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Abstract

Floquet engineering, the control of quantum systems using periodic driving,
is an old concept in condensed matter physics dating back to ideas such as
the inverse Faraday effect. However, there is a renewed interest in this con-
cept owing to (a) the rapid developments in laser and ultrafast spectroscopy
techniques, (b) discovery and understanding of various “quantum materi-
als” hosting interesting exotic quantum properties, and (c) communication
with different areas of physics such as artificial matter and nonequilibrium
quantum statistical physics. Here, starting from a nontechnical introduction
with emphasis on the Floquet picture and effective Hamiltonians, we review
the recent applications of Floquet engineering in ultrafast, nonlinear phe-
nomena in the solid state. In particular, Floquet topological states and their
application to ultrafast spintronics and strongly correlated electron systems
are overviewed.
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1. INTRODUCTION

How fast and drastically can we change electronic properties of materials, and what would be the
most efficient way to do this? This is an interesting fundamental question and, at the same time,
has connections to the electronic technology that supports our everyday lives. Semiconductor
devices surrounding us such as solar cells, transistors, and memories typically involve nonequilib-
rium processes triggered through light-matter coupling, and the application of electromagnetic
fields changes their properties (transport, carrier density, magnetization, etc.) drastically. There is
a growing interest in ultrafast (1–13) and nonlinear (14–16) electronics with the aim to find a way
to control postsemiconductor materials hosting exotic quantum properties.

Although this research area has a long history, recently there have been some theoretical de-
velopments enabling us to understand various phenomena systematically.One powerful tool is the
concept of Floquet engineering, i.e., the control of quantum systems using time-periodic external
fields. Theoretically, continuous irradiation of a laser can be modeled by a time-periodic pertur-
bation, and the Hamiltonian H (t ) describing the irradiated system inherits the time periodicity

H (t + T ) = H (t ), 1.

where the periodicity T = 2π/� is related to the photon energy or driving frequency � (we set
� = 1). During the past several decades, with the help of the Floquet theorem (17–20), which is
a temporal analog of the Bloch theorem, the understanding of periodically driven systems has
advanced considerably especially for open transport problems (21, 22), laser-driven atoms (23),
strongly correlated electron systems (9, 24–33), and electron–phonon systems (32, 34–39) and
their universal mathematical structures for closed systems (40–48). It is possible to dynamically
induce interesting exotic quantum states by carefully selecting the driving laser that matches the
target material. Although Floquet engineering is now applied in several fields of physics, most
notably in cold atoms in optical traps (49, 50), here,we focus on its application in electronic systems
as illustrated in Figure 1.

2. BASICS OF FLOQUET ENGINEERING

We consider systems periodically driven by external fields with a Hamiltonian satisfying the pe-
riodicity condition (Equation 1). The basic idea of the Floquet method is to expand quantities
into Fourier modes e−im�t withm = 0,±1, . . .. The Floquet picture (or Shirley picture) is not only
useful in doing systematic calculations but also provides an intuitive way of understanding driven
systems (17). In single-body problems, it gives a mapping to a quantum model with one extra di-
mension. The index m of the Fourier mode can be considered as a lattice site index in a fictitious
Floquet direction (Figure 2). Let us consider this in more detail.

When the Hamiltonian is time periodic, as in the Bloch theorem, one can take the set of so-
lutions of the time-dependent Schrödinger equation to be a product of a time-periodic function
and a nonperiodic phase factor; i.e.,

|�(t )〉 = e−iεt |�(t )〉, |�(t + T )〉 = |�(t )〉. 2.

The time-periodic function |�(t )〉 is called the Floquet state, and ε the Floquet quasi-energy.Note
that ε has an indefiniteness of integer multiples of �. We use the Fourier expansion,

H (t ) =
∑
m

e−im�tHm, |�(t )〉 =
∑
m

e−im�t |�m〉, 3.
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Floquet engineering in quantum materials. Various processes take place when an intense laser or electric field is applied to quantum
materials with exotic properties such as topological bands (51, 52), Dirac and Weyl semimetals (53–55), and strong correlation (56). The
keywords in blue denote methods and concepts useful to describe them. Abbreviations: DMFT, dynamical mean field theory; RRAM,
resistivity random access memory; TKNN, Thouless–Kohmoto–Nitingale–den Nijs.

for the Hamiltonian and the Floquet state. With this representation, the time-dependent
Schrödinger equation is mapped to an eigenvalue problem (17, 19),

∑
m

(Hn−m −m�δmn ) |�m
α 〉 = εα|�n

α〉, 4.

in an extended Hilbert space. The index α labels eigenstates, and m and n are the Fourier mode
indices. Now, the Hilbert space has been infinitely expanded, but this is compensated by the in-
definiteness of ε.

One can view the index m as a position in the Floquet direction: The system described by
Equation 4 is equivalent to a time-independent layered one-body system in which m labels the
layers (Figure 2). The intralayer hopping is described by H0, whereas Hm(m �= 0) give interlayer
couplings. In addition, there is a static electric field in the Floquet direction coming from the
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Floquet picture for one-body physics: (a) A mapping to a static higher-dimensional model gives an intuitive understanding of
(b) Thouless pumping (Section 2.1) and (c) Floquet Chern insulators (Section 3). The effective Hamiltonian describes physics projected
onto the original Hilbert space (Section 2.4).

m�-term in Equation 4. This fictitious electric field � plays an important role in understanding
the physics of driven systems. For small �, we have a lattice problem in higher dimensions in a
weak electric field. If this model is a two-dimensional Chern insulator with a Hall coefficient σxm,
a dissipationless current jx = σxm� is generated, which is nothing but the Thouless pumping (57).
For larger �, the layers become isolated energetically, and the state exhibits Wannier–Stark
localization (along the Floquet direction). In such a situation, the high-frequency expansion is a
powerful tool in understanding the physics systematically.

