 4 matrix in the basis set of f��cþ
L,1æ, jcþ

L,2æ, jc�
L,1æ, jc�

L,2æg, which
is given by

HðkÞ ¼

0
BBBB@

m 0 �iv0kz �v
�
ikx þ ky

�
0 m v

�
ikx � ky

� �iv0kz
iv0kz �v

�
ikx þ ky

� �m 0
v
�
ikx � ky

�
iv0kz 0 �m

1
CCCCA. 2:

H(k) includes all possible terms up to first order in k, which are invariant under the symmetry

groupD3d. Remarkably, after a rescaling of the coordinate kz →
v0

v
kz,H(k) has the same form as

the Dirac Hamiltonian in quantum electrodynamics: HðkÞ ¼ mG0 þ v
P

ikiGi, where G0,. . .,3 are

Dirac gamma matrices defined by G0¼ sz Ä I, G1 ¼ sxsy, G2 ¼�sxsx, and G3¼ sy Ä I. Thus, the

low-energy electronic properties of SnTe and PbTe are governed by massive Dirac fermions in
3þ1 dimension. The conduction and valence bands are separated by an energy gap Eg¼ 2jmj and
have particle-hole symmetric dispersions Ec,vðkÞ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ v2k2

p
.

The topological distinction between SnTe and PbTe arises from their different Dirac masses. It
has long been known that in going fromPbTe to SnTe, the band gap of the alloy Pb1�xSnxTe closes
at a critical Sn composition, x ∼ 0.35, and then reopens (40). This band inversion corresponds to
a sign change of the Dirac mass in the low-energy theory (2). The key insight that led to the
prediction of the TCI phase (35) came from the recognition that this Dirac mass reversal has an
important consequence for topology: It changes the mirror Chern numberNM associated with the
kx ¼ 0 plane passing through G and two L points, such as GL1L2, GL3L4, and GL1L3 (see Figure
1a). Energy bands on these planes are mirror eigenstates indexed by h ¼ �isx. The simultaneous
band inversions at the two L points on the kx ¼ 0 plane add up to an integer value of the mirror
Chern number: 1þ 1¼ 2. Therefore, one of the twomaterials, SnTe or PbTe, must have a nonzero
mirror Chern number jNMj ¼ 2 and thus realizes a TCI phase protected by mirror symmetry.
However, neither material is aZ2 TI (9), because an even number of band inversions “annihilate”
each other, as can be seen from the addition rule of the Z2 group classification of time-reversal-
invariant systems: 1 þ 1 ¼ 0 mod 2.

To further determinewhether SnTe or PbTe is topologically nontrivial requires looking into the
microscopic band structures of SnTe and PbTe, which is beyond the scope of the effective theory.
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Ab initio calculations show that the conduction (valence) band of PbTe predominantly comes
from cation Pb (anionTe) orbitals, as expected for an ionic insulatormade of Pb2þ and Te2� in the
atomic limit. In contrast, SnTe displays an anomalous band character: In a small region of the
Brillouin zone around L points, the conduction (valence) band comes from anion Te (cation Sn)
orbitals. This inverted bandordering of SnTe, distinct froman ionic insulator, is responsible for the
experimentally observed decrease (increase) of band gap under tensile strain (pressure), which
increases (decreases) the lattice constant toward (away from) the atomic limit. Putting together the
results of the low-energy theory, topological band theory, and ab initio calculation, Hsieh et al.
(10) predicted that SnTe is a TCI, whereas PbTe is not.

2.3. Topological Crystalline Insulator Surface States

The nonzero mirror Chern number in the SnTe class of TCIs guarantees the existence of topo-
logical surface states on crystal faces that are symmetric with respect to the (110) mirror planes.
Such crystal faces have a Miller index (hhk). [The cubic symmetry of SnTe dictates that the
situation is the same for (khh) and (hkh) faces.] Three common surface terminations of IV–VI
semiconductors are (001), (111), and (110) (see Figure 1a), which all satisfy this condition. In-
terestingly, depending on the surface orientation, there are two types of TCI surface states, with
qualitatively different electronic properties, as schematically shown in Figure 1b.

The first type ofTCI surface states exists on the (001) and (110) surface,where apair ofL points
are projected onto the same TRIMs on the surface. For the (001) surface, L1 and L2 are projected
ontoX1, andL3 andL4 are projected ontoX2. In this case, the twomassless surfaceDirac fermions
resulting from band inversions at L1 and L2 (L3 and L4) hybridize with each other at the surface
and create unprecedented surface states atX1 ðX2Þwith a double-Dirac-cone band structure. The
essential properties of these surface states are captured by the following minimal k × p model at
a given X point (41):
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Figure 1

