
Motility-Induced Phase
Separation
Michael E. Cates1 and Julien Tailleur2,�

1SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ,
United Kingdom; email: m.e.cates@ed.ac.uk
2Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, F-75205 Paris,
France; email: julien.tailleur@univ-paris-diderot.fr

Annu. Rev. Condens. Matter Phys. 2015. 6:219–44

First published online as a Review in Advance on
January 2, 2015

TheAnnual Review of Condensed Matter Physics is
online at conmatphys.annualreviews.org

This article’s doi:
10.1146/annurev-conmatphys-031214-014710

Copyright © 2015 by Annual Reviews.
All rights reserved

�Corresponding author

Keywords

self-propelled particles, bacteria, phase separation, motility, active
Brownian, run-and-tumble

Abstract

Self-propelled particles include both self-phoretic synthetic colloids
and various microorganisms. By continually consuming energy, they
bypass the laws of equilibrium thermodynamics. These laws enforce
the Boltzmann distribution in thermal equilibrium: The steady state
is then independent of kinetic parameters. In contrast, self-propelled
particles tend to accumulate where they move more slowly. They
may also slow down at high density for either biochemical or steric
reasons. This creates positive feedback, which can lead to motility-
induced phase separation (MIPS) between dense and dilute fluid
phases. At leading order in gradients, a mapping relates variable-
speed, self-propelled particles to passive particles with attractions.
This deep link to equilibrium phase separation is confirmed by simu-
lations but generally breaks down at higher order in gradients: New
effects, with no equilibrium counterpart, then emerge.We give a selec-
tive overview of the fast-developing field of MIPS, focusing on theory
and simulation but including a brief speculative survey of its experi-
mental implications.
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1. INTRODUCTION

Nonequilibrium systems arise in a wide range of situations with very different phenomenologies.
Nonetheless, one can identify general categories that share sufficient ingredients to form coherent
classes. One such class describes systems that are relaxing toward, but have not yet reached,
thermal equilibrium. This relaxation may be relatively unhindered or might become extremely
slow (as happens in glasses). Nonetheless, there is a sense of a direction in which the system either
moves or would move if it could. A second class of nonequilibrium systems describes those whose
bulk dynamics is prevented from attaining equilibrium by boundary conditions imposing nonzero
steady currents. These are exemplified by heat-flow experiments in which a piece of matter is
connected to two reservoirs held at different temperatures.

In a third class of nonequilibrium systems, often called active matter, energy is dissipated at the
microscopic scale in the bulk so that each constituent of the system has an irreversible dynamic.
[Note that bulk dissipation in some two-dimensional (2D) systems is achieved by coupling to
a boundary in the third direction (e.g., see 1).] This includes a large range of systems whose
particles are motile, i.e., self-propelled: bird flocks (2), fish schools (3), actin filaments (4),
microtubules (5) in motility assays, autophoretic colloids (6–8), and colloidal rollers (9). Many
such systems have been studied in their own right (10), but over the past ten years, the quest for
a generic description of active matter has attracted growing interest (11–13). It is reasonable to
hope that self-propelled particles, which otherwise interact via standard equilibrium forces (at-
traction, repulsion, alignment, etc.), might form a coherent subclass of nonequilibrium systems
that can be described by a common theoretical framework.

Active matter systems can exhibit many new behaviors, at least some of which should prove
relevant to applications. For instance, many forms of bacterial contamination [from coronary
implants to domestic water systems (14, 15)] arise from biofilm formation, whose early stages are
triggered when the local population density exceeds some threshold (16). It would therefore be
helpful to understand how a nonuniform density can arise from a uniform one. Also, many studies
of motile synthetic colloids (e.g., see 8) are motivated by a desire to direct the assembly of
nanostructures. More generally, one would like to extend our control over soft matter systems,
whose applications range from liquid crystal displays to cosmetics and food processing industries,
to include hybrid materials in which at least some of the components are active. Examples might
include tissue scaffolds (17) for wound repair and electrode systems for microbial fuel cells (18).

The study of active matter has historically been driven mainly by work on biological systems.
These are, however, often quite complex: For instance, the rich phenomenology observed in dense
swarms of bacteria stems in combination from their self-propulsion, the alignment interactions
due to their rod-like shapes, and their hydrodynamic coupling to themedium inwhich they swarm
(19). One fruitful line of research, following the seminal work of Vicsek and coworkers (10), has
been dedicated to motile particles with orientational order. This spans polar particles (10), active
nematics (20), self-propelled rods (21), and active Ising spins (22); the interplay between
interaction-induced alignment ofmotile particles and their self-propulsion has led to the discovery
of a variety of new phases [such as the zooming bionematic phase (23)] and various transitions
between these phases.

Inspired by the increasing experimental availability of synthetic motile colloids of somewhat
simpler geometry, theorists have recently also addressed simplermodels inwhich (because they are
dilute or of spherical shape) swimmers have no innate tendency toward orientational order. Even
dilute active suspensions can give nontrivial density profiles in sedimentation equilibrium (24–26),
and their microscopic irreversibility becomes manifest via rectification interactions with meso-
scopic ratchets (24, 27–31). In these dilute cases, interactions between particles can essentially be
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neglected, showing that the active equivalent of an ideal gas is already a highly nontrivial object of
study.

A first step beyond this noninteracting limit is to consider active simple fluids made of spherical
self-propelled particles whose interactions are isotropic. The latter not only includes conventional
attractive and repulsive interactions of colloidal spheres but also allows for some forms of sig-
naling, such asquorumsensing inbacteria (32), in which a chemical species is emitted isotropically
by each particle and its concentration detected. (Note that bacteria cannot directly detect vector
quantities such as chemical concentration gradients but do so indirectly by integrating temporal
information as they move. This means they lack the long-range orientational interactions of, say,
bird flocks, in which individuals visually detect the mean velocity vector of their neighbors.) Even
without any orientational interactions, active simple fluids have a phenomenology much richer
than their passive counterparts. Most notably, self-propelled particles with purely repulsive
interactions can undergo liquid-gas phase separation (33–37). This is impossible for passive
colloidal particles without attractions and stems from an intrinsically nonequilibriummechanism
calledmotility-induced phase separation (MIPS) (38), which is the subject of this review.When the
speed of motile particles decreases sufficiently steeply as their local density increases, a uniform
suspension becomes unstable, leading to a phase-separated state in which a dilute active gas
coexists with a dense liquid of substantially reduced motility.

Before reviewing this surprisingly generic phenomenon in depth, we summarize its underlying
mechanism, which can be intuitively captured by a relatively simple argument. A first ingredient,
carefully explored by Schnitzer (39) for the case of run-and-tumble bacteria, is that active particles
generically accumulate where they move more slowly. This follows directly from the master
equation of a self-propelled particle of spatially varying speed v(r):

_Pðr, uÞ ¼ �= ×
�
vðrÞuPðr, uÞ�þQ

�
Pðr, uÞ�. 1:

Here,Q[P] accounts for the changes of the particle orientation u (for instance, Q[P] ¼DrDuP for
Brownian rotational diffusion). For isotropic processes, Pstat(r, u) } 1/v(r) is always a steady-state
solution of Equation 1. This effect is crucially absent for the Brownian motion of particles in
thermal equilibrium. In that case, v is a random variable whose statistics are entirely independent
of r, instead depending solely on temperature. (This is the equipartition theorem for kinetic
energies.) Therefore, a similar effect can only arise in a passive system if the temperature is
nonuniform (40, 41): Although the diffusivity of isothermal Brownian particles might vary with
position—for instance, due to gradients of viscosity—this has no effect on Pstat, which at uniform
temperature is a function of energy only. A broadly related tendency for systems under boundary
driving is that of particles to migrate toward a region of low shear rate:When Brownianmotion is
weak so that shear-induced diffusion is dominant, these regions are easy to get into but hard to get
out of (42).