2.1. Thouless Pumping in the Floquet Picture

Thouless pumping (57) is probably one of the most well-known phenomenon in time-periodic
systems. The Rice–Mele model (58), defined by

H (t ) = −
∑
j

[J + δ1 cos�t (−1) j](c†j+1c j + h.c.) + δ2 sin�t
∑
j

(−1) j c†j c j , 5.

is a minimum model that shows charge pumping (J, static hopping; δ1,2, modulation parameter
of the hopping and on-site potential). By interpreting �t as momentum in the Floquet direction,
this model can be mapped to a two-dimensional lattice system (Figure 3) governed by the
eigenvalue problem (Equation 4), with H0 = −J

∑
j (c

†
j+1c j + h.c.) and H±1 = (1/2)

∑
j (−1) j

[−δ1(c†j+1c j + h.c.) ± iδ2c†j c j]. With this description, the Thouless pumping is nothing but the
two-dimensional quantum Hall effect in the m-x plane (59). The Hall conductivity of this
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Floquet picture for Thouless pumping in the Rice–Mele model.

effective m-x plane is given by

σxm = i
∑
λ

fλ
∫ T

0

dt
2π

∫
dk
2π

[〈
∂ψλ

∂t

∣∣∣∣ ∂ψλ∂k
〉
−
〈
∂ψλ

∂k

∣∣∣∣ ∂ψλ∂t
〉]

, 6.

which is nothing but the original expression derived by Thouless (57) and is equivalent to the
TKNN (Thouless–Kohmoto–Nitingale–den Nijs) formula (60) with the y coordinate replaced
by m. It becomes quantized (σxm = 2π

�
m, where m = 0,±1,±2, . . .) as long as the gap does not

close and the distribution fλ is a constant within the band; i.e., the field strength� is smaller than
the Landau–Zener tunneling threshold. In such situations, the relation J = σxm� states that an
integer number of charge is transferred per unit time T = 2π/�.

2.2. High-Frequency Expansion

Let us consider a situation in which the driving frequency � is much larger than other typical
energy scales in the Hamiltonian so that the layers are isolated energetically. In this situation the
eigenvalue problem of Equation 4 can be solved efficiently by performing (van Vleck’s) degenerate
perturbation theory starting from the unperturbed Hamiltonian with only the m�-term (61, 62).
After performing the perturbative expansion, the eigenvalue problem becomes decoupled in the
Floquet direction. This means that the quasi-energy can be obtained as eigenvalues of the static
Hamiltonian. This effective Hamiltonian has a universal form for time-periodic Hamiltonians
(including many-body systems),

HvV
eff = H0 +

∑
m �=0

⎛
⎝ [H−m,Hm]

2m�
+ [[H−m,H0],Hm]

2m2�2
+
∑
n �=0,m

[[H−m,Hm−n],Hn]
3mn�2

⎞
⎠+ O(�−3). 7.

For later convenience,we provide the effectiveHamiltonian for free fermions described byH (t ) =∑
i j Ji j (t )c†i c j with Ji j (t + T ) = Ji j (t ) =∑m Jmi j e

−im�t . The effective Hamiltonian is calculated to
be (30)

HvV
eff =

∑
i j

[
J(0)i j + J(1)i j + J(2)i j

]
c†i c j + O(�−3), 8.
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where the effective hopping is given as

J(0)i j = J0i j , J(1)i j =
∑
m �=0

∑
k

J−m
ik Jmk j
m�

,

J(2)i j =
∑
m �=0

∑
kl

⎛
⎝∑

n �=0

J−m
ik Jm−n

kl Jnl j
mn�2

− J0ikJ
−m
kl Jml j + J−m

ik JmklJ
0
l j

2m2�2

⎞
⎠ . 9.

2.3. Application to Many-Body Systems

When we consider many-body systems driven periodically, we must be careful because the system
may heat up. In closed periodically driven systems, a state evolves as |ψ (t )〉 =∑α cαe

−iεαt |�α (t )〉,
where cα = 〈�α (t0)|ψ0〉 and |ψ0〉 is the initial state at time t0 = 0. |�α (t )〉 are the Floquet states
with quasi-energy εα . On stroboscopic time steps (t = mT ), the solution |ψ (t )〉 has an identical
form to that of the time evolution in static systems with the quasi-energy εα playing the role of
the (usual) energy and |�α (t0)〉 the usual eigenstate.

In static nonintegrable many-body systems, for typical initial states, thermalization is expected
to occur after a sufficiently long time evolution (63, 64). This implies that the periodically driven
systems are also expected to thermalize because 〈ψ (t )|Ô|ψ (t )〉|t→∞ =∑α e

−βεα 〈�α (t0)|Ô|�α (t0)〉
should hold for an observable Ô in the stroboscopic time evolution. However, remember that
εα was only defined modulo �, and such indefiniteness should not appear in physical quantities.
The solution to this paradox was given in References 40 and 41, showing that 〈�α (t0)|Ô|�α (t0)〉
is independent of α. In other words, all many-body Floquet states that we obtain by solving
Equation 4 are featureless. This can be stated more intuitively by noting that in closed systems,
many-body states that are constantly driven by an external periodic force keep on heating until
the temperature goes to infinity.

Nevertheless, Floquet theory is still a useful framework in many-body systems.Heating should
occur over a relatively long timescale for appropriately chosen driving so that there can be a non-
trivial metastable state on a shorter timescale. By using an appropriate perturbative expansion
and truncating out the slow heating processes coming from higher-order terms, we can describe
this metastable state as an eigenstate of the effective Hamiltonian (43–45). In this situation, a
periodically driven system will first “equilibrate” with the truncated Hamiltonian and eventually
thermalizes to the true long time limit, i.e., the infinite temperature state. The first equilibration
is termed the Floquet prethermalization, being a special case of prethermalization (65) known in
quench dynamics (66, 67) (reviewed in References 68 and 69).