Topological crystalline insulator (TCI). (a) High-symmetry points in the 3D Brillouin zone and in the projected surface Brillouin zone for
three different surfaces of the rock-salt crystal structure. Adapted from Reference 41; © 2013 by the American Physical Society. (b)
Locations of the Dirac cones in the (111) and (001) surface Brillouin zones. (c) Result of the tight-binding calculations for the dispersion of
the (001) double-Dirac-cone surface state. Adapted from Reference 41; © 2013 by the American Physical Society.
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HXðkÞ ¼
�
vxkxsy � vykysx

�
Ä I þmtx þ dsxty. 3:

Here, the first term describes two identical copies of surfaceDirac fermions associatedwithL1 and
L2 (denoted by tz ¼ 61), respectively; the other terms describe all possible intervalley hybrid-
izations to zeroth order in k, which satisfy all the symmetries of the (001) surface (42–44). The
calculated surface band structure ofHX, plotted in Figure 1c, shows many interesting features. At
low energy close to the middle of the bulk gap, the surface states consist of a pair of Dirac cones
located symmetrically away from X on the line X G. The corresponding Fermi surface is two
disconnected elliptical Dirac pockets. As the Fermi energy increases, these two pockets become
crescent-shaped, touch each other on the lineX M, and reconnect to form a large electron pocket
and a small hole pocket, both centered at X. This change of Fermi surface topology from being
disconnected to connected, known as Lifshitz transition, leads to a Van Hove singularity in the
density of states at the transition point.

The surface band structures discussed above are directly related to themirror Chern number of
TCIs. The (001) surface exhibits surface band crossings on the lineX G between bands of opposite
mirror eigenvalues, and the (111) surface shows similar crossings on the line G M. These crossings
protected bymirror symmetry guarantee the gapless nature of TCI surface states, replacing the role
of Kramers degeneracy in Z2 TIs. The fact that two surface band crossings can take place at any
point on the entire line agrees with the mirror Chern number jNMj ¼ 2, which precisely illustrates
the principle of bulk-edge correspondence in topological phases of matter.

The second type of surface states exists on the (111) surface. Here one of the four L points in the
bulk projects to theG point on the surface Brillouin zone, and the other three L points project toM.
As expected from the effective theory of band inversion, the (111) surface consists of four branches
of massless Dirac fermions: one branch located at G and three at M. Importantly, the mirror
symmetry guarantees that such surface states are connected in a topologically nontrivial manner
along the mirror-invariant line GM, such that they cannot be removed. Similar to the free (111)
surface, symmetry-protected interface states should exist on the (111) heterostructure between
SnTe and PbTe. These interface states were anticipated from early field-theoretic studies (45, 46).
The discovery of TCIs has now revealed that these states (so far unobserved) stem from the TCI
material SnTe (but not PbTe) and are topologically equivalent to its (111) surface states.

2.4. Experiments

Following the prediction by Hsieh et al. (35) that SnTe is a TCI, angle-resolved photoemission
spectroscopy (ARPES) experiments showed that SnTe (36) and Pb1�xSnxSe (37) are indeed a new
type of topological materials characterized by peculiar surface states consisting of four Dirac
cones. Later, theTCIphasewas confirmed to remain in thePb1�xSnxTealloy forx & 0.25 (38, 47).
Thosematerials crystallize in the cubic rock-salt structure, which can be cleaved along either (001)
or (111) planes. Like in Z2 TIs, the four Dirac cones of TCIs are spin nondegenerate and are
helically spin-polarized (38).

The initial experiments done on the (001) surface (36–38, 47) found a double-Dirac-cone
structure near theX point of the surface Brillouin zone (Figure 2). Remarkably, theDirac points of
the surface state are not located at the TRIMs; rather, their locations are restricted on the mirror
axes of the surface Brillouin zone. Such a surface state structure stems from a mirror-symmetry-
constrained hybridization of two Dirac cones (35), as described in Section 2.3. The predicted
Lifshitz transition stemming from the merger of two nearby Dirac cones has also been experi-
mentally observed (36–38).
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On the (111) surface, however, all four Dirac points are located at the TRIMs: one at G and
three atM points (Figure 1b). It was found by both ab initio calculations (41, 48) and experiments
(49) that the energy location of the Dirac point and the Fermi velocity are different for the Dirac
cones atG andM. These two kinds of Dirac cones were found tomanifest themselves in the surface
transport properties as different components of the surface quantum oscillations observed in SnTe
thin films grown along the [111] direction (50).

Interestingly, the difference in the Dirac cones at G andM introduces peculiar valley degrees of
freedom andmakes it possible to conceive unique valleytronics for the (111) surface states of TCIs
(51). Another type of valley-dependent phenomenon arises on the (001) surface due to a spon-
taneous structural distortion that selectively breaks mirror symmetries and opens gaps at the four
Dirac valleys (35). Indeed, such gap openings at two of the four Dirac cones have been observed in
the Landau level map of Pb1�xSnxSe (001) surface states using scanning tunneling microscopy
(STM) (52).