The second crucial ingredient of MIPS arises in an assembly of active particles exhibiting
a propulsion speed v that depends on the local particle density r. Such a dependence might arise
directly by chemical signaling [e.g., quorum sensing (32)] or by coarse-graining a traditional
colloidal interaction such as steric exclusion (see Section 5.2 below).MIPS arises from the positive
feedback between this accumulation-induced slowing and the slowing-induced accumulation
implicit in Equation 1. Heuristically, consider a small perturbation dr(r) around a uniform profile
r0[ c/v(r0),where c is some constant. This leads to a spatially varying speed v[r0þ dr(r)]¼v(r0)þ
v0(r0)dr(r) so that dr(r) and dv(r) are in antiphase if v(r) decreases with r. The steady-state density
for this v(r) would be r0 þ dr0, where
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r0 þ dr0 ¼ c
vðr0Þ þ v0ðr0Þdr

’ c
vðr0Þ

�
1� v0ðr0Þ

vðr0Þ
dr

�
¼ r0 � r0

v0ðr0Þ
vðr0Þ

dr. 2:

When the perturbation of the steady state stemming from the perturbed velocity is larger than the
initial density perturbation, a feedback loop sets in, destabilizing the uniform profile. A linear
instability is therefore expected whenever dr0 > dr, i.e., when

v0ðr0Þ
vðr0Þ

<� 1
r0
. 3:

As we show below, Equation 3 correctly identifies the region where macroscopicMIPS is initiated
by spinodal decomposition. One can, however, go far beyond this simple linear stability analysis.
Indeed, in large measure the coarse-grained dynamics of active simple fluids can be mapped onto
the equilibrium dynamics of passive simple fluids with attractive interactions. This allows a large
body of knowledge on that case to be easily transferred. However, the departures from this
mapping are also interesting, given that they point to aspectswhere the underlying nonequilibrium
character of MIPS cannot be transformed away.

This underlying character stems directly from the lack of microscopic time-reversal symmetry
in active systems, which means that their steady states need not obey the principle of detailed
balance (DB). This principle states that if phase space is divided up into regions, the probability
flux from regionA into region B is the same as the reverse flux. This precludes circulating fluxes in
steady state (for instance, A → B → C → A) Such fluxes are commonly seen in boundary driven
systems (such asBénard convection rolls) and can also feature prominently in activematter (12, 24,
29–31). In active matter, DB violations are always present microscopically but may or may not
survive coarse-graining.Mapping onto an equivalent equilibrium system is only possiblewhenDB
violations do not survive.

In what follows, we review (Section 2) the general physics of motile particles, focusing on two
simple models, inspired respectively by bacteria and by synthetic colloidal swimmers. We then
address their many-body physics in general (Section 3), andMIPS in particular, first within a local
approximationwhereby the swim speed depends on density but not its gradients (Section 4). After
exploring the aspects of MIPS for which this approximation is sufficient (Sections 5 and 6) we
move beyond it, showing in Section 7 that a careful consideration of nonlocal or gradient terms
gives dynamics that are, after all, not equivalent to any form of passive phase separation. We
conclude briefly in Section 8.

2. MOTILE PARTICLES

2.1. Run-and-Tumble Bacteria and Active Brownian Particles

We start by considering two limiting models of the stochastic dynamics of a single active particle
(Figure 1). The first is a so-called run-and-tumble particle (RTP), whosemotion consists of periods
of persistent swimming motion called runs, punctuated by sudden changes of direction called
tumbles (39, 43). This is a canonically simplified model of the dynamics of bacteria such as
Escherichia coli. It supposes the runs to be straight lines, traversed with fixed speed, v, and
punctuated at random by instantaneous tumbles, occurring at some fixed rate, a, each of which
completely decorrelates the swimming direction. At time- and length-scales much larger than a�1

and ‘∼ v/a, this motion is a diffusive randomwalk. It is a simple exercise to calculate its diffusivity
in d dimensions as D ¼ v2/ad.
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Our second model is called an active Brownian particle (ABP) (11). This also has a fixed swim
speed, v, but its direction decorrelates smoothly via rotational diffusion with angular diffusivity,
Dr. This rotation is typically thermal, hence the Brownian label: One example is self-phoretic
colloids, which asymmetrically catalyze conversion of a surrounding fuel to create self-propulsion
along an axis that slowly rotates by angular Brownianmotion. (Another example isE. colimutants
called smooth swimmers, which have lost the ability to tumble but still experience rotational
diffusion.) At large length- and timescales, themotion is again a diffusive randomwalk; finding the
diffusivity is another easy exercise, with the result D ¼ v2/d(d � 1)Dr.

As shown inReference44, we can generalize these two calculations of the large-scale diffusivity
D to include a superposition of the ABP and RTP dynamics, and also to include a purely thermal
direct contribution, Dt, to the translational diffusivity. The result is

D ¼ v2t
d

þDt 4:

and

t�1 ¼ aþ ðd � 1ÞDr, 5:

where t is the orientational relaxation time of the active particle. Note that theDt contribution is
often negligible compared with the active part; it is frequently set to zero in simulation studies and
is sometimes silently omitted in what follows.

2.2. Spatial Variations in Motility Parameters: A Mesoscopic Approach

The above results establish a prima facie connection between a broad generic class of active
particle dynamics (with RTP and ABP as limiting cases) and the physics of isothermal passive
Brownian particles (PBPs): After suitable coarse-graining, all describe diffusive random walks of
the type canonically exemplified by PBPs. At first sight, the effect of activity is simply to increase
the diffusivityD from that of the equivalent passive particle, typically by a large factor. However,
a subtler aspect of the connection to PBPs is revealed if one allows t and v to be functions of the
particle’s position r (39, 41). For instance, a nontrivial v(r) would arise for bacteria swimming in
a polymer gel of variable strand density, so propulsion is more effective in some regions than

v
v

a b

Figure 1

Simulated paths of (a) run-and-tumble and (b) active Brownian particles of length, t ¼ 5a�1 ¼ 5D�1
r . Each is diffusive at large length- and

timescales.
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others. In this case, an explicit coarse-graining (44) of the microscopic dynamics gives the fol-
lowing equations for the probability density w(r) of our single active particle and its flux j:

_w ¼ �= : j, 6:

j ¼ �D=wþ Vw, 7:

DðrÞ ¼ vðrÞ2tðrÞ
d

, 8:

and

VðrÞ
DðrÞ ¼ �=ln vðrÞ. 9:

To simplify the form of these equations, we have setDt ¼ 0. They are the same equations as one
would write down to describe a PBP, with a spatially varyingD¼ v2t/d, except for the presence of
an extra drift velocity, V. This drift velocity is equivalent to an external potential bU(r) ¼ lnv(r),
where b[ 1/kBT. The active particle behaves as an isothermal PBP in the presence of this effective
potential, which derives solely from activity (39). Its steady-state probability density accordingly
obeys a Boltzmann-like distribution:

wss } exp½�bU� ¼ 1
vðrÞ. 10:

RestoringnonzeroDt introduces a factor (1þDtd/v
2t)�1 in the r.h.s of Equation 9. So long as v(r)

is the only nonconstant parameter, this leads to wss } 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2t þ dDt

p
. For small Dt, this changes

slightly the form of Equation 10 but not its qualitative physics.
TheeffectivepotentialU emerges under conditions inwhich there is no actual force field acting on

the particle. Hence, an active origin for particle diffusion causes deviations from the Boltzmann
distributionwss} exp[�bH] that cannotbeabsorbedbyanyglobal rescalingof temperature. (HereH
is the actualHamiltonian anddoesnot incorporateU.) The situation is somewhat like aPBP inabath
at nonuniform temperature, so that its (root-mean-square) speed, v, depends on its position (41).
Indeed, if one has a boxof passive ideal gas particles inwhich twohalves of the boxaremaintainedat
unequal temperature, then crudely equating the kinetic particle fluxes from one section to the other
across the interface requires equality of rv, not of the density r. In steady state, one therefore recovers
r} 1=v, which is the direct counterpart of Equation 10 for a passive, but nonisothermal, system.