Electrons in solid states are subject to various open-system relaxation processes such as phonon
scattering or coupling to an electron bath (substrate). When the pump is longer than their char-
acteristic coupling time, the system converges to a nonequilibrium steady state, and the heating is
balanced with the relaxation (34, 35).The nontrivial steady states of such systems can be studied by
the Floquet Green’s function method combined with an appropriate many-body technique such
as nonequilibrium dynamical mean-field theory (9, 25). In Section 5, we try to sort out results
in ultrafast and nonlinear experiments in correlated electron systems from the point of view of
many-body Floquet dynamics.

2.4. Effective Hamiltonians

Although we have already introduced the concept of the effective Hamiltonian in Section 2.2,
here we discuss its general aspect in more detail. We have obtained the form of the effective
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static Hamiltonian (Equation 7) by the block-diagonalization of Equation 4 recast as regarding the
interlayer transitions as virtual processes. If we consider this in the time domain, the construction
of the effective Hamiltonian can be recast as a search for an appropriate time-periodic unitary
transformation

H̃ =U †(t )H (t )U (t ) − iU †(t )
∂

∂t
U (t ) 10.

that makes H̃ time independent. Although the existence of the transformation is assured by the
Floquet theorem, such a transformation is not unique. One arbitrariness comes from the time-
independent unitary transformation, by which we can generate new effective Hamiltonians once
we obtain one static Hamiltonian. There is also an arbitrariness due to the indefiniteness of the
quasi-energy.

One conventional effective Hamiltonian is the Floquet–Magnus (FM) Hamiltonian (70, 71),
which can be obtained from the time-evolution operator over a period T as

HFM
eff = i

T
ln T̂ exp

[
−i
∫ t0+T

t0

H (s)ds
]
, 11.

where T̂ denotes time ordering. Although the form of the Hamiltonian changes depending on
the initial time t0, those with different t0 are related by unitary transformations. The van Vleck
Hamiltonian (Equation 7) is also unitary equivalent to the FM Hamiltonian up to the truncation
error.

The effective Hamiltonian depends on the perturbation schemes: An approximation more ef-
ficient than the high-frequency expansion can be constructed if we use the eigenbasis ofH0 −m�,
the intralayer term1 in the Floquet picture (Figure 2), as the starting point of perturbation. Note
that the high-frequency expansion (Equation 7) is usingm� as the unperturbed Hamiltonian. For
example, if a perturbation to H0 is given by V(t ) = vei�t + v†e−i�t , the second-order contribution
yields

〈a|δH2nd
eff |b〉 = −

∑
c

( 〈a|v|c〉〈c|v†|b〉
�cb −�

+ 〈a|v†|c〉〈c|v|b〉
�cb +�

)
, 12.

whereH0|a〉 = Ea|a〉 and�ab = Ea − Eb. This form is employed, e.g., in the theory of inverse Fara-
day effect (72). Application of this expansion (Equation 12) requires all the eigenstates of H0,
which are often difficult to obtain.We can still use a solvable part within the Hamiltonian to con-
struct the basis and perform an expansion around it. For example, the Floquet–Schrieffer–Wolff
transformation (strong coupling expansion) for the Hubbard model (73–76) expands as series of
1/(nDU −m�) (where nD is the doublon number), and the atomicHamiltonianU

∑
i ni↑ni↓ −m�

is used to define the basis (to be explained in Section 4).
Among the variety of the effective Hamiltonians, we should adopt an appropriate one in accor-

dance with a problem of interest. The FM Hamiltonian is directly related to the time evolution
and suitable for the initial-value problem and quench dynamics. Because the FMHamiltonian of-
ten does not respect the symmetry of the system, it is better to use the van Vleck expansion when
we are interested in the properties of the Hamiltonian itself.

1There are also more general choices with nonblock-diagonal Hamiltonians (not decoupled in the Floquet
direction), which are treated in the same way after a block diagonalization of the unperturbed Hamiltonian.
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3. FLOQUET ENGINEERING OF BAND TOPOLOGY

In this section, as a representative example of Floquet engineering, we discuss properties of
graphene irradiated by a circularly polarized laser (77). In particular, we focus on transport and
response properties, and we introduce theoretical tools to relate the nontrivial Floquet states and
response functions.

3.1. Laser-Irradiated Graphene

In graphene (53), carbon atoms form a honeycomb lattice whose low-energy effective model is
described by a tight-binding model of the pz orbital H = −∑NN

i j Ji j c†i c j . Here, we take the sum
over nearest-neighbor (NN) sites, and Ji j = J is the hopping amplitude. The energy dispersion of
thismodel has two inequivalentDirac cones in the Brillouin zone, at K andK′ [k = (±4π/3

√
3, 0)].

The honeycomb tight-binding model in the circularly polarized laser is a prototype of the Floquet
topological insulator (77–80). Let us see this by first employing the high-frequency expansion
(Section 2.2).We introduce the laser electric fieldE(t ) = −∂tA(t ) using the Peierls substitution as

Ji j (t ) = Ji j exp

[
−i
∫ Ri

R j

A(t ) · dr
]
, 13.

where Ri is the position of site i, and the vector potential representing a circularly polarized laser
is given as A(t ) = (A cos�t,A sin�t ). Then the Fourier components of the hopping amplitude
are given as Jmi j = JJm(A)eimφi j with the bond angle φi j = − tan−1(Rxi − Rxj )/(R

y
i − Ryj ) and Jm

being the m-th Bessel function of the first kind. The Fourier expansion of the hopping represents
laser-assisted processes, absorbing or emitting m photons. We can then use Equation 9 to obtain
an effective Hamiltonian

Heff = −
NN∑
i j

Jeffc
†
i c j +

NNN∑
i j

iKeff τi j c
†
i c j + JO

(
J2

�2

)
, 14.

where τi j in the next-nearest-neighbor (NNN) term takes +1 (−1) for the hopping with a clock-
wise (counterclockwise) path (from j to i) on each hexagon.The effective hopping amplitudes are

Jeff = JJ0(A) and iKeff = −i2J2

�

∞∑
n=1

J 2
n (A)
n

sin
2πn
3
. 15.