2.5. Perturbations to the Topological Crystalline Insulator Surface States

Compared with TIs, TCI surface states have a much wider range of tunable electronic properties
under various perturbations, such as structural distortion, magnetic dopant, mechanical strain,
thickness engineering, and disorder (35, 47, 53–57). We now briefly discuss the interesting con-
sequences of these perturbations on the (001) surface states, someofwhichhave been experimentally
observed.

2.5.1. Ferroelectric structural distortion. A common type of structural distortion in IV–VI
semiconductors is a relative displacement u of the cation and anion sublattices (Figure 3a), which
leads to a net ferroelectric polarization. Depending on the direction of u, this distortion breaks the
mirror symmetry with respect to either one or twomirror planes, and therefore generates nonzero
mass for the original massless Dirac fermions on the TCI (001) surface. Both the magnitudes and
the signs of the Dirac masses at the four valleys depend on the direction of u, resulting in a rich
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Double-Dirac-cone surface state observed by angle-resolved photoemission spectroscopy (ARPES)
experiments on SnTe. (a) Distribution of the ARPES intensity at the Fermi energy EF in the Brillouin zone
(kx versus ky). (b) The dispersion relations E(k) when taken as a slice through the Fermi surface found in
panel a; this slice is taken along the yellow arrow indicated in panel a. Adapted from Reference 36.
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phase diagram (Figure 3a) (35). This Dirac mass generation by symmetry breaking has been
observed in a scanning tunneling microscopy experiment on the TCI Pb1�xSnxSe (52) as already
mentioned.

2.5.2. Magnetic dopant. The exchange coupling of TCI surface Dirac fermions and magnetic
moments of dopants results in time-reversal-symmetry breaking. In particular, an out-of-plane
magnetization opens up Zeeman gaps of the same signs at the four Dirac points, leading to a

quantumHall effectwithsxy ¼ 43
e2

2h
(35). This offers a promising route to quantum anomalous

Hall states in TCI thin films, with large quantized Hall conductance (58).

2.5.3. Mechanical strain. TheDirac points on the (001) surface of TCIs are not pinned to TRIMs
as in the case of TIs. In this case, amechanical strain can shift theDirac point positions in k space in
a similar way as an electromagnetic gauge field acts on an electron (53). As a result, a nonuniform
strain field generates a nonzero pseudomagnetic field that can dramatically alter the electronic
properties of TCI surface states. It has been proposed (54) that a Landau-level-like flat band can be
created by a periodic strain field due to the dislocation array that spontaneously forms on the
interface of TCI heterostructures, and the resulting high density of statesmay be responsible for the
unusual interface superconductivity found in these systems (59).

2.5.4. Thickness engineering. In (001) thin films of TCIs, the top and bottom surface states
hybridize to open up an energy gap at theDirac points.However, the inverted band structure at the
X points remains down to a few layers. In the wide range of intermediate thicknesses, these films
realize a two-dimensional TCI phase that has spin-filtered edge states (55). Unlike quantum spin
Hall insulators, these edgemodes consist of an even number of Kramers pairs, which are protected
by symmetry with respect to the film’s middle plane. Applying a small out-of-plane electric field
breaks this mirror symmetry and hence gaps out these spin-filtered edge states (55). This elec-
trically tunable edge channel may be regarded as a topological transistor, whose ON and OFF
states are controlled by an electrically induced gap in the topological edge channel, instead of
carrier injection/depletion (see Figure 4).
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(a) Dirac mass generation due to ferroelectric structural distortion for the SnTe-class of topological crystalline insulator (TCI) materials.
Both the magnitude and the sign of the Dirac masses depend on the direction of the distortion u, as depicted in the figure.
(b) Schematic picture to depict the robustness of the TCI surface states against disorder; if disordered surface were localized, theremust be
one helical mode localized on either left or right boundary of the central disordered region, which would contradict mirror symmetry.
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2.5.5. Disorder. Unlike internal symmetries (such as time-reversal symmetry), spatial symmetries
(such as mirror symmetry) are always violated in the presence of disorder (60). This raises the
question of whether TCI phases are stable against disorder. It has been argued that the topological
surface states in the SnTe class of TCIs cannot be localized even under strong disorder, provided
that time-reversal symmetry is present (35, 57). This remarkable absence of localization is pro-
tected by the restored mirror symmetry after disorder averaging, or average mirror symmetry.
Intuitively, one can treat the strongly disordered TCI surface as an ensemble of domains, where
each domain breaks mirror symmetry and hence is locally gapped. However, there exist two types
of domains that are related to each other by mirror symmetry. As a unique property of TCIs, the
interface between the two mirror-related domains hosts a single one-dimensional helical mode
(35). Since time-reversal-symmetry forbids backscattering within helical states, each domain
wall is a ballistic conductor. The average mirror symmetry further guarantees that the two types
of domains occur with equal probability. As a result, the conducting domain wall percolates
throughout the entire surface, leading to delocalization. Tomake the above argument rigorous,we
nowpresent a proof (61) that in the presence of time-reversal symmetry, the disorderedTCI surface
cannot be localized. Let us consider a setup shown in Figure 3b, where a disordered region of the
TCI surface is confined between two gapped regions on its left and right, which are obtained by
externally breaking the mirror symmetry and are swapped under mirror operation. In this setup,
the disordered region is topologically equivalent to a domainwall between the twogapped regions,
and hence hosts a single delocalized one-dimensional helical mode. Now suppose this disordered
region could be localized; this helical mode, which cannot be “split,” must sit either on the left
or right boundary, which contradicts the mirror symmetry of the entire setup. This proves by
contradiction that the disordered TCI surface cannot be localized.