We now give a quantitative version of this argument for an active ideal one-dimensional (1D)
lattice gas (Figure 2). Left (L) and right (R) boxes of RTPs, having different swim speeds (vL, vR)
and tumble rates (aL, aR), are put in contact. (Within each box, left- and right-moving particles
have the same speed and tumble rate; the notation differs from that found inReference 38.) Calling
r6
i the mean number of particles on site i going to the right (þ) and to the left (�), we have

"i�1 _rþi ¼vL=R
�
rþi�1 � rþi

�þ aL=R
��rþi þ r�i

�	
2, 11:

"i��1 _r�i ¼vL=R
�
r�iþ1 � r�i

�þ aL=R
�
rþi � r�i

�	
2, 12:
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_rþ1 ¼ vLr
þ
�1 � vRr

þ
1 þ aR

��rþ1 þ r�1
�	

2, 13:

and

_r��1 ¼ vRr
�
1 � vLr

�
�1 þ aL

�
rþ�1 � r��1

�	
2. 14:

In steady state, Equations 11 and 12 impose a constant density within each bulk:

"i� 1 rþ�i ¼ r��i [ rL; r�i ¼ rþi [ rR. 15:

Theboundary relations inEquations 13 and 14 then require vLrL¼ vRrR to balance the kinetic fluxes
from the two reservoirs across the interface. This is a simple instance of themore general result r } 1/v
and also explains qualitatively why spatial variations of t have no effect on steady states: t enters the
expression for the diffusivity but drops out when balancing the local fluxes between our two com-
partments. Note, however, that for RTPswith finite tumble duration,D, Equations 6 and 7 hold up to
the rescaling (v,a)→ (v,a)/(1þ aD) (38). The tumbling ratea (and thus t) then enters the steady-state
distribution because it controls the kinetic flux through the rescaling of the velocity. This finite-D
correction could easily be retained but is ignored for simplicity from now on.

3. MANY-BODY PHYSICS

3.1. Dynamics of the Collective Density

Above we addressed a single particle whose probability density evolves deterministically via the
diffusion-drift equations (Equations 6–9). Because these equations also describe a PBP in an
external potential, they are already familiar, and one can use standard and well-tested procedures
(45) to derive from them a stochastic equation of motion for the coarse-grained density r(r) in
a system of many particles. Note that this r is not a probability density (which would evolve

deterministically) but a coarse-grained version of themicroscopic density operator
XN

i¼1
dðr� riÞ,

which obeys a stochastic equation ofmotion.We state the result first for a collection of noninteracting
active particles in an environment of spatially varying motility parameters, v(r) and t(r) (38):

4321–1–2–3–4–5

vL vL vR vR

vL vL vR vR

αL

2
αR

2

Left reservoir Right reservoir

Figure 2

Schematic representation of two reservoirs (left and right) containing ideal lattice gases of run-and-tumble
particles in d¼ 1with different speeds, VL and VR. The kinetic flux across the boundary is vLrþ1

�1 � vRr�1 , where
r6
i is themean number of particlesmoving to the right or to the left on site i. (These are shown separately in the

figure for the sake of clarity.) In steady state, where densities are uniform and symmetric within each reservoir,
the vanishing of the kinetic flux imposes rLvL ¼ rRvR.
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_r ¼ �=.J 16:

and

J ¼ �D=r þ Vr þ
ffiffiffiffiffiffiffiffiffiffi
2Dr

p
L. 17:

Here D(r) and V(r) obey Equations 8 and 9, and L is a vector-valued unit white noise. The
multiplicative noise term is to be read in the It�o sense, which means that Equation 17 is viewed as
the small-timestep limit of a discrete process inwhich the noise term is evaluated at the start of each
timestep (46). Another possible choice would be the Stratonovich convention, which requires the
noise to be evaluated midway during the timestep. However, switching to this convention
introduces an additional drift velocity into Equation 9, which is present even for passive particles
(46), making it harder to identify the specific effects of activity. It alsomakes it harder to generalize
to the interacting case, which is our next task.

3.2. Density-Dependent Motility Parameters

Once the It�o choice is made, Equations 16 and 17 can painlessly be generalized to the case where
the dependence of diffusivity D and drift velocity V on spatial position r is in fact caused by
a dependence of the motility parameters v and t on the density of particles in that neighborhood
(38). Of course, this is not the only type of interaction possible: For instance, hard-core collisions
between ABPs are not directly of this form, but can be partly approximated by it, as we shall see in
Section 5.2 below.However, bacteria can respond to their local density via a biochemical pathway
[quorum sensing (32)], and in some cases this response is linked directly to their motility (47, 48).
Hence, it is natural to address the case in which the motility parameters directly depend on the
coarse-grained density r. Given this choice of interaction, we can write

D
�½r�, r� ¼ v

�½r�, r�2t�½r�, r�
d

18:

and

V
�½r�, r�

D
�½r�, r� ¼ �=ln v

�½r�, r�, 19:

where the new argument [r] denotes an arbitrary functional dependence on the coarse-grained
density field r(r), and we have again set Dt ¼ 0, thereby neglecting the direct Brownian contri-
bution to translational diffusivity. Equation 16 and Equation 17 still apply, except that an ad-

ditional term r

�
=

d

drðrÞD
�½r�, r�� appears on the right side of Equation 17. In fact, this term

vanishes inmost cases of interest, with one exception being the asymmetric latticemodel described
in Section 5.1 below (38), and we do not discuss it further.

To see whether this description of interacting motile particles is still equivalent to a set of
PBPs in thermal equilibrium, we next consider the Fokker-Planck equation for the many-body
probability P[r], which reads

_P½r� ¼ �
Z
dr
�
=

d

drðrÞ
�"

Vr �D=r �Dr

�
=

d

drðrÞ
�#

P½r�. 20:
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Wemaynowdefine an equilibrium-like steady state,Peq[r], as one in which the probability current
vanishes:

J �
Peq

� ¼
"
Vr �D=r �Dr

�
=

d

drðrÞ
�#

P
�
req

� ¼ 0. 21:

Using the ansatz Peq ¼ exp[�bF ], one sees by inspection of Equation 21 that such a flux-free
solution exists so long as the following integrability condition is obeyed:

V
�½r�, r�

D
�½r�, r� ¼ �b=

dF ex

dr
, 22:

which can be rewritten as

kBT ln v
�½r�, r�[mex

�½r�, r� ¼ dF ex

dr
. 23:

This condition requires that the functional defined here as mex([r], r) is itself the derivative of
some other functional F ex, which amounts to demanding that the system dynamics satisfy DB at
the level of the coarse-grained density field r. There is no general reason for this to hold.

Nonetheless, if it does hold, our system of interacting active particles is dynamically equivalent,
at large length- and timescales, to a PBP fluid with the free energy functional

F½r� ¼ kBT
Z

rðln r � 1Þdrþ F ex½r�. 24:

Here, the integral can be viewed as an ideal entropy contribution, and the excess part would, for
real PBPs, be caused by some interaction Hamiltonian. For our active particles, it stems instead
from the density-dependent swim speed v([r], r). Just as in the one-body problem, any density
dependence of the angular relaxation time t([r], r) plays no role in F .

Note that the zero-flux condition (Equation 21), which decides the existence of a steady-state
mapping onto a thermal equilibrium system, cannot be derived without the proper noise terms in
Equation 17. (These set the prefactor of the second functional derivative in Equation 20 toD3 r

and hence lead to the condition in Equation 23.) Unless drift and noise terms are handled on equal
terms, for instance when addressing higher-order gradient terms of the type discussed in Section 7,
one cannot be sure whether such a mapping still exists or not (49).