Jeff is obtained as a time average of the original Hamiltonian, where a reduction of the tunneling
amplitude, known as the dynamic localization, occurs due to a renormalization factorJ0(A) (18). It
is experimentally claimed in solids that this effect is realized (81).The effectiveNNNhopping iKeff
emerges from the two-step laser-assisted hopping process (see Figure 4a). Equation 15 is nothing
but the Hamiltonian of the Haldane model (82), and at the Dirac cones K and K′ the model ex-
hibits a topological gap opening leading to a nontrivial Chern number. Chiral edge modes emerge
in the quasi-energy spectrum (Figure 4b,c), and their direction as well as the sign of the Chern
number depends on the sign of Keff that can be flipped by changing the polarization � → −�.

Although the high-frequency expansion gives an intuitive picture for the Floquet topological
phase transition, let us comment on the role played by the geometric phase in the gap opening.
Through the Peierls substitution (Equation 13), a state with momentum k starts to move as k+
A(t ) in momentum space. For a circularly polarized laser, this motion is circular (Figure 5a), and
the state acquires the Aharonov–Anandan phase (83) (or the nonadiabatic extension of the Berry
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(a) Laser-assisted hopping (dotted lines) for the honeycomb lattice driven by a circularly polarized laser leads to an effective next-nearest
hopping with a phase factor (Equation 14). Haldane’s Chern insulator model (82) is obtained up to first order in the high-frequency
expansion. (b) Chiral edge modes are induced under irradiation and this is seen in the (c) Floquet quasi-energy spectrum (78).

phase; 84) during the time evolution. The Floquet quasi-energy is written as

εα = 〈〈�α|H (t )|�α〉〉 +�γ AA
α /2π , 16.

a sum of the dynamical phase and the Aharonov–Anandan phase. We have used the time-
averaged inner product and matrix element of a time-dependent operator as 〈〈�α|�β〉〉 ≡
1
T

∫ T
0 dt〈�α (t )|�β (t )〉 =∑m〈�m

α |�m
β 〉 and 〈〈�α|O|�β〉〉 = 1

T

∫ T
0 dt〈�α (t )|O(t )|�β (t )〉, respec-

tively. At the Dirac points K and K′ [k = (±4π/3
√
3, 0)] (with a linearized dispersion), the

Aharonov–Anandan phase becomes (77)

γ AA
α ≡ T 〈〈�α|i∂t |�α〉〉 = ±π {[4(A/�)2 + 1]−1/2 − 1

}
. 17.
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(a) States with momentum k acquire a geometric phase near the Dirac node. (b) The Floquet spectrum of a two-dimensional Dirac
system in a circularly polarized laser. Color coding represents the static weight. Adapted from Reference 77.
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In the adiabatic limit (� → 0), it converges to the Berry phase ∓π . The size of the gap 2κ can be
evaluated as

2κ =
√
4A2 +�2 −�. 18.

In artificial matter, periodically driven graphene was simulated in cold atoms in optical lattices (85)
as well as in photonic wave guides (86), realizing the Haldane model (Floquet Chern insulator).
In the solid states, a surface state of a topological insulator, which also hosts a two-dimensional
Dirac node, was used to study the effect of a circularly polarized laser (87). The gapping of the
Dirac node as well as the formation of replica bands as in Figure 5b was nicely demonstrated in
a time-resolved ARPES experiment.

3.2. Floquet–Kubo and Floquet–Thouless–Kohmoto–Nitingale–den Nijs
Formulae

In equilibrium, the quantum Hall effect at zero temperature is related to the Chern number
through the TKNN formula. In a similar way, we need the Floquet–Kubo formula (88) and the
Floquet–TKNN formula (77) to characterize the response of Floquet topological states. Here, we
discuss nonlinear optical and transport properties in the presence of irradiation. When a strong
laser (Aac) is applied to a system, the response to an additional weak perturbation can be changed.
The response function is defined by a linear relation

ji(ω) = σi j (Aac;ω)Ej (ω) 19.

between the weak probe electric field Ej and the induced current ji. The effect of the external
AC field is taken into account using Floquet states as the basis. The optical response function for
irradiated systems in the DC limit (ω → 0) becomes

σi j (Aac ) = i
∫

dk
(2π )d

∑
α∈BZ1

∑
β �=α

fβ (k) − fα (k)
εβ (k) − εα (k)

〈〈�α (k)|J j|�β (k)〉〉〈〈�β (k)|Ji|�α (k)〉〉
εβ (k) − εα (k) + i0+ , 20.

which was given in References 77, 78, and 89. Here, εα is the quasi-energy of Floquet state α,
and fα is its occupation fraction. Note that the index α is limited to the first Brillouin zone (εα ∈
[−�/2,�/2)), whereas β is taken over the whole Floquet spectrum, which is extended from the
original spectrum by the inclusion of photon-dressed replica states. The Hall coefficient is given
by the Floquet–TKNN formula (77),

σxy(Aac ) = e2
∫

dk
(2π )2

∑
α∈BZ1

fα (k)
[∇k × Aα (k)

]
z
. 21.

The artificial gauge field and its associated Berry curvature is defined by

Aα (Aac; k) = −i〈〈�α (k)|∇k|�α (k)〉〉, Bα (Aac; k) = ∇k × Aα (k). 22.

