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Abstract

In noncentrosymmetric materials, the responses (for example, electrical and
optical) generally depend on the direction of the external stimuli, called non-
reciprocal phenomena. In quantummaterials, these nonreciprocal responses
are governed by the quantum geometric properties and symmetries of the
electronic states. In particular, spatial inversion (P) and time-reversal (T )
symmetries play crucial roles, which are also relevant to the geometric Berry
phase. Here, we give a comprehensive review of the nonreciprocal transport
and optical responses including (a) the magnetochiral anisotropy, i.e., the
nonlinear resistivity with respect to the electric field, in semiconductors and
metals, (b) the nonreciprocal transport in superconductors such as the nonre-
ciprocal paraconductivity and the superconducting diode effect in bulk and
Josephson junctions, and (c) the second-order nonlinear optical effects in the
electric field of light, including the geometric shift current in nonmagnetic
systems, magnetic systems, and superconductors.
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1. INTRODUCTION

Correct definition being put aside, nonreciprocity refers to the breakdown of equivalence between
the right mover and the left mover. Such phenomena are ubiquitous, and several canonical systems
can be found in condensed matter. A typical example is the diode, which has asymmetric current–
voltage characteristics between the right and left directions. Diodes are one of the fundamental
building blocks of modern technology due to their nonreciprocal properties. Because of their
utility and fundamental interest, extensive research has long been conducted on nonreciprocal
effects in condensed matter and devices.

Whereas early studies focused primarily on classical mechanisms, recent works have revealed
the close relationship between nonreciprocal phenomena and the quantum properties of the
materials. In quantum materials, a variety of fascinating concepts have been explored including
topology and quantum geometry of wave functions, correlations and dissipation in many-body
states, and exotic phase transitions and symmetry breaking due to quantum condensation. These
quantum materials provide an intriguing platform for nonreciprocal phenomena (1–3).

In this article, we review recent developments in nonreciprocal phenomena in quantum mate-
rials from a theoretical perspective and describe related experiments. In the following, we focus on
electric response, i.e., nonreciprocal transport and optical phenomena. Platforms range frommet-
als, insulators, and semiconductors to magnetic materials and superconductors. Unique effects in
superconductors are also outlined: nonreciprocal paraconductivity, superconducting diode effects,
and superconducting nonreciprocal optics.

2. NONRECIPROCAL TRANSPORT IN SEMICONDUCTORS
AND METALS

The time-reversal symmetry operation T plays an essential role in linear and nonlinear responses.
For spin 1/2 particles such as electrons, it is defined by T = iσyK, whereK is the complex conjuga-
tion and σ y is the Pauli matrix. The time-reversal symmetry of the Hamiltonian can be expressed
as T H (B)T −1 = H (−B) with B being the magnetic field representing the T -breaking field. This
leads to Onsager’s reciprocal theorem given by (4, 5)

κAB(ω,B) = εAεBκBA(ω,−B), 1.

where κAB(ω) is the response function of the observable A to the field hB with the perturbation
Hamiltonian H′ = −hBB, i.e.,< A > (ω,B) = κAB(ω)hB(ω,B).Here, εA = ±1 (εB = ±1) specifies
the even (+1) or odd (−1) nature of A (B) with respect to the time reversal.When the component
of the wave vector q is considered, Equation 1 turns into

κab(q,ω,B) = εaεbκba(−q,ω,−B). 2.

Transport properties correspond to the limit q → 0 first, i.e., σµν (q = 0,ω,B). Rikken gave an
interesting heuristic argument regarding q as the momentum of electrons and, hence, the current
I. Based on this argument, he proposed an empirical formula (6–9) in which the resistivity R is
given by

R = R0(1 + βB2 + γµνBµIν ), 3.

where R0 is the linear resistivity at zero magnetic field, I is the current, β is the coefficient of
the magnetoresistance, and the last term represents the directional nonlinear resistivity with γµν
determined by the symmetry of the system. This nonlinear nonreciprocal transport in systems
with broken inversion symmetry P is named magnetochiral anisotropy (MCA). (Note that γ ′

is also used by replacing the current I by current density j in Equation 3, which is sample size
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independent and has the unit of T−1 A−1 m2.) However,Onsager’s theorem is applicable only to the
linear response, whereas Equation 3 describes nonlinear response. Therefore, Rikken’s argument
is not an exact statement.

From the viewpoint of the electronic states in solids, i.e., Bloch wave functions and band struc-
ture, T relates the two states un(k, σ ) and un(−k,−σ ), where un is the periodic part of the Bloch
wave function. Therefore, the energy dispersion satisfies εσ (k) = ε−σ (−k), and this symmetry
prohibits nonreciprocal charge transport, whereas the spin transport can be asymmetric in con-
ventional Boltzmann transport theory. With magnetic field B or magnetization M, the energy
dispersion becomes asymmetric between k and −k, and nonreciprocal charge resistivity becomes
possible. Experimentally, γ is usually of the order of 10−3−10−1 T−1 A−1, and the nonreciprocal
part of the resistivity is very small, less than 1% (6–9), which is in sharp contrast to rectification
by pn junctions. This can be understood in terms of an explicit example, i.e., the two-dimensional
Rashba model under an external magnetic field:

HR = ℏ2k2

2m
+ αR(kxσy − kyσx ) − Byσy, 4.

where αR is the Rashba coupling strength corresponding to the polar axis along the z direction
and the magnetic field applied along the y direction.One can easily see that the energy eigenvalues
are given by

ε±(k) = ℏ2k2

2m
±
√
(αRkx − By )2 + (αRky )2 5.

and are asymmetric between kx and −kx by the factor αRBykx in the square root. Therefore, the
perturbation that induces the nonreciprocal transport is of the order of √