When it exists,F [r] specifies not just the most probable configuration of r(r) but also its entire
spectrum of steady-state fluctuations, thus taking us far beyond the linear stability analysis
sketched in the introduction. But, as stated already, one cannot generally expect Equation 23 to
hold true. When it doesn’t, one can still formally define some functionalF ¼�kBT ln Pstat[r], but
this no longer governs a flux-free solution of Equation 20 and is thus not equivalent to any choice
of equilibrium dynamics. This restates the fact that coarse-graining cannot create a general
equivalence between active systems, which rely on microscopically irreversible dynamics, and
passive systems, which obey DB at all scales. Suppose, however, that r is slowly varying in space
and that the swim speed v([r], r) depends isotropically on the values of rwithin some finite range of
the point r. Under these conditions a Taylor expansion gives

vð½r�, rÞ ¼ v½rðrÞ� þ O�
=2r

�
25:

(33). Suppressing the gradient contribution is equivalent to assuming a perfectly local functional
dependence of swim speedondensity: v¼ v(r). Asdetailed below, it is easy to confirm thatF ex, and
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hence themapping onto equilibrium, does exist in this case (38). This is a limiting approximation,
whose physicality is not guaranteed. However, much can be gained by assuming the local ap-
proximation, finding the consequences, and then returning to address gradient effects. The lit-
erature has followed this path, and we do so here.1

4. THE LOCAL APPROXIMATION

4.1. Without Passive Brownian Diffusion Dt 5 0

In the local approximation, v(r) ¼ v[r(r)], as just described. The nonequilibrium excess chemical
potential mex ¼ kBTlnv then always obeys the integrability condition (Equation 23), with

F exðrÞ ¼
Z r

0
ln vðsÞds. The system is equivalent to interacting PBPs with

F½r� ¼
Z
f ðrÞdr 26:

and

bf ðrÞ ¼ rðln r � 1Þ þ
Z r

0
ln vðsÞds. 27:

Because all steady-state statistics depend only on the productbF [r], it should by now be clear that
we can set b ¼ 1 without loss of generality, and we do this silently from now on. The chemical
potential may then be written as a sum of ideal and excess parts:

m ¼ dF
drðrÞ ¼ mid þ mex ¼ ln rðrÞ þ ln v½rðrÞ�. 28:

It should be noted that, within the premise of interactions whose sole effect is to make v and t

depend on density, Equations 26–28 involve no approximation beyond the locality of v(r) and the
validity of the coarse-graining leading to the mesoscopic Equations 16–20.

Nonetheless, we first proceed within the context of a (Landau-like) mean-field theory in which

spatial fluctuations are ignored, performing a global minimization of the function F ¼
X

i
Vif ðriÞ

at constant volume,
X

i
Vi, and constant particle number,

X
i
Viri: Phase separation then arises

whenever more than one Vi is nonzero. An important caveat is that this makes sense only if the
interfacial tension between phases is nonvanishing, because this tension alone prevents the
macroscopic phases from fragmenting into uncountably many small domains at the (nominally)
coexisting densities. This means that the global minimization, although not making direct use of
gradient terms, tacitly assumes that these terms exist and do not violate Equation 23. We proceed
on that basis but revisit this issue in Section 7.

For two-phase coexistence, the global minimization proceeds just as in equilibrium: One first
searches for concavities in the function f(r) and where these exist performs a common-tangent
construction. This construction finds unique coexisting densities r1 and r2, such that the chemical
potentialsm¼ df/dr in the two phases are equal and their thermodynamic pressures p¼mr� f are
also equal. The first of these equalities requires equal slopes for the tangents to f(r) at the coexisting
densities, whereas the second requires equal intercepts: Thus, a single tangent connects both

1Should this route not be to the reader’s taste, she may skip forward to Section 7.1 and then return. That section offers the
simplest (phenomenological) treatment of nonlocality, within which all the main results of Section 4 still apply.
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coexistence densities (Figure 3). The condition for concavity, f 00(r)<0 (where primes nowdenote r
derivatives), implies v0(r) < �v/r, which is exactly the condition for linear instability found in
Equation 3. The set of such negative-curvature points defines the spinodal region, a familiar
concept in mean-field thermodynamics (50). The common-tangent construction also encloses
zoneswhere f has positive curvature; here, phase separation occurs by nucleation and growth (51).

This approach thus shows how self-propelled particles with no attractions but a decreasing
v(r) can be mapped at a (Landau-like) mean-field level of global minimization to a system of
attractive PBPs undergoing equilibrium liquid-gas phase separation.

4.2. The Effect of Thermal Diffusivity: Dt � 0

Wehave just outlined the theory of motility-induced phase separation (MIPS), as first presented in
Reference38 for RTPs and later extended inReference 44 to include continuous angular diffusion,
thereby also embracing ABPs. For simplicity, we neglected the Brownian translational contri-
bution Dt; restoring this (as discussed after Equation 10 above) gives the modified integrability
condition

tv=v
v2t þ dDt

¼ =
d

dr
F ex. 29:

For a strictly local v[r(r)], a sufficient condition for F ex still to exist is that only the speed (not t or
Dt) depends on the density. One then finds an excess free energy

F ex ¼
Z

fex
�
rðrÞ�dr, with fexðrÞ ¼

Z r1
2
ln
h
v2ðsÞt þ dDt

i
ds. 30:

Again, the nonconvexity of the free energy density f(r)¼ r(ln r � 1)þ fex(r) signals the possibility
of MIPS; the spinodal region corresponds to
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Figure 3

Construction of the effective free energy density f(r) in the mapping from active particles with strictly local motility interactions
onto a fluid of interacting Brownian particles. (a) If v(r) decreases rapidly enough the resulting f(r) has a (b) negative curvature (spinodal)
region with the global equilibrium state comprising a coexistence of the binodal densities r1, r2. The condition for instability
(f 00 < 0) translates into the geometric construction shown on v(r): Draw a line from the origin to any point on the curve and reflect
this line in the vertical axis. If the slope of v(r) is less than the reflected line, the system is unstable. The figures correspond to v(r)
given by Equation 32, with Dt ’ 1.4 10�3, v0 ¼ 1, v1 ¼ 0.1, w ¼ 4, t ¼ 2, d ¼ 2, and 2r0 ¼ rs1 þ rs2.
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f 00ðrÞ < 0 5 v2t
�
1þ r

v0

v

�
< �dDt. 31:

ForDt¼0, one recovers Equation3,whereas a finiteDtmakes the systemmore stable by tending to
smooth out density fluctuations. In particular, when v→ 0, the modified condition Equation 31 is
never fulfilled if Dt is finite. For any given v(r), there is thus a minimal ratio v2t/dDt of active to
thermal diffusivities below which MIPS never occurs.

As an example, let us consider a propulsion speed decaying exponentially from a value v0 to
a smaller one v1, on some characteristic density scale, w:

vðrÞ2 ¼ v20 þ


v21 � v20

�

1� e�r=w

�
. 32:

With this choice, fexðrÞ ¼ r ln
h
v21t þ dDt

i.
2� w

h
Li2ð�AÞ � Li2ð�Ae�r=wÞ

i.
2 where Li2(z) is the

polylogarithm function of order 2 andA ¼ �
v20t � v21t

�
=
�
v21t þ dDt

�
. The term in fex that is linear

in r plays no role in stability or phase equilibria. The spinodals [f 00(r) ¼ 0] are roots of l exp l ¼
�2e2/A, where l[ 2 � r/w, which exist only when A� 2e3. For a given v(r), this sets a maximal
value for Dt,

Dc
t ¼

v20t � v21t


1þ 2e3

�
2de3

, 33:

at which MIPS ends, presumably at a critical point. Conversely, for given v1 and Dt, there is
a minimum bare swim speed vc0 for MIPS, obeying

vc0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21ð1þ 2e3Þ þ 2e3

Dtd
t

r
. 34:

The spinodal and coexistence lines for v(r) obeying Equation 32 are shown in Figure 4, whereas
Figure 5 gives those for an even simpler form of v(r), which features below (see Equation 39):

vðrÞ ¼ v0ð1� r=r�Þ. 35:

Again the excess free energy can be computed exactly,2 as can the spinodals:

r6
s ¼ r�



36

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8e

p �.
4, 36:

where e ¼ dDt=v20t is a ratio of passive and active diffusivities.MIPS thus exists onlywhen e< 1/8,
i.e.,

Dt < Dc
t [

v20t
8d

or v0 � vc0 [

ffiffiffiffiffiffiffiffiffiffiffi
8dDt

t

r
. 37:

Note that Equation 35 for v(r), and also the resulting phase diagrams, is only meaningful for
r � r�, beyond which the system reverts to a passive state (vertical lines in Figure 5).

The study of the spinodals and the limit of existence ofMIPS belowa critical velocity can also be
derived through a linear stability analysis of continuummean-field equations (36, 52). Predicting
the binodals, however, requires the derivation of the effective free energy.

2Specifically, fex ¼ r

2

h
ln
�
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5. NUMERICAL EVIDENCE FORMOTILITY-INDUCED PHASE SEPARATION

5.1. Phase Separation in Run-and-Tumble Particles

Clear numerical evidence forMIPS within the region where v0 < �v/r (Equation 3) was presented
in Reference 38 for simulations of RTPs in d ¼ 1 dimension. In these simulations, a fixed coarse-
graining length is used to define the density r upon which v then depends locally. The coexist-
ing densities were compatible, within numerical error, with those set by the common-tangent
construction.