Figure 6a shows the Berry curvature of a Floquet band, where we can see that peaks appear at
the Dirac points. There are also concentric patterns around the Dirac points in which resonant
hybridization occurs between the bands. There are two promising detection schemes for the Hall
effect, which are the transport measurement in the presence of irradiation (Figure 6b,c), and the
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(a) Berry curvature of the Floquet band in graphene irradiated by a circularly polarized laser. Detection of Floquet Chern insulator can
be done with (b) transport measurements of the (c) Hall conductance Gxy (F = �Aac) (77). Adapted from Reference 77.

time-resolved Kerr effect (89, 90). In the Kerr effect, the polarization angle of a probe laser is
shifted by (91)

�H ∼
(
σxy in units of

e2

h

)
× 6.3 mrad 23.

when it passes through a quantum Hall state. The Hall conductivity is not necessarily quan-
tized in a Floquet Chern insulator because the electrons are photoexcited and the distribution
function fα is not the simple zero-temperature Fermi distribution.However, there have been sev-
eral numerical analyses finding conditions for a quantized Hall coefficient in open systems (89,
92).

4. FLOQUET ENGINEERING IN ULTRAFAST SPINTRONICS

Spintronics is a new branch of electronics in which the spin degrees of freedom are used to carry
and store information via spin currents and magnetization (93). In ultrafast spintronics, a laser
is used to control spins and magnetism on the timescales of picoseconds or faster (6, 94, 95). A
direct way to access spins is by the Zeeman coupling that couples to the magnetic field component
of laser. Another relevant coupling is the magnetoelectric (ME) coupling that allows the electric
field to interact with the polarization that depends on the spins. Several types of ME couplings are
proposed (reviewed in Reference 96) such as (a) inverse Dzyaloshinskii–Moriya (DM) model (97,
98) P ∝ er,r′ × (Sr × Sr′ ) and (b) exchange striction model P ∝ πr,r′ × (Sr · Sr′ ).

The ideas of Floquet engineering and effective Hamiltonians can be applied to ultrafast spin-
tronics. Because the spin degrees of freedom originate from electrons, the construction of the
effective Hamiltonian has different levels of approximation illustrated in Figure 7.

1. Electronic model: If direct electronic excitations are involved, we should start the construc-
tion from an electronic model. A classic example is the inverse Faraday effect studied by
Pershan et al. (72), in which they used Equation 12 to obtain an effective Zeeman coupling
δHeff = heffSz for electron systems in circularly polarized light applied along the z axis.
The effective magnetic field, heff, obtained by considering virtual electronic excitations,
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Effective theories for Floquet engineering in ultrafast spintronics: (a) The starting system is the electronic models, e.g., band
ferromagnets and Mott insulators, under irradiation. (b) A time-dependent spin model is obtained by assuming that the field is weak and
� much smaller than the charge gap. (c) For a circularly polarized laser, moving to the rotating frame gives a static magnetic field.
(d) Effective Hamiltonians can be obtained by using appropriate expansion schemes. Abbreviation: DM, Dzyaloshinskii–Moriya.

is a nonlinear function of the laser strength and frequency and can be extremely large (6,
94, 95). However, in strongly correlated insulators such as the Mott insulator, using the
second-order perturbation Equation 12 is difficult, and thus it is plausible to combine
the Floquet picture with the standard Schrieffer–Wolff transformation (73–76), which is
explained in Section 4.1.

2. Quantum spinmodel: Another way to construct the effective theory is to start fromquantum
spin models including the coupling to laser fields (99, 100); i.e.,

H (t ) = H0 − gμBB(t ) · S − E(t ) · P. 24.

Here, H0 denotes the original quantum spin models, e.g., the Heisenberg model, and the
other terms are the Zeeman and ME coupling. This approach is justified when the field is
much slower than the electron dynamics (� � Ech). An effective Hamiltonian for circularly
polarized laser irradiation based on the high-frequency expansion (Equation 7),

δHeff = − i
2�

{
β2[Sx, Sy] + αβ ([P̃x,Sx] + [P̃y,Sy]) + α2[P̃x, P̃y]

}
, 25.

∼ 1 spin term + 2 spin term + 3 spin term, 26.

can be obtained (100). Here, the dimensionless polarization is defined by P̃ = P/gme with
gme being theME coupling constant and α = gmeE0 and β = gμBE0c−1. Evaluating the com-
mutators, we obtain terms that are products of 1, 2, and 3 spins, for example, the Zeeman,
DM, and spin chirality, and their precise forms depend on the ME coupling reflecting the
symmetry of the crystal.
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3. Quantum spin model in the rotating frame: In the special case where the applied field
is circularly polarized, we can obtain an exact form of the effective Hamiltonian without
carrying out the perturbative expansion: A quantum spin system in a rotating magnetic
field described byH (t ) = H0 + A cos (�t )Sx + A sin (�t )Sy can be mapped to a simple static
magnetization problem H̃ = H0 +�Sz + ASx by moving to the rotating frame using a uni-
tary transformationU (t ) = exp(i�Szt ), assuming that H0 is rotationally symmetric around
the z axis. The effective magnetic field heff = (A, 0,�) acting on the mapped system can be
large, e.g.,� in terahertz corresponds to a few teslas and can be used to orient the spins and
induce magnetization (101, 102).

4.1. Floquet–Schrieffer–Wolff Transformation

Here, we see how the laser electric field influences the spin degree of freedom via the framework
of the strong-coupling expansion for the periodically driven Hubbard model. We introduce the
Hubbard model under a laser electric field,

H (t ) = T (t ) +UD = −
∑
i jσ

ti je−iAi j (t )c†iσ c jσ +U
∑
i

ni↑ni↓, 27.

where ti j describes hopping of electrons c from site j to i, andU is the on-site density interaction.
The oscillating electric field is described by the Peierls phase, Ai j (t ).

First, let us quickly review the strong-coupling expansion of the Hubbard model in the static
case. In the strong coupling limit of the Hubbard model ti j = 0, the ground states are any
electron configurations with no double occupancy, which have a macroscopic degeneracy. In
particular, the subspace spanned by the ground states at half filling is described by spin config-
urations. The macroscopic degeneracy lifts when we introduce the hopping ti j �= 0 as a perturba-
tion. The low-energy effective model that describes this lift is the Heisenberg model, where the
antiferromagnetic exchange interaction Ji j is given as Ji j = 4t2i j/U .