It is now understood that the delocalization of boundary states due to protection by an
average symmetry occurs in a much broader class of topological phases, which include, for ex-
ample, weak topological insulators that are protected by translational symmetry (62–65). Like the
TCIs with mirror symmetry, these topological phases (termed statistical topological insulators) lie
beyond the tenfold classification scheme (66) and have the common defining property that their
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Figure 4

Possible topological crystalline insulator (TCI) device to switch on and off the topological conduction channel
with electric field, which breaks mirror symmetry with respect to the film’s middle plane. Adapted from
Reference 55.
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boundary states exhibit two topologically distinct phases when the underlying symmetry is ex-
plicitly broken in opposite ways. It then follows from the argument presented above that when the
symmetry is preserved on average, the disordered surface precisely sits at a topology-changing
phase transition point and for this reason cannot be localized. The physics of such delocalization
due to topology and average symmetry has been precisely formulated in a field-theoretic approach
to Anderson localization (57) and confirmed in numerical studies (63, 67–69).

3. TOPOLOGICAL SUPERCONDUCTOR

3.1. General Concept

TSCs can be regarded as a superconducting cousin of TIs. Unlike insulators whose total number of
electrons is conserved, superconductors (and superfluids) spontaneously break theU(1) symmetry
associated with the fermion number conservation. Instead, only the fermion number parity
(i.e., even or odd) is conserved in the mean-field theory of superconductivity. This important
difference in symmetry called for a new topological classification of superconductors different
from insulators, which was systematically obtained in References 66 and 70 and led to
the theoretical finding of a wide class of TSCs. Several concrete examples of TSCs appeared in
early model studies by Read & Green (71) and Kitaev (72), as well as others (73, 74). The
search for TSCs in real materials is currently an exciting research endeavor in condensedmatter
physics.

A TSC is most easily conceived in a fully gapped superconductor as one that cannot be adia-
batically connected to a Bose-Einstein condensate (BEC) of Cooper pairs, in the same sense that
a TI cannot be adiabatically deformed to the atomic limit. By this standard, conventional s-wave
spin-singlet superconductors are clearly nontopological, because they exhibit a smooth crossover
from the weak-coupling Bardeen-Cooper-Schrieffer (BCS) limit to the strong-coupling BEC limit
without undergoing a gap-closing phase transition. This implies that unconventional pairing
symmetry is a necessary (but not sufficient) condition for TSCs. Although the concept of TSCs is
most transparent in fully gapped superconductors, it is important to note that nodal (zero-gap)
superconductors can also be topological as long as a topological invariant is well defined; indeed,
for several particular cases of nodal superconductors, topological classifications have been ac-
complished and concrete topological invariants are found (75, 76).

As a consequence of its nontrivial topology, irrespective of whether it is fully gapped or nodal,
a TSC is guaranteed to possess protected gapless excitations on the boundary. Importantly, unlike
in TIs, these excitations are not electrons or holes (as in a normal metal) but Bogoliubov quasi-
particles, namely, coherent superpositions of electrons and holes. The corresponding surface states
are Andreev bound states.

The classification of TSCs and the nature of their surface Andreev bound states depend cru-
cially on the presence or absence of internal symmetries such as time reversal and spin rotation. Of
particular interest are time-reversal-breaking TSCs (the superconducting cousin of quantum Hall
insulators) and time-reversal-invariant TSCs [the superconducting analog of TIs (77)]. A famous
example of the former type is a 2D chiral px þ ipy spin-triplet superconductor. There is evidence
that an extensively studiedmaterial, Sr2RuO4, is a p-wave superconductor, but there is no consensus
as to whether it fulfills all the requirements of a chiral TSC (78), although there is experimental
indication of surface Andreev bound states (79).

In the following, we focus on time-reversal-invariant TSCs in spin-orbit-coupled systems,
which have attracted wide attention only recently. Remarkably, the gapless quasiparticles on the
surface of such TSCs do not carry conserved quantum numbers associated with an electron’s
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charge or spin and are completely indistinguishable from their antiparticles. Because particles that
are their own antiparticles are calledMajorana fermions (80, 81), the quasiparticles on the surface
of thoseTSCs are emergent helicalMajorana fermions in the solid state, which can be thought of as
one half of the helical Dirac fermion on a TI surface (77).