It is known that for the equivalent system of PBPs with attractions, phase separation cannot
proceed to completion in d¼ 1 because domain walls have a finite energy cost E. The equilibrium
state thus has a domain-wall density } exp[�bE]. Although this precludes long-range order, for
largeE the phase-separated state (containing sparse domain walls between patches of r1 and r2) is
unambiguously different in appearance from the single-phase regime inwhich there are only small
density fluctuations about an average value. The 1D simulations found in Reference 38 observed
phase separation in this restricted sense; domainwallswere formed and slowly becamemore dilute
through a coalescence process.

Microscopic simulations of RTPs with crowding interactions were subsequently presented in
d ¼ 1 and d ¼ 2 using a fast lattice-based discretization (33). In d ¼ 1, the hopping rate of right-
going (þ) and left-going (�) particles on site i can be chosen as

v6
�
i, ½r�� ¼ v0

�
1� ~ri

rM

�
, with ~ri ¼

X
j

K6
ij rj. 38:

Here, rj is the number of particles on site j, rM controls the maximal number of particles on each
site, and Kij is a kernel describing how particles on site i interact with those on site j. When Kij is
a smooth symmetric kernel, particles are equally sensitive to the particles in front of themor behind
them. (This seems appropriate for chemically mediated interactions.) Conversely, for asymmetric
kernels the particles are more sensitive to those in front of them; the limiting case K6

ij ¼ di61,j

corresponds to a partial exclusion process, which is a good lattice-based model of steric crowding
(53, 54).
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Liquid-gas phase diagrams ofmotility-induced phase separation for v(r) as defined in Equation 32, with (a) v0¼ 1, v1¼ 0.1, w¼ 4, d¼ 2,
and t ¼ 1 and (b) Dt ¼ 0.25, v1 ¼ 0.25, w ¼ 4, d ¼ 2, and t ¼ 1. Red and blue lines correspond to binodal and spinodal curves.
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Afluctuating hydrodynamicdescription akin toEquations 16 and 17 can be derived to account
for the large-scale behavior of this system (33). At this level of description, the system is equivalent
to an equilibrium systemof passive particleswith attractive interactions. Indeed, the system admits
a free energy functional F , which predicts MIPS exactly as presented in Section 4 (33). Homo-
geneous profiles are predicted to be linearly unstable only at rather high densities (r > rM/2), but
nucleation can occur at much lower ones (33). In d¼ 1, MIPS again creates alternating sequences
of high- and low-density domains, separated by domain walls. (The limiting case rM ¼ 1 with
K6

ij ¼ di61,j has been studied in detail in Reference 55.)
Equation 38 can easily be generalized to higher dimensions, and we now turn to the 2D case.

For symmetric kernels Kij, in the limit of large rM, the mean-field free energy analysis predicts
quantitatively both the occurrence of complete phase separation and the values of the coexisting
densities (33).When rM is finite, MIPS still occurs, but [as is common for partial exclusionmodels
(54)] the coexisting densities are not those predicted by mean-field theory. The case of an
asymmetric kernel, whichmight be thought tomimic steric exclusion on a lattice more closely, has
a richer phenomenology.MIPS occurs, but the coexisting densities are incorrectly predicted by the
common-tangent construction even when mean-field theory might be expected to hold (rM → 1).
For instance, the gas density in the phase coexistence region, given by the lower binodal, goes to
zero as v0 → 1 (33), whereas the theory of Section 4 predicts a nonvanishing saturation vapor
density in this limit.

Furthermore, for the asymmetric kernelK6
ij ¼ di61,j, MIPS is only seen for large enough values

of ‘ ¼ v0t; when the value is less than approximately four times the repulsion radius (four lattice
sites), homogeneous profiles are instead stable. This is related to, but distinct from, the minimum-
speed requirement for off-latticeMIPS found in Section 4. In the lattice models, the coarse-grained
theory of MIPS fails to capture the minimal run-length, not because Dt is neglected but because
of the short-scale breakdown of the diffusive approximation itself (Equations 16 and 17). By
formulating a mean-field theory directly at the microscopic lattice level (33), a minimum speed
criterion is recovered.This breakdownofMIPSwas seen for general anisotropic kernels,K, but not
for rotationally symmetric ones. Because these kernels differ only at the level of gradient terms so
far neglected, this points to amore important role for such terms than in equilibriumproblems (see
Section 7).
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In all 2D systems where MIPS is seen, an initially homogeneous profile in the spinodal region
gives way to a droplet domainmorphologywhose length scale,L(t), coarsens with a power law in
time: L(t) ∼ t1/3 (see Figure 6). This is the classically expected result for diffusive coarsening,
without coupling to a momentum-conserving fluid, in a passively phase-separating system (51).
The exponent can be explained by considering the diffusive fluxdown chemical potential gradients
set by the Laplace pressure differences across curved interfaces of radius L and fixed interfacial
tension. Because this tension vanishes within the local approximation, we defer further discussion
to Section 7.

5.2. Phase Separation in Active Brownian Particles

Convincing evidence for MIPS is also seen in numerical studies on ABPs for a variety of hard-
sphere potentials (35, 36, 56–58) as well as for soft spheres (34, 52). Apart from the difference
in rotational diffusion dynamics, which is inessential (44), these simulations crucially differ from
those on RTPs in which a density-dependent swim speed is directly encoded into the dynamics.
Simulations onABPs instead generally address hard-core swimming particles, whose v([r], r) is not
encoded a priori into the equations of motion (an exception is found in Reference 37). Instead,
collisions can be expected to slow down the particles at high density. One can then define an
emergent v as the average of the true particle velocity projected along the propulsion direction.
Monitoring this within bulk systems of uniform density, r, one finds v(r) decreases almost linearly
with density (34, 35, 56, 57):

vðrÞ ¼ v0½1� r=r��, 39:

where v0 is the dilute swim speed, and r� is the extrapolated point at which v vanishes altogether.
The latter is barely distinguishable from the close packing threshold in both d¼ 2 and d¼ 3 (34, 56–
58), although this threshold is influenced by activity (58, 59) and also by slight softness of the particles
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(a) A two-dimensional run-and-tumble system undergoing motility-induced phase separation. Simulated via a lattice model
(1,000 3 1,000 sites), as detailed in Reference 33, with local density (particles per site) color-coded on the scale at right. (b) Log-log
plot of domain scale L(t) for droplet coarsening within the spinodal region. Solid lines have a slope of 1/3. Results for three
different kernels relating v to the density are shown for 200 3 200 site lattices. Adapted from Reference 33.
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in the simulations. Equation 39 is not only confirmed to high accuracy in simulations but also
predicted by various types of kinetic theory (34, 36, 52, 56). Indeed, its linear form is easily deduced
from a binary collision picture in which a particle stalls for a fixed time interval during each collision.

In contrast to the observed linear behavior of v(r), most simulations of spherical ABPs allow no
dependence whatsoever of t, the rotational relaxation time, on density, r. This is because col-
lisions, caused by pairwise central forces between particles, cannot exert torques and so cannot
rotate the swimming direction. Hence t�1 ¼ (d � 1)Dr at all densities. The ABP simulations then
confirm that the particle diffusion constant obeys D(r) ¼ v(r)2t/d þ Dt as expected, with v(r)
obeying Equation 39 (34–36, 56, 57).

To test the relevance of theMIPS theory found in Section 4.1 for an ABP system, one must note
that the density cannot exceed r�, the close packed value. This stems from hard sphere com-
pressibility constraints that are not encoded in v(r): At high density v is almost zero, and F for
Equation 27 reverts to that of a highly compressible, passive ideal gas. Thus, the mean-field free

energy density f ðrÞ ¼ rðln r � 1Þ þ
Z r

0
ln vðsÞds has to be supplemented by an additional con-

straint that imposes r � r� (56). Once this is done, steady states and coarsening dynamics seen in
ABP simulations are both in qualitative agreement with the theory of MIPS (56, 57). However,
some important physics is missing, in that the phase equilibrium predicted from Equation 39 is
independent of the Péclet number, here defined as

Pe ¼ 3v0t
s

, 40:

wheres is the particle diameter. NoMIPS is seen numerically for Pe< Pec, with Pec’ 55 in d¼ 2
and’ 125 in d¼ 3; instead, the predicted two-phase region closes off at Pe¼ Pec, probably ending
in a critical point (34, 35, 56, 57, 61).On the contrary, theMIPS theory found in Section 4.1 always
predicts a spinodal decomposition for r > r�/2.