To perform a perturbative expansion of macroscopically degenerate systems in a systematic
manner, it is convenient to employ the canonical transformation (Schrieffer–Wolff transforma-
tion). Namely, we consider a unitary transformation eiS as a series in ti j and determine it order
by order to block-diagonalize the Hamiltonian with respect to double-occupancy D, which clas-
sifies the eigenstates in the atomic limit. We then obtain the effective spin Hamiltonian as the
D = 0 sector of the transformed Hamiltonian. Our goal in this section is to see the influence of
an external field on the Mott insulator described by this strong-coupling expansion.

One can extend this scheme to a time-dependent situation by considering a time-dependent
transformation.We first perform a series expansion of the transformed Hamiltonian H ′(t ) in S(t )
as (103, 104)

H ′(t )= eiS(t )H (t )e−iS(t ) − eiS(t )i∂t e−iS(t )

=H (t ) + [iS(t ),H (t ) − i∂t ] + 1
2
[iS(t ), [iS(t ),H (t ) − i∂t ]] + · · · , 28.

and further expand S(t ) in ti j as S(t ) = S(1)(t ) + S(2)(t ) + · · ·. Then the first-order term of H ′(t ) is
given as

H ′(1) = T (t ) + [iS(1)(t ),UD] − ∂tS(1)(t ). 29.
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To block-diagonalize H ′(t ), we determine S by solving a set of differential equations

∂tS
(1)
+d (t ) = −idUS(1)

+d (t ) + T+d (t ) 30.

for d �= 0, where S+d , T+d denote terms that increase double occupancy D by d. Although one
can solve these for arbitrary fields with an appropriate boundary condition, here we consider
a monochromatic laser Ai j (t ) = Ai j cos(�t − φi j ) and consider a time-periodic solution. Using
second-order perturbation, we obtain the Heisenberg model with a modified exchange interac-
tion (73)

Ji j (t ) =
∑
m,n

(−1)m
4|ti j|2Jn+m(Ai j )Jn−m(Ai j )

U − (m+ n)�
cos 2m(�t − φi j ), 31.

where Jm is the m-th Bessel function. This is the lowest-order contribution of the electric field
to the spin interaction. The obtained spin interaction is time periodic, and the effective static
Hamiltonian can be obtained by performing a high-frequency expansion (Section 2.2).

Although we have considered a simple spin interaction in the Hubbard model here, there are
various mechanisms to produce effective spin interactions via virtual processes, such as the Kugel–
Khomskii coupling in multiband systems (105, 106), superexchange coupling in multiferroic sys-
tems (98), and anisotropic spin coupling under strong spin-orbit coupling (107, 108). For all of
these, we can apply the above described scheme.

As we mentioned in Section 2.3, the heating processes due to higher-order perturbations are
(implicitly) truncated out in the present scheme. Such processes associated with charge excitations
emerge as a divergence of the expansion (due to a vanishing energy denominatorDU −m�). This
divergence originally comes from an additional degeneracy between sectors with different D in
the atomic limit.2 Hence, we have to be aware that, in the true degenerate perturbation theory, one
cannot block-diagonalize the Hamiltonian with D (nor m), and the above scheme is valid up to a
certain finite order (75). The intersecting (changing D) terms are nothing but charge excitations,
which lead to the heating. It is a general property of the effective Hamiltonian approach that
the heating processes emerge as a divergence of the series expansion, and the error due to the
truncation of the expansion gives a finite (but very long, in many cases) lifetime (43–45, 50).

4.1.1. Control and detection of spin chirality using laser. Although we have confirmed the
modification of the exchange interaction, a more intriguing possibility is to induce an emergent
interaction term that is absent in a static model by irradiating with a laser. This can be achieved by
applying a field that breaks some symmetry of the original system.For instance, time-reversal sym-
metry is broken when circularly polarized laser irradiation is applied. If we continue the strong-
coupling expansion to fourth order (Figure 8a), the emergent term is the scalar spin chirality
term χi jk = Si · (S j × Sk ). A classical spin configuration with a nonzero scalar chirality is shown in
Figure 8b for illustration.Upon irradiation, an effective scalar chirality term δHeff =∑i jk Jχ ,i jkχi jk
with

Jχ ,i jk = −4|ti j|2|t jk|2
∑
l ,n

∑
m �=0

{
Jl+m(Ai j )Jl (Ai j )Jn+m(Ajk )Jn(Ajk ) sinm(φi j − φ jk )

(U − l�)(U − n�)[U − (l + n+m)�]

+Jl+m(Ai j )Jl−m(Ai j )Jn+m(Ajk )Jn−m(Ajk ) sin 2m(φi j − φ jk )
m�[U − (l +m)�][U − (n+m)�]

}
32.

2For example, when U/� = p/q with coprime p, q, the quasi-energy ε = DU −m� is zero not only for
(D,m) = (0, 0) but also for (q, p), (2q, 2p), . . ..
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(a) Laser-assisted virtual hopping process leading to the scalar spin chirality term. (b) Classical configuration of spins with nonzero
scalar chirality, (Ŝi × Ŝ j ) · Ŝk. (c) Circular dichroism: Difference of the induced electric polarization between left and right circularly
polarized lasers, as a function of the photon energy. Crosses are numerical results for a three-site Hubbard cluster, and the solid curve is
obtained from Equation 34.

emerges (75, 76). This opens the intriguing possibility of Floquet engineering exotic quantum
phases such as a chiral spin liquid phase3 (110).