3.2. Odd-Parity Criterion

Fully gapped, time-reversal-invariant TSCs are indexed by a Z2 topological invariant in one and
two dimensions, and by an integer invariant in three dimensions (66, 70). For a given super-
conductor, the value of its topological index can in principle be calculated from the band structure
and pair potential, using explicit but complicated formulas. Alternatively, when the super-
conducting energy gap D is much smaller than the Fermi energy m (which holds for most known
superconductors), the topological index is entirely governed by the topology of the normal-state
Fermi surface and the symmetry of the superconducting order parameter, without reference to the
full band structure in the Brillouin zone. As we show below, this Fermi surface and pairing-
symmetry-based approach provides a straightforward criterion for TSCs that is conceptually
transparent and experimentally accessible.

In particular, the criterion for time-reversal-invariant TSCs becomes remarkably simple for
materials with inversion symmetry. In this case, the pairing order parameter is either even or odd
parity. In the absence of spin-orbit coupling, even-parity pairing corresponds to spin-singlet
pairing, whereas odd-parity pairing corresponds to spin-triplet pairing. When spin-orbit cou-
pling is present, the notions of spin-singlet and -triplet pairings are no longer well-defined, but
there remains a sharp distinction between even- and odd-parity pairings. It was found (82, 83)
that even-parity pairing inevitably leads to topologically trivial superconductors, whereas odd-
parity pairing leads to TSCs under broad conditions of Fermi surface topology. Specifically,
when the Fermi surface encloses an odd number of TRIMs, odd-parity pairing is guaranteed
to create topological superconductivity. This criterion for TSCs holds in all three spatial
dimensions and is proven by generalizing the parity criterion for TIs (9) to superconductors. In
addition, 3D TSCs can also be realized when the Fermi surface encloses an even number of
TRIMs, provided that the odd-parity order parameters on different Fermi pockets have the same
sign (84).

The intimate connection between odd-parity pairing and topological superconductivity can be
intuitively understood by analyzing the transition from the weak-coupling BCS regime to the
strong-coupling BEC regime in a simple one-band system as the pairing interaction increases. Both
regimes can be treated by mean-field theory. In the BCS regime, the chemical potential m is inside
the energy band and is much larger than the pairing gap, whereas in the BEC regime, m lies below
the band bottom. Therefore, the BCS-BEC transition takes place when the chemical potential (as
determined self-consistently) coincides with the band edge and the Fermi surface shrinks to a point
at k ¼ 0. Importantly, the odd-parity pair potential, a 2 3 2 matrix in the space of the doubly
degenerate energy band,must satisfyD(k)¼�D(�k) andhence is guaranteed to vanish atk¼ 0.As
a result, right at this BCS-BEC transition point, the quasiparticle dispersion becomes gapless at
k ¼ 0. This unavoidable gap closing implies that the BCS regime of odd-parity superconductors
cannot be adiabatically connected to the topologically trivial BEC regime and hence must be
topologically nontrivial. In contrast, for even-parity superconductors, the pairing gap D(k) ¼
D(�k) can stay finite at k¼ 0, and therefore the BCS regime is adiabatically connected to the BEC
regime and hence is topologically trivial. This argument clearly demonstrates that odd-parity
pairing is the key requirement of TSCs.
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3.3. Material Proposals

Although odd-parity pairing has long been known in the context of p-wave superfluid He-3, odd-
parity superconductivity is rare in solid-state systems. Prime examples are Sr2RuO4 (78) and
certain heavy fermion superconductors [e.g., UPt3 (85)] in which the driving force for odd-parity
pairing comes from the strong electron correlation in d or f orbitals. However, these odd-parity
superconductors appear to break time-reversal symmetry and hence do not qualify as time-reversal-
invariant TSCs.

In searching for time-reversal-invariant TSCs, Fu& Berg (82) proposed a new mechanism for
odd-parity pairing facilitated by strong spin-orbit coupling, as well as a possible realization of this
mechanism in a candidatematerial, CuxBi2Se3. Themain idea is simple: Strong spin-orbit coupling
locks an electron’s spin to its momentum and orbital component and thereby converts a bare in-
teraction that is short-ranged and spin-independent to an effective interaction between Bloch
electrons that is both spin- andmomentum-dependent.With such anontrivial spin- andmomentum-
dependence, this effective interaction is then capable of generating odd-parity superconductivity.