Because t arises by thermal diffusion (in ABPs), the Péclet number not only governs the ratio of
the persistence length ‘¼ v0t of a dilute swimmer to its diameters but also is of order v0=vc0, where
vc0 is the speed threshold for MIPS set by translational diffusion (see Equation 37). Thus, in
experimental ABPs, Pe controls two distinct mechanisms for loss of MIPS: translational thermal
diffusion (described in Section 4.2) and a small persistence-length-to-diameter ratio (discussed, for
lattice models, in Section 5.1). In simulations, however, these can be distinguished by artificially
settingDt ¼ 0. The theory of MIPS laid out in Section 4.1 ignores both those effects; it is thus not
surprising that this limiting theory does not capture the observed disappearance of MIPS in ABPs
as Pe is reduced.

The existence of a critical Péclet number Pec is consistent with various approaches based on the
kinetic theory of gases, which can be adapted to ABPs (7, 34–36, 49, 52, 56, 60, 61). These
approaches yield continuum equations whose linear stability analysis can be used to locate
spinodals (34, 36, 52). The results resemble the phase diagrams predicted by the theory of MIPS
presented in Section 4.2, which allowed for thermal translational diffusion (Dt � 0). However,
whether a finiteDt is indeed what suppresses phase separation at small Pe is questionable. Given
that Pe∼ v=vc0, MIPS should then persist down to Pe of order unity (see Figure 5), thereby under-
predicting the reported Pec forMIPS by a factor of 50 ormore. This is strong evidence that nonzero
Dt is not solely responsible for the loss of MIPS at low Pe in ABPs. Reinforcing this is the ob-
servation that simulations in which Dt is set to zero (34, 52) give very similar results to those in
which Dt takes the thermal value set by matching the Brownian mechanism for angular rotation
(35, 56, 57).
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One interesting alternative avenue is to use the rate of arrival and departure of ABPs at the
surface of a dense domain to compute kinetically the vapor density rv (35, 60). This approach
predicts the existence of a critical Pe. The arrival rate of particles (per unit area) is of order rvv0,
whereas the departure rate is kDr/s, which involves Dr because arriving particles must rotate
through a finite angle before they can leave. Here, k is a dimensionless (fitting) factor that allows
for the fact that particles tend to leave in bursts rather than individually. Equating rates gives an
expression for the fraction fc(r, Pe) of particles in clusters; contours of this function vary as Pe�1,
and the limit fc ¼ 0þ closely tracks the simulated binodal up to Pe ’ 100. However, this means
fc(r, Pe)→ 1 for all r as Pe→1, so there is no connection in that limit with the phase-separation
theory of MIPS that assumes a smooth v(r). A partial reconciliation between the two approaches
could be, following Reference 52, to make r� in Equation 39 an explicit function of Pe.

In summary, the “thermodynamic” approach to MIPS in ABPs [based on assuming a smooth
v(r)] can be qualitatively improved by allowing for a finite rotational Péclet number, as in Section
4.2. It then yields spinodals in agreement with kinetic theory arguments (36, 52). This is, however,
not the main correction needed to account for ABP simulations, which instead stems from the
discreteness of the collisional dynamics, as for the lattice model found in Section 5.1. This can be
partially understood using a kinetic approach to cluster growth (35, 61) but, so far, this has not
been married to the thermodynamic picture, and we do not yet have a complete theory for the
critical Péclet number Pec, below which MIPS disappears.

The region close to the critical point and any universal exponents associatedwith it also remain
to be explored (theoretically or numerically) in both d ¼ 2 and d ¼ 3. Continuum theories
(discussed in Section 7.2 below) could be useful here, as the direct simulations of active particles
already require extremely large systems [up to 40 million particles (57)] to resolve even the
noncritical aspects of MIPS that prevail at a high Péclet number.

Such aspects include the coarsening law for the domain size L(t) after a quench into the phase-
separated regime. In two dimensions, this shows an exponent L(t) ∼ ta, with 0.25� a� 0.28 (35,
56, 57, 61). This is somewhat below the value of 1/3 expected for passive coarsening (and which
was also reported inReference 33 forRTPs in 2Dand inReference 57 forABPs in 3D).However, it
is not yet clear that the difference is numerically significant; it may instead reflect a slow transient
approach to an asymptotic 1/3 power (62) (see Section 7.2 below). All in all, the numerical results
on ABPs (35, 56, 57, 61) and RTPs (33) for the coarsening exponents call for complementary
studies on larger system sizes. Furthermore, even if the coarsening behavior of ABPs broadly
resembles that of a passive system, this is not true when one looks in more detail. For instance, in
d ¼ 2 (56) and also in d ¼ 3 (58), one sees lava-lamp type dynamics in which even fast local
fluctuations within a well-separated domain manifestly break time-reversal symmetry. This
contrasts with the passive case, in which irreversible dynamics is visible only at scales above L(t).

6. EXPERIMENTAL IMPLICATIONS

6.1. Experiments on Bacteria

In microbiological studies, formation of dense clusters from a uniform initial population of motile
bacterial cells is often encountered (and usually called aggregation rather than phase separation).
So far, though, a quantitative link between this behavior and MIPS has not been established.

The downregulation of swimming activity at high density is fundamental to the formation
of biofilms (16). A biofilm comprises a region with a high local density of bacteria that are
immobilized on a wall or similar support. Biofilms are a widespread problem in health and
technology, arising, for instance, in bacterial fouling of water pipes (14) and lethal infections in
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patients with cardiac valve implants (15). Biofilm formation generally involves chemical com-
munication between individual cells, but the effect of this may still be representable in part as
a density-dependent swim speed, v(r). Alternatively, it is possible to connect the quorum sensing
apparatus of bacteria to their self-propulsionmechanism, thereby effectively creating a decreasing
v(r) directly by genetic engineering (47, 48). MIPS might also occur by various nonbiochemical
means, such as simple crowding, hydrodynamically mediated surface accumulation (63), or se-
cretion of viscosity-enhancing polymers (64).

TheMIPS scenario also impacts on the study of pattern formation in bacterial colonies started
on an agar plate from a localized source. These were observed before the discovery of quorum
sensing [which is a local response to the concentration of a secreted chemical (32)] and attributed
instead to long-range chemotactic interactions, which modulate the persistence time t in an
orientation-dependent manner (65–68). As shown in Reference 69 and discussed in Reference 70,
a simpler explanation can be found by coupling a theory of MIPS to a logistic growth law. The
latter describes the tendency of bacterial populations to move toward a stable target density at
which cell death and cell division are in balance. If this target density lies within the two-phase
region of the MIPS, then coexisting uniform phases are unstable to population change, whereas
a uniform state at the target density is unstable to phase separation. The result is a kind of
microphase separation that leads to patterns similar to those observed experimentally in growing
colonies (69).

6.2. Experiments on Synthetic Swimmers

A variety of self-phoretic colloid particles undergo self-propulsion in the presence of a fuel supply
suchasdissolvedhydrogenperoxide (71, 72) or another source of stored internal energy (73, 74). In
most cases, the observed system isquasi-2Dbecause such swimmers tend toaccumulate at container
walls. [Also, most of the swimming mechanisms used would not be sustainable for long in d ¼ 3
without running out of fuel (75).] Such studies often report clustering (6–8), perhaps caused in part
by attractive interactions. Similar clusters are seen in bacterial systems with colloidal attractions
inducedbyapolymer (76); in the self-phoretic context, the attractions could insteadarise kinetically
through cross-particle responses to reagent and product gradients (6, 8, 77). At higher densities,
bulk phase separation has been reported and attributed to a MIPS-like mechanism (7).