The light-induced interaction also has a potential application as a new probe: For the above
example, the circularly polarized laser acts as a conjugate field to the scalar spin chirality for gen-
eral Mott insulators, in analogy with the magnetic field being conjugate to the spin. Namely, the
coupling constant for the scalar chirality is reduced to

Jχ ,i jk ∼ 2Ai jk|ti j|2|t jk|2�(7U 2 − 3�2)
U 2(U 2 −�2)3

i(E∗ × E )z, 33.

in the leading order of the field amplitude, whereAi jk is the area enclosed by sites i, j, k. The inter-
action term describes the modulation of the dielectric function proportional to the scalar chirality
when it is viewed as a term in the Hamiltonian of the electromagnetic field. From Equation 33,
the modulation is obtained as an imaginary off-diagonal part leading to circular dichroism (75)

εxy(ω) = i
∑
i jk

4|ti j|2|t jk|2ω(7U 2 − 3ω2)
U 2(U 2 − ω2)3

Ai jk

〈
(Ŝi × Ŝ j ) · Ŝk

〉
. 34.

In other words, one can read out the presence of the scalar chirality via the circular dichroism.
Figure 8c shows the difference of the dielectric function between circularly polarized light with
a different chirality.

4.1.2. Validity of the expansion and candidate materials. The effective Hamiltonian ap-
proach is only valid on a timescale shorter than that of heating. In Mott insulators, creation of
doublon–hole pairs makes the system conducting and destroys the spin picture. There are several
sweet spots suitable for Floquet engineering in ultrafast spintronics. (a) High-frequency regime:
When� exceeds bothU and t, several doublon–hole pairs must be created simultaneously, which
is a slower process. Heating becomes exponentially slow in this case (68). Candidate materials are
organic Mott insulators (111) because their energy scale is an order of magnitude smaller than
that of cuprates. (b) Subgap regime � < �Mott: This is an attractive regime because many Mott

3Floquet chiral spin liquid with Majorana edge modes is proposed in Kitaev systems (109) under a circularly
polarized laser (99). This theory starts from the driven quantum spin model.
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insulators have gaps around and above 1 eV (56), and one can use mid-infrared lasers to access the
spins.

When the field becomes stronger, charge excitations become nonnegligible due to higher-
order processes such as multiphoton absorption, tunneling, and even electron avalanche. This
is a problem for spintronics applications but opens a new possibility for a photoinduced phase
transition, which we explain in the next section.

5. CORRELATED ELECTRONS DRIVEN BY ELECTRIC FIELDS

Ultrafast phenomena in strongly correlated electron systems driven by intense laser pulses have
been studied during the past decades, starting from pioneering work in organic molecular com-
pounds (112, 113) and vanadium oxides (114) that are associated with structural lattice dynamics
(see Figure 9, ●1 ). In many cases, the structural change can be explained through the Franck–
Condon picture (1). When electrons are excited, the lattice, feeling the Hellmann–Feynman
force from the electrons, is deformed from the original structure (OFF) to a metastable excited
state (ON). This switching can be used to realize an optical memory. In cuprates the concept of
photodoping (Figure 9, ●2 ), i.e., creating doublon (electron)–hole pairs as transient carriers by
laser irradiation, was introduced (115). Since then, the time resolution, intensity, and the flexi-
bility to adjust the photon energy � of the pump laser have improved drastically (reviewed in
References 1–5, 7, 9–12, and 13).

Let us explain the sequential processes that take place during and after the laser pulse
with the general Floquet many-body physics, explained in Section 2.3, again in mind. First,
we note that the physics strongly depends on the pulse duration, ranging from a few fem-
toseconds in the near-infrared regime (� ∼ 1.5 eV) to picoseconds (103 fs) for terahertz lasers
(1THz = 4.1meV). The typical timescale of electron dynamics is femtoseconds, and thus for
electrons irradiated by terahertz lasers the duration of the pulse is long enough that we ex-
pect to see the DC-field physics realized in transistor-like devices with applied bias voltage
(14–16).

Using ultrashort pulses (Figure 9a), it is now possible to observe quantum coherent dynamics
in strongly correlated electron systems such as ultrafast switching and relaxation (Figure 9, ●3 )
toward a Mott insulator (116) or toward a metal (117), and it is even possible to see interference
oscillations (Figure 9, ●4 ) between the Mott insulating groundstate and the excited state with a
doublon–hole pair (118). Interestingly, almost at the same time, relaxation dynamics and doublon
decay in a strongly interacting fermionic system were observed in cold atoms in optical traps, and
this was realized by dynamically changing the trap (119).The dynamical control of lattice structure
is also used in solid states, and this is done by exciting coherent phonon oscillations (Figure 9, ●5 )
to optimize the lattice structure with an aim of driving the electronics into interesting nonequi-
librium phases such as a superconductor (13, 120–122).

In the DC limit (Figure 9b) accessible by terahertz pump or nonlinear transport devices, the
electrons are excited continuously and at the same time experience various relaxation processes,
and their balance may realize interesting nonequilibrium steady states.Themain relaxationmech-
anism is through emission of bosons, e.g., phonons, photons, and spin fluctuations. In DC devices
made from strongly correlated materials, one goal is to realize a Mott RRAM (resistivity random
accessmemory) (Figure 9,●6 ), a device with an IV-characteristic showing switching behaviors (14–
16, 123–125). This can be considered a DC limit of the optical switch. The electron avalanche
(Figure 9, ●7 ) is an important excitation mechanism that exponentially increases the carrier den-
sity, leading to switching to a conducting state (126) (also demonstrated in a terahertz laser–excited
semiconductor; Reference 127).
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Processes taking place in pump-probe experiments with (a) ultrashort pulses and (b) longer pulses or nonlinear DC devices. The blue
keywords roughly correspond to the many-body processes explained in Section 2.3. Abbreviations: fs, femtosecond; g.s., ground state;
LHB, lower Hubbard band; ps, picosecond; RRAM, resistivity random access memory; UHB, upper Hubbard band.