CuxBi2Se3 is a doped TI that was recently found to be superconducting, with a maximum
transition temperature of 3.8 K (86). The proposed odd-parity pairing in CuxBi2Se3 is based on a
microscopic two-orbital model of its ferminology, which also provides a minimal description of
spin-orbit coupling in the presence of inversion symmetry. Unlike theRashba spin-splitting caused
by inversion asymmetry, spin-orbit coupling in centrosymmetric materials arises from the inter-
play between an electron’s spin, atomic orbitals, and crystalline anisotropy, and its form depends
on crystal symmetry. The two relevant orbitals in CuxBi2Se3 are located on the upper and lower
part of the quintuple layer, respectively; hence, the electronic structure can bemodeled as a stack of
bilayer unit cells along the z axis. On a given layer, there is a structural asymmetry between z and
�z, which leads to a local electric field that points perpendicular to the plane in opposite directions
on the top and bottom layer. This electric field generates a Rashba spin-orbit coupling associated
with an electron’s motion within each plane,

Hsoc ¼ vsz
�
kxsy � kysx

�
, 4:

which has opposite signs for the two orbitals, labeled bysz ¼61. In addition, interplane hopping
along the z direction connects the two orbitals in a staggered way similar to the Su-Heeger-
Schrieffer model for polyacetylene. Taking both intra- and interplane motion into account, we
arrive at the following Hamiltonian for the normal state of CuxBi2Se3:

H3D ¼ vsz
�
kxsy � kysx

�þ vzkzsy þmsx, 5:

which captures the low-energy band structure near the G point up to first order in k. It is worth
pointing out that apart from a change of orbital basis, the low-energyHamiltonian Equation 5 for
CuxBi2Se3 takes an identical form as the Hamiltonian for SnTe (Equation 2) because both are
determined by the D3d point group (or little group) of the crystal.

CuxBi2Se3 appears to be a weakly or moderately correlated electron system. The parent
compound Bi2Se3 is a naturally doped semiconductor consisting of extended p-orbitals, and Cu
doping leads to a rigid-band shift of the Fermi level deeper into the conduction band. Fu & Berg
(82) studied superconductivitywithin the two-orbitalmodel ofCuxBi2Se3 expressed inEquation5,
assuming that the pairing interaction is short-ranged in space, as in the standard treatment
of weak-coupling superconductors. Under this assumption, the pair potential is momentum-
independent but canhave a nontrivial internal structurewith spin-orbit entanglement,which is not
possible in a single-orbital system. On the basis of symmetry classification, four types of such
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pairings were found and listed inTable 1; each one has a different symmetry corresponding to the
irreducible representations of the D3d point groups A1g, A1u, A2u, and Eu, respectively. The A1g

pairing is even parity and conventional s-wave, whereas all others are odd parity and uncon-
ventional. Specifically, theA2u pairing is intraorbital spin-singlet but has opposite signs on the two
orbitals. BothA1u andEu pairings are orbital singlet and spin triplet: The former has zero total spin
along the z axis, whereas the latter has zero total spin along an in-plane direction, spontaneously
breaking the threefold rotation symmetry of the crystal. Because of the spin-orbit coupling, these
two spin-triplet pairings are nondegenerate.

In discussing the likely pairing symmetry of CuxBi2Se3, Fu & Berg (82) studied the phase
diagram of the two-orbital model under attractive density-density interactions, which could come
from electron-phonon coupling. The mean-field calculation showed that the s-wave pairing is
favored when the intraorbital attractionU exceeds the interorbital attractionV, whereas the odd-
parity A1u pairing is favored when the interorbital attraction is stronger. It is remarkable that
unconventional odd-parity pairing can be realized in a model with purely attractive and short-
range interactions, which is made possible by the strong spin-orbit interaction comparable to the
Fermi energy, as one can see in Equation 5. The requirement of V>Umay be achieved by taking
into account the reduction of phonon-meditated attraction by renormalized Coulomb repulsion,
which is larger for electrons occupying the same orbital.

The A1u odd-parity pairing generates a full superconducting energy gap over the elliptical
Fermi surface that encloses the time-reversal-invariant momentum G, thereby satisfying all the
requirements for 3D time-reversal-invariant TSCs. Indeed, the A1u superconducting phase sup-
ports two-dimensional massless helical Majorana fermions on the surface (82), which exhibits
novel energy-momentum dispersion (87–89). The other two odd-parity phases, A2u and Eu, have
point nodes. Nonetheless, both phases also haveMajorana fermion surface states with Fermi arcs
(75), whose existence is related to certain weak topological invariants (76).

3.4. Experiments and Open Issues

As is discussed above, superconductors derived from TIs are interesting candidates for bulk
TSCs. Among them, the most widely studied material has been CuxBi2Se3, which actually pro-
vided themotivation for the Fu-Berg theory (82). The superconductivity in thismaterial shows up
as a result of Cu intercalation to the van der Waals gap of the parent Bi2Se3 compound (86). The
bulk carrier density n3D of CuxBi2Se3 is very low for a superconductor, n3D’ 13 1020 cm�3; for
such a low carrier density, the maximum Tc of 3.8 K in CuxBi2Se3 is anomalously high within the
context of the BCS theory, in which Tc is exponentially diminished as the density of states at the

Table 1 Four types of on-site pairing order parameters in the two-orbital model for CuxBi2Se3, which
belong to the A1g, A1u, A2u, and Eu irreducible representations of the D3d point group as well as their
transformation properties under point-group symmetry operations. Adapted from Reference 82.