Even if attractive interactions are also present, it seems plausible that MIPS-related physics is
implicated in the observation of stable cluster phases (6, 8, 76). In these cases, partial phase
separation occurs but seemingly gets arrested after the formation of clumps of modest size. Such
clusters canbe interpreted inkinetic terms as the consequence of themutual stalling of twoparticles
in a head-on collision, which then present an obstacle that causes other particles to stall when they
hit it (35). But this is also the kinetic interpretation of theMIPS mechanism: As such, it is far from
obvious why this process should ever be self-limiting. (Recall that in passive phase separation,
without long-range repulsive interactions, two small phase-separated droplets can always lower
their interfacial energy by merging.) One idea is that weak activity could oppose, rather than
enhance, a passive tendency to phase separate, creating motion that breaks droplets apart (78).
Indeed, this effect is already seen in purely repulsive ABPs and is one of the reasons why very large
system sizes are needed to reliably distinguish bulk phase separation from steady-state density
fluctuations at intermediate length scales (56).

In summary, there is some evidence for MIPS in synthetic colloidal swimmers, although much
more would be welcome. In any case there is an unsolved mystery concerning the apparently
widespread formation of finite clusters that, unlike their counterparts in passive systems, fail to
achieve full phase separation.
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One possible explanation for the absence of fully fledged MIPS in ABP experiments involves
hydrodynamic interactions. At low densities, these cause flocking and structure formation (79,
80), but at high density, hydrodynamic interactions tend to suppressMIPS (81, 82). This has been
explained as follows. To model collisional slowing down with a theory in which v depends on
a coarse-grained density, r, one arguably needs particles to undergo several collisions before
changing direction so that the density is sampled, and an average v canbedefined, at scales below ‘.
This ceases to hold at high density because hydrodynamic torques cause particles to undergo a large
rotation each time they meet (81). Although certainly important in d ¼ 2 (81, 82), the strength of
this effect in d ¼ 3 is so far unknown. In three dimensions, hydrodynamic interactions could be
responsible for the arrest of coarsening or, if we are unlucky, they could destroy MIPS entirely.

7. BEYOND THE LOCAL APPROXIMATION

In this section, we review more recent work that takes the theoretical picture of MIPS beyond the
local approximation. This step is essential to fully understand the dynamics of phase separation,
which is driven, in passive systems, by interfacial tension. As mentioned already, within the local
approximation there are no gradient terms in the free energy functional (given by Equation 26 and
Equation 27), meaning that the interfacial tension of the equivalent passive system is strictly zero
(51). Hence, the dynamics of MIPS entirely depends on terms so far neglected.

7.1. Phenomenological Approach

A natural phenomenological ansatz, which is also suggested by some types of simplified kinetic
theory(49), is to add a square gradient termwith constant coefficientk to the free energy functional
of the equivalent passive system:

F ¼
Z �

f ðrÞ þ k

2
ð=rÞ2


ddr, 41:

where f(r) obeys Equation 27. Hence,

m ¼ dF=dr ¼ ln r þ ln vðrÞ � k=2r. 42:

This maintains the mapping between MIPS and passive phase separation (38), and leads to the
well-known Cahn-Hilliard-Cook equation (51):

_r ¼ �= :J 43:

and

J ¼ �M=mþ
ffiffiffiffiffiffiffiffi
2M

p
L, 44:

whereM¼Dr is called the collective diffusivity. This approach has the great benefit of simplicity.
In combination with a logistic population growth, it was used successfully in Reference 69 to
address patterning in bacterial colonies. It also allows a large body of knowledge on the passive
case, e.g., concerning critical behavior, to be adopted en masse.

7.2. Continuum Model: Nonintegrable Gradient Terms

A more general study requires a systematic gradient expansion of which the local approximation is
the 0th-order term. In this context, there is no reason to expect the corrections to obey the integrability
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condition (Equation 23), as noted in Reference 38. Accordingly, one should expect the mapping
between MIPS and passive phase separation to break down at this level. The simplest approach
(55) is to ignore any gradient contributions arising from the nonlocality of M(r) ¼ D([r], r)r
within Equation 44 and study systematically those arising from the nonequilibrium chemical
potential,m¼midþmex.Here,mex is still defined via Equation23asmex(r)[ ln v([r], r), but this can
no longer in general be written as a functional derivative, dF ex/dr. In contrast to this, a nonlocal
diffusivity M does not destroy integrability and, unless something else does, has little effect on
kinetics [with a few exceptions (84)].

Focusing therefore on mex, the approach found in Reference 56 is to assume

mexðrÞ ¼ ln v½r̂ðrÞ�, 45:

where r̂ðrÞ is a smeared density found by convolution of r with an isotropic local kernel whose
range is comparable to thepersistence length ‘¼ v(r)t. This is the length scale onwhichoneparticle
samples the density of its neighbors before changing orientation. Importantly, this range is itself
density-dependent, at least for theABPs onwhichwe focus here.When r is slowly varying,we have
r̂ ¼ r þ g2=2r, with g ¼ g0v(r)t and g0 of order unity. Further expanding Equation 45 in
gradients then gives

m ¼ ln r þ ln vðrÞ � kðrÞ=2r, 46:

where kðrÞ ¼ �g2
0t

2vðrÞv0ðrÞ. Given that k is not constant, this form of m is nonintegrable. One
can however define a nearest integrable model as

F ¼
Z �

f ðrÞ þ kðrÞ
2

ð=rÞ2

ddr, 47:

for which the chemical potential instead reads

mDB ¼ ln r þ ln vðrÞ � kðrÞ=2r � k0ðrÞ
2

ð=rÞ2. 48:

The last term is an inevitable partner to a density-dependent k coefficient in any system that obeys
the principle of DB. Its absence forMIPS has interesting consequences (56, 62) that we describe in
the next section.

Equations 43, 44, and 46 comprise an explicit continuummodel forMIPS whose only apparent
input (modulo the order unity factor g0) is the chosen function v(r). For ABPs, this is available from
Equation39but, as previouslymentioned, a correction termmust also be added to f(r) to prevent the
density surpassing the close-packed limit r�. The resulting theory can be compared with both direct
ABP simulations and the nearest integrable model (comprising Equations 43, 44, and 48). Figure 7
shows L(t) curves for all three cases in d¼ 2,3, with apparent scaling exponents in d¼ 2 somewhat
below the value of 1/3 expected for diffusive coarsening in passive systems (56, 57). However, this
shift is seen for the nearest integrable model, as well as for the active continuum model with DB
violations (56). Suggestively, passive coarsening is known to show an altered exponent in the case
whereM vanishes in the dense phase (83) and so could givemisleading corrections to the asymptotic
scaling when, as in ABPs, the diffusivity is very small there.

More generally, the continuum model using Equation 46 gives a reasonably good account of
domain shapes and dynamics when compared with direct ABP simulations. However, local
fluctuations that violate time-reversal symmetry are under-represented in the continuum model
(56–58), for reasons that are not yet understood. Such fluctuations are prohibited altogether in the
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nearest integrable model. The fact that this prohibition has little effect on L(t) shows these DB-
violating fluctuations to be subdominant, at least in determining the rate of domain growth.

7.3. Anomalous Phase Behavior: Active Model B

A surprising numerical observationmade inReference 56 is that the nonintegrable gradient terms,
although they have little consequence for coarsening dynamics, do affect the densities (r1, r2) of the
coexisting phases. At first sight this is odd because the common-tangent construction makes no
mention of any gradient terms. However, it does implicitly assume thermodynamic equilibrium
and hence DB. There are other instances in physics where nonintegrable gradient terms alter an
equilibrium result that appears not to involve gradients (85, 86).