It is still not easy to experimentally study the electron dynamics (Figure 9, ●8 ) during the
pulse duration in strongly correlated materials because the typical pulse duration is a few to tens
of femtoseconds. In contrast, theoretical studies using the driven Hubbard model (Equation 27)
have been done extensively (24, 26, 128–134).

1. Laser-driven conducting state at resonance (� ∼ �Mott): In the presence of an AC elec-
tric field resonant with the Mott gap, the system evolves to a photoinduced metallic state
within a short time. The doublon–hole pairs are resonantly created by the field and, at
the same time, are destroyed through stimulated emission, so the system reaches a tran-
sient metastable state (26). In 1D, this state shares common features with the equilibrium
Tomonaga–Luttinger liquid, such as spin charge separation. Such a metallic state can be
captured by combining the Floquet method with the fermion–boson correspondence (26)
or using the Floquet–Schrieffer–Wolff transformation (135).
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2. Dielectric breakdown and the Keldysh crossover (� < �Mott) (128, 129, 134): Starting from
the Mott insulating ground state, the application of subgap AC electric fields triggers di-
electric breakdown through quantum tunneling ormultiphoton absorption.The Loschmidt
echo captures how a state |ψ (t )〉 = e−iHt |ψ (0)〉 is excited from the initial state and is defined
by their overlap 〈ψ (0)|e−iHt |ψ (0)〉. If the overlap decays as 〈ψ (0)|e−iHt |ψ (0)〉 ∼ e−iL′t−L′′t

(L′,L′′: real), then � = 2L′′ characterizes the decay of the initial state, whereas L′ is the
Aharonov–Anandan phase (83). In quantum electrodynamics (QED) in an external field
background, the Loschmidt echo was studied and defines theHeisenberg–Euler–Schwinger
effective Lagrangian (136–139). This was adapted to (interacting) lattice models using the
ground state–to–ground state amplitude (5, 129),

L(F ) = − lim
τ→∞

i
τV

ln〈0|T̂ e−i
∫ τ
0 F (s)X̂ (s) ds|0〉, 35.

where F = A� is the electric field,V the volume, and X̂ =∑i ini is the position operator
in the interaction representation X̂ (t ) = eitH0 X̂ e−itH0 , where the original lattice Hamilto-
nianH0, e.g., Hubbard Hamiltonian, is used. The real part of the effective Lagrangian is re-
lated to the field-induced electron polarization,P(F ) = ∂

∂FReL(F ), and reduces to the Berry
phase formula (140, 141) in the weak DC field limit. The imaginary part of the effective
Lagrangian gives the decay rate, �(F )/V = 2Im L(F ), of the insulating ground state. The
leading contribution to �(F )/V comes from the doublon–hole creation, a process known in
QED as the Schwinger effect (138, 139). For the 1DHubbard model, one can use the Bethe
ansatz of the non-Hermitian Hubbard model combined with the imaginary time method
to evaluate the creation probability of doublon–hole pairs (132, 134),

Pdh ∼

⎧⎪⎨
⎪⎩
(
F0ξ
h�

)2�Mott
�

γ � 1 (multiphoton)

exp
[
− π

2
�Mott
ξF0

(1 − π

16γ
2 + · · ·)

]
γ � 1 (tunneling)

, 36.

for AC fields F (t ) = F0 cos�t. The correlation length ξ characterizes the size of the
doublon–hole pairs existing in the ground state as a quantum fluctuation (142), and the
Keldysh parameter that separates tunneling-dominant from multiphoton-dominant cre-
ation is defined by γ = �

F0ξ
. Reaching and exceeding the Schwinger limit, FSch = �Mott

ξ
, is

a challenging problem, and typically this is impossible because the electron avalanche oc-
curs below the limit (126, 143) (also known in QED; 144). Recently, the Schwinger limit
was reached and exceeded in correlated insulators, and tunneling breakdown (Equation 36,
lower) was experimentally verified (145, 146). These outstanding results were made possible
by using a laser pulse that is short enough to suppress the heating and avalanche cascade
effect.

6. OUTLOOK

One of the most fascinating aspects of Floquet engineering is that it is becoming a common lan-
guage for researchers with diverse backgrounds in areas such as strongly correlated electron sys-
tems, artificial matter, and nonequilibrium statistical mechanics. High-energy physics and quan-
tum field theory (136–139) are also great sources of ideas and motivations for condensed matter
physicists, and the interaction between these two areas is expected to fertilize the field. In closing,
let us mention some challenges that may be interesting for future developments.

1. Tailored fields from metamaterial plasmonics: To make Floquet-engineered devices fit in-
side our pockets, we need to replace the laser with a more efficient field generator, and the
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usage of metamaterials and near-field optics will be an important step in this direction. Al-
though they must be triggered by a pulse laser, metamaterials have demonstrated that elec-
tric fields exceeding 1 MV/cm (143) or magnetic fields of 1 Tesla (147), oscillating in the
terahertz regime, can be generated. Interestingly, the fields are tailored by the structure and
are different from the traveling electromagnetic field in the vacuum. It would be interesting
to look for Floquet states that utilize this freedom.

2. Phase transition in a nonequilibrium state: Strongly motivated by recent experiments on
light-induced superconductivity (13, 120–122), a variety of theoretical research studies have
been done on driven correlated open systems (32, 36, 37, 148). The DC counterpart, i.e.,
phase transitions that occur in nonlinear devices (14–16, 29, 149), also show interesting
properties (150) and provide challenges to theorists.

3. New devices from the new principle: It is interesting to look for functions of Floquet states
that static systems cannot have. Devices that have an output signal with nontrivial frequen-
cies due to the dynamics of the Floquet state have been proposed using correlated elec-
trons (151, 152) and even single spins (153).

The future of this rapidly growing field holds a wealth of new possibilities, and we look forward
to observing, and hopefully contributing to, its development in the coming years.
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