Types of pairing in terms of field operators Rep. P C3 M

D1: c†1↑c
†
1↓ þ c†2↑c

†
2↓; c†1↑c

†
2↓ � c†1↓c

†
2↑ A1g þ þ þ

D2: c†1↑c
†
2↓ þ c†1↓c

†
2↑ A1u � þ �

D3: c†1↑c
†
1↓ � c†2↑c

†
2↓ A2u � þ þ

D4: ðic†1↑c†2↑ � ic†1↓c
†
2↓, c

†
1↑c

†
2↑ þ c†1↓c

†
2↓Þ Eu (�, �) (x, y) (þ, �)

Abbreviation: Rep., representation.

374 Ando � Fu



Fermi energy is reduced. As amatter of fact, the BCS theory predicts an order of magnitude lower
Tc for such a low n3D (90), and, indeed, the prototypical low-carrier-density superconductor
SrTiO3 has the maximumTc of 0.5 K for n3D’ 13 1020 cm�3 (91). The anomalously high Tc for
the very low carrier density is one of the possible indications of an unusual electron pairing in
CuxBi2Se3.

SuperconductingCuxBi2Se3 is difficult to synthesizewith the usualmelt-growth technique (86),
but an electrochemical techniquemakes it possible to synthesize samples with the superconducting
volume fraction up to ∼70% near x ’ 0.3 (92). Using such high-volume-fraction samples, it was
found using specific-heat measurements that this material is likely to have a fully gapped
superconducting state without gap nodes (92). More importantly, point-contact spectroscopy
experiments found signatures of Andreev bound states (Figure 5a), which point to the realization
of unconventional odd-parity superconductivity, meaning that CuxBi2Se3 is a bulk TSC (75).
Theoretically, the surface Andreev bound states of such a bulk TSC are nothing but the helical
Majorana fermion state. Therefore, the point-contact experiments may have seen a signature of
Majorana fermions.

However, an STM study of CuxBi2Se3 found only a conventional tunneling spectrum (93),
which created a controversy regarding the nature of superconductivity in CuxBi2Se3. In this
context, it is worth noting that recent self-consistent calculations of the local density of states
(LDOS) in CuxBi2Se3 concluded that the existence of the topological surface state must give rise to
a two-gap structure in the LDOS spectrum at the surface if the bulk superconducting state is of the
conventional BCS type (94). Therefore, it is not so straightforward to understand the STM result.

Recently, an ARPES study found that the Fermi surface of superconducting CuxBi2Se3 is a
warped cylinder, andhence the system is essentially quasi-2D (95). This result suggests the possibility
that this material is actually a 2D TSC and the topological boundary states exist only on the side
surface. If so, the point-contact spectroscopy using silver nanoparticles (75) could have probed
the Andreev bound states at the terrace edges, whereas the STM measurements on the top surface
would not probe any boundary states (94). Clearly, further studies of CuxBi2Se3 using different
techniques, such as nuclear magnetic resonance orp junctions, are desirable for elucidating the true
pairing symmetry.

Another interesting candidate of a bulk TSC is superconducting In-doped SnTe (96), which is a
hole-dopedTCIpreserving the topological surface states even after the Indoping (97). The effective
Hamiltonian of this system has essentially the same form as that of the 3D version of CuxBi2Se3,
and hence the symmetry classification of the possible gap functions in the Fu-Berg theory (82) still
applies. This means that the strong spin-orbit coupling needed to make SnTe topological may
also lead to unconventional superconductivity in Sn1�xInxTe by promoting Cooper pairing be-
tween two different orbitals with opposite parity. Intriguingly, the point-contact spectroscopy
of Sn1�xInxTe found signatures of surface Andreev bound states (Figure 5b) (96) similar to those
found in CuxBi2Se3, pointing to the realization of a topological superconducting state.

It is prudent tomention that the In-dopingdependenceofTc in this material is complicated (98),
and it has been suggested that topological superconductivity is realized only in a narrow range
of In content near 4% where disorder becomes minimal (98). The specific-heat measurements of
Sn1�xInxTe found that the superconducting state is fully gapped and the volume fraction is es-
sentially 100% (98). The absence of impurity phases in Sn1�xInxTe is an advantage, compared
with CuxBi2Se3, for elucidating the nature of pairing symmetry. If the bulk is indeed topological,
the surface Andreev bound states of Sn1�xInxTe consist of four valleys of helical Majorana
fermions because there are four bulk Fermi pockets located at the L points.