The corresponding implications forMIPSwere explored inReference 62 using a nonintegrable
generalization of Model B. Model B is a canonical model for diffusive phase separation in passive
systems (87). It introduces an order parameter, f, that is, in this section, not the volume fraction
but a linear transform of the particle density r chosen so that the coexistence densities are at
f1,2 ¼ 61. Model B then writes a free energy functional:

F ¼
Z �

� f2

2
þ f4

4
þ k

2
ð=fÞ2


ddr, 49:

with constant k. The chemical potential is

m ¼ dF=df ¼ �fþ f3 � =2f, 50:

where we have set k ¼ 1 without loss of generality (this amounts to a rescaling of length).
Suppressing any f-dependence of M and choosing time units so that M ¼ 1 gives

_f ¼ �=2mþ = :L. 51:
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Figure 7

(a) Coarsening curves for active Brownian particles, the continuum model violating detailed balance (DB), and (shifted downward for
clarity) the nearest integrable model in d¼ 2. (b) Coarsening curves for active Brownian particles (ABPs), the continuummodel violating
detailed balance, and (shifted downward for clarity) the nearest integrable model in d ¼ 3. Dashed lines correspond to exponents
’ 0.28 in d ¼ 2 and ’ 0.33 in d ¼ 3. Adapted from Reference 57.
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Model B comprises Equations 50 and 51 for the purposes of passive phase separation studies. The
model gives L(t) ∼ t1/3 and captures other dynamical features, such as the nucleation and growth
kinetics in the regions of positive f 00 within the common-tangent binodals.

Active Model B (62) replaces Equation 50 with

m ¼ �fþ f3 � =2fþ lð=fÞ2, 52:

where the l term renders the model nonintegrable and can be viewed as the “distance” to the
nearest integrable model (namely, Passive Model B). This structure can be compared with
Equations 46 and 48 for ABPs. In the latter case, k(r) depends on density but a term in k0(r)(=r)2 is
missing from m. In Active Model B, k ¼ 1 is constant but a term in (=f)2 is added. For simplicity,
this has a constant coefficient l that can have either sign but is negative for ABPs (62). What
matters is the mismatch between the =2f and (=f)2 terms in the expression for m; ActiveModel B
captures this in the simplest possible way.

Themodel is simple enough tomake analytical progress (62). One finds that the common-tangent
construction is replaced by an uncommon tangent in which the two coexisting phases have the same
chemical potentialm but unequal values offm� f,which is, in thermodynamic language, the pressure.
The reason for a shift in the coexistence conditions is, in this language, a discontinuity in pressure
across the interface.Note that=f is not negligible in the interfacial region; indeed, it is responsible (via
k) for the interfacial tension.Thel termsupplements this bya jump in thermodynamicpressure,which
is linear inl for small values but saturates at large values in such away that the coexisting densities can
approach, but not enter, the spinodal region (62). This kind of behavior is not possible in equilibrium
and shows that the DB violations that underlie MIPS cannot be transformed away entirely. None-
theless, the corrections areweaker than theymight have been. For instance, onceDB is violated there is
no guarantee that the densities of coexisting phases stay constant when the overall mean density in
the system is changed. However, the uncommon-tangent construction does preserve this feature.

Active Model B explains the deviation from the common-tangent construction that was seen
for ABP simulations (56). However, a careful study of its coarsening behavior gives predictions
that are qualitatively unaltered from the passive case, although numerically there is once again
evidence of a reduced exponent for the temporal scaling of the domain size L(t). Figure 8 shows
snapshots for various l taken during the coarsening process. Notably, Active Model B does not
exhibit saturation ofL(t) at length scales smaller than the system size and therefore cannot explain
the existence of cluster phases in which coarsening has been reported to arrest at an intermediate
length scale (6–8, 76).

A temptingway forward fromActiveModel B is to construct anActiveModelH, inwhich thef
field is coupled to amomentum-conserving solvent. For passive systems, the path fromModel B to
Model H is clear (87), but this involves a thermodynamic relationship connecting the mechanical
stress to a free energy derivative. This relationship, however, breaks down for activematter. At the
time of writing, Active Model H therefore remains under development (62).

8. CONCLUSION

In this review, we have focused on one specific aspect of active matter physics: the ability of motile
particles, with isotropic interactions whose only or main effect is to slow their propulsion
speed at high density, to undergo phase separation. By ignoring the complexities presented by
many real types of active matter, particularly orientational interactions, workers on this topic
have been able to create a fairly detailed theoretical and numerical understanding of the un-
derlying physics. Large parts of this can be understood in terms of an equivalent system of
passive particles with attractive interactions. This is interesting because it allows a highly
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developed area of near-equilibrium statistical mechanics to be deployed in modeling this
specific class of active systems.

However, the equivalence is not complete, and its breakdown is also interesting. One finds by
simulation that, although much of the behavior familiar in passive phase separation is retained,
some aspects of MIPS irreducibly violate DB at mesoscopic and even macroscopic scales. Indeed,
during phase separation, on amesoscopic scalewithin the growing domains, particle currents arise
that plainly violate time-reversal symmetry on that length scale. For active Brownian particles,
these include lava-lamp-type motion and/or bubbles of the minority phase forming continuously
within a domain and then moving to its surface (57, 58). Macroscopically, one observes modest
but clear deviations in the densities of coexisting phases from those predicted by globally min-
imizing an effective free energy. These features can be reproduced in part by simplified continuum
models in which DB is violated by gradient terms only.

Possibly because they address only active simple fluids (without orientational interactions), the
connection between the theories of MIPS reviewed here and experiment remains somewhat
tenuous at present. However, phenomena resembling phase separation are certainly seen in some
types of experiments on bacteria and on synthetic colloidal swimmers. In the latter case, there
seems to be a generic tendency to form cluster phases in which phase separation arrests at a finite
domain size. It is not yet clear whether this is a modified form of MIPS [perhaps with passive
attractions (61, 78) or rotational difusiophoretic motion (83) causing the arrest] or a modified
form of passive, attraction-driven phase separation [perhaps arrested by activity (76, 78)].

This conundrumhighlights a current deficiency of the theory: So far,wedonot have a framework
to combine MIPS-type effective attractions with standard (i.e., passive) colloidal interactions inside
a single set of equations. The same basic obstacle arises whenever MIPS-like physics is coupled to
other phenomena, such as orientational interactions, mixtures of active and passive particles, and
hydrodynamic forces. Such couplings are also very challenging to address numerically, but one or
more of them are present in most experimental cases. In the absence of decisive experimental evi-
dence forMIPS despite extensive numerical evidence, it may yet turn out that, as far as experimental
systems of ABPs are concerned,MIPS is the dog that did not bark.3 Its basic mechanism is extremely
simple: a positive feedback between slowing-induced accumulation and accumulation-induced

aa bb cc

Figure 8

Domainmorphology in ActiveModel B during coarsening in d¼ 2, forf¼f0¼ 0, and for l¼ 0,�1,�2 (a, b,
and c, respectively). Adapted from Reference 62.

3Inspector Gregory: “Is there any other point to which you would wish to draw my attention?” Holmes: “To the curious
incident of the dog in the night-time.” Gregory: “The dog did nothing in the night-time.” Holmes: “That was the curious
incident.” (88).
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slowing. When both features are present, absence of MIPS may itself impart useful mechanistic
information about what else is happening in the system. For example, as mentioned in Section 6.2,
hydrodynamic interactions could suppress MIPS by causing interparticle torques (81).

Interaction torques are of course also important, even without hydrodynamic interactions, for
aspherical swimmers. The full physics of orientational interactions in active rods requires one to
address nonscalar order parameters describing either polar (vector) or nematic (tensor) order.
Theories of orientational ordering and its effects in active systems have been extensively developed
inrecentyears (as reviewed in13, 89) for both dry systems (withoutmomentum conservation, such
as vibrated granular rods) and wet systems, such as bacterial swarms in solution. Even without
condensation into an orientationally ordered state, incipient rotational order can enhance the
tendency to undergo MIPS in systems where a density-dependent swim speed, v(r), is combined
with an additive translational diffusion,Dt (90). Furthermore, whenMIPS induces the formation
of densedroplets, aligning interactionsmay lead to the appearanceof local order, hencemaking the
droplets self-propel (91). All this should be relevant to the study of active Brownian rods or dimers
(21, 76, 92–96) where MIPS-like phenomena, such as aggregation and swarm formation, have
been reported. Given that interparticle torques convey vectorial information between particles,
this is an area where the physics of the Vicsek model (10) (which gives flocking via alignment
interactions at fixed v) and that of MIPS (which stems solely from slowing of v at high density)
overlap. This could be a fruitful area for future studies.

Finally, we mention the literature on simulating discrete nonspherical swimmers with hydro-
dynamic interactions (97–99). Although some of the observed phenomena may well be related to
MIPS, the additional presence of both near-field alignment interactions and far-field hydrody-
namics makes any connection difficult to establish without further research.
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