Very recently, a new TI-based superconductor, Cux(PbSe)5(Bi2Se3)6 (hereafter, called CPSBS),
was discovered (99). This material is interesting in that its specific-heat behavior strongly suggests
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the existence of gap nodes, and hence this is almost certainly an unconventional superconductor.
The building block of the crystal structure of (PbSe)5(Bi2Se3)6 consists of two quintuple layers
(QLs) of Bi2Se3 separated by one-unit-cell-thick PbSe, and hence it can be called a naturally formed
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Experiments on topological superconductor (TSC) candidates. (a) Zero-bias conductance peak observed in a point-contact spectroscopy
ofCuxBi2Se3,which points to the existence of surfaceAndreevbound states andmakes thismaterial a prime candidate of the time-reversal-
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in the point-contact spectroscopy of Sn1�xInxTe, which is another candidate of the time-reversal-invariant TSC. Adapted fromReference
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heterostructure of alternating topological and nontopological units; to make it a superconductor,
Cu is intercalated into the vanderWaals gapbetween the twoQLsof the Bi2Se3 units. Although the
unconventional nature in CuxBi2Se3 and Sn1�xInxTe has so far been inferred only through the
surface properties, the unconventional superconductivity in CPSBS is indicated by bulk properties
(Figure 5c). This material has a quasi-2D Fermi surface, so the existence of gap nodes leads to the
appearance of surface Andreev bound states on some particular planes that are parallel to the
c� axis (100). Importantly, the strong spin-orbit coupling coming from the Bi2Se3 unit makes
the Andreev bound states spin-split and form a Kramers pair. The resulting spin-nondegenerate
surface states can be identified as helical Majorana fermion states.

It is noteworthy that any spin-triplet superconductor is potentially a bulk TSC, either gapped
orgapless (2).Hence, well-established triplet superconductors such as Sr2RuO4 (78) andUPt3 (85)
may well be topological, but their exact topological natures remain to be identified. Note that
a topological bulk state leads to the appearance of surfaceAndreev bound states [Figure 5d (79)] as
topological gapless quasiparticle states. However, in those spin-triplet TSCs, the surface Andreev
bound states may not be identified as Majorana fermion states because they are spin degenerate;
remember, two Majorana fermions with the same k can form a complex linear combination to
result in an ordinary fermion. Nevertheless, a Majorana zero mode is expected to show up in the
core of half-quantized vortices that are peculiar to triplet superconductors having the d-vector
degrees of freedom (78).

4. OUTLOOK

The discovery of TIs initiated a new trend to pursue topologically nontrivial phases in quantum
materials, and one would expect this new trend to keep producing fundamental discoveries about
novel quantum phases of matter characterized by nontrivial topologies. As is emphasized in the
present review, important ingredients for the theoretical investigations of new types of topological
materials are the construction of effectivemodels and the symmetry analysis of suchmodels. In this
respect, theoretical imaginations to conceive exotic models are obviously important, but perhaps
more important is to find/design realistic materials to realize such models so that the theoretical
predictions can be verified by experiments. In any case, because topologies can only be analyzed
mathematically in concrete models, the discoveries of materials characterized by new topologies
are necessarily led by theoretical insights.

On the experimental front, besides exploring newkinds of topologicalmaterials, it is important
to establish practical understanding of known topological materials and to elucidate peculiar
phenomena associated with such materials. In this respect, the implications of the valley degrees
of freedom inTCIs on various physical properties areworth pursuing. For such efforts, availability
of high-quality thin films, whose Fermi level can be gate controlled, would be crucially important.
Regarding TSCs, the physics of extended and dispersive Majorana fermions on the surface of
certain TSCs is a new area of research and may yield rich phenomenology, as was the case with
masslessDirac fermions in graphene (101). Also, finding ways to create andmanipulate aMajorana
zero mode localized on a defect is important for future applications in quantum computations. Of
course, before addressing such physics, the pairing symmetry of candidate TSCs derived from TIs
needs tobe elucidated,which is an important near-termchallenge and requires further advancements
in materials synthesis techniques.

On the theoretical front, classifications of possible topological phases for various symmetries
will continue to be important. In particular, there are now intensive efforts on classifying and
studying TCI phases protected by various crystal symmetries (102–116), as well as on super-
conducting analogs of TCIs (117–120). The role of crystal symmetry in protecting topological
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nodal semimetals has also been studied (121–125). The search for newTCImaterials has attracted
great interest. Theoretically predicted or proposed candidates include heavy fermion compounds
(126, 127), transitionmetal oxides (128), and antiperovskites (129).RegardingTSCs,mechanisms
for odd-parity pairing in spin-orbit-coupled systems are being explored (130–134), and their
unusual topological properties are being studied (135–142). Importantly, the robustness of
odd-parity superconductivity against disorder is found to be parametrically enhanced by strong
spin-orbit coupling (143, 144). Last but not the least, a variety of newmaterials has recently been
proposed as candidate time-reversal-invariant TSCs (145–150), which makes this research field
extremely active and lively.

Looking into the future, it remains to be seen whether strong electron correlations can give rise
to novel topological phases in time-reversal-invariant systems, as was the case for the fractional
quantum Hall effect in time-reversal-symmetry-broken systems. In both cases, predictions of
concrete candidates to realize newly conceived topological phases are crucial for advancing the
physics of topological phases. To make the field of topological materials more interesting, it is
desirable that experimentalists discover unexpected topological phases and phenomena in strongly
correlated materials, and such serendipitous discovery would lead to a leap in our understanding.
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