λRBy, where λR = αRkF
(kF: Fermi wave number) is the spin–orbit interaction energy and By is the Zeeman energy, which
is usually much smaller than the kinetic energy εF ∼= ℏ2k2F

2m in metallic systems. However, when the
kinetic energy εF is small and/or the spin–orbit interaction is large, the nonreciprocal transport
can be enhanced. This situation is realized in a polar semiconductor BiTeBr showing a large bulk
Rashba splitting (10). The analysis based on the Boltzmann transport theory using Equations 4
and 5 (with the dispersion along the c axis) gives quantitative agreement with the experimental
observations. Angle-resolved photoemission spectroscopy provides the parameters for the band
structure. Furthermore, the coefficient γ yx is independent of the relaxation time τ and, hence, is an
intrinsic quantity of the band structure similar to the Hall coefficient. Therefore, one can predict
γ yx without any fitting parameters in this material to leading order in τ . GeTe shows also bulk
Rashba splitting, showingMCA at room temperature due to the nonlinear magnetoresistance and
the spin texture in momentum space (11). A review article for nonreciprocal effects in (quasi-)two-
dimensional van der Waals nanostructures is found in Reference 3.

There are several ways to enhance MCA. One is to design materials and their band struc-
tures. A Weyl fermion system with broken P symmetry has been proposed (12). In this system,
the chiral anomaly induces a charge imbalance Q5 between the Weyl node and anti-Weyl node
expressed by Q5 ≃ τE · B, where τ is the relaxation time. This results in a change in the con-
ductivity 1σ ∝ τ 2E · B, which is nothing but the MCA. Experimentally, a very large MCA with
γ ′ ∼ 4 × 10−7 T−1 A−1 m2 has been observed in ZrTe5 (13). This material is close to a topological
phase transition and is described by the Dirac Hamiltonian, which is the origin of the giant MCA.
Also, MCA can be enhanced in a nanowire with width ∼200 nm of topological insulator thin film
(Bi,Sb)2Te3 with γ ∼ 105 T−1 A−1 (14).

Instead of an external Zeeman magnetic field,MCA due to the magnetic moments or magnetic
order has been explored. Yasuda et al. (15) observed MCA in the Cr-doped magnetic topological
insulator heterostructure and attributed it to the asymmetric inelastic scattering by the magnons.
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A similar mechanism has been proposed to explain the observed MCA in the ferromagnetic
Rashba system (Ge,Mn)Te (16). MCA in the Rashba ferromagnet PdCoO2 was also observed
(17). Also, the elastic scattering by magnetic moments in noncentrosymmetric systems can induce
MCA. MnSi, a ferromagnet with a chiral crystal structure, has a Dzyaloshinskii–Moriya inter-
action (DMI) showing a rich phase diagram in the plane of temperature T and magnetic field
B, including helical, conical, and skyrmion structures. MCA in this material was measured, which
shows a nontrivial temperature and magnetic field dependence in the paramagnetic phase (18) and
is attributed to chiral spin fluctuations. Theoretically,MCA by the spin cluster scattering was pro-
posed (19), where the interference of the scattering waves from two spins produces an asymmetric
transition probability wk,k′ from k to k′. Namely,

w−
kσ ,k′σ ′ = 1

2
(wkσ ,k′σ ′ − w−kσ ,−k′σ ′ ) 6.

becomes finite, which leads to MCA. More explicitly,

w−
kσ ,k′σ ′ ∝ σδσ ,−σ ′ (Si × S j )z, 7.

where the vector spin chirality Si × S j becomes finite due to the DMI representing the P break-
ing, and the electron spin σ is polarized by the external magnetic field B. However, when the
magnetic field B is too strong, the spins are aligned ferromagnetically, and hence Si × S j is re-
duced. Si × S j also decreases as the temperature is raised, and hence the MCA shows the peak
structure at finite B and T in semiquantitative agreement with experiment (18). Note that the
first-order Born approximation is enough for finite w−

kσ ,k′σ ′ when both P and T are broken.
Even a single magnetic impurity with spin–orbit interaction gives an asymmetric transition rate
w−
kσ ,k′σ ′ due to the toroidal moment (20). This is in sharp contrast to the T -symmetric case, where

w−
kσ ,k′σ ′ = 1

2 (wkσ ,k′σ ′ − w−kσ ,−k′σ ′ ) = 1
2 (wkσ ,k′σ ′ − wk′σ ′ ,kσ ) can be finite only when the higher-order

Born approximation is employed where the real transitions to the intermediate state occur (21).
Also the “local” scalar spin chirality Si · (S j × Sk ) associated with the noncoplanar magnetic order-
ing in bilayer triangular lattice was discussed as showing nonreciprocal resistivity even without the
spin–orbit interaction, net scalar chirality, and net magnetization (22). Experimentally, the itiner-
ant antiferromagnet PdCrO2 showing 120-degree spin structure shows nonreciprocal resistivity
(23).

Nonreciprocal transport in magnetic topological systems is also studied extensively, where the
surface or edge states protected by the topology play a vital role. The nonlinear transport of the
surface state of the magnetic topological insulator thin film was studied (24). This system shows
the quantized anomalous Hall effect when the chemical potential is within the gap induced by
the exchange coupling. Although this edge transport does not show any nonreciprocal effect, the
scattering between the edge channels and the surface states becomes nonreciprocal. The het-
erostructure of helical edge channels of the two-dimensional quantum spin Hall insulator WTe2
and the van der Waals antiferromagnet CrI3 shows nonreciprocal transport (25).

From the fundamental viewpoint, several essential aspects of electronic states in solids, in addi-
tion to P and T symmetries, are relevant to nonreciprocity. The breaking of the unitary nature of
time evolution and decoherence plays an important role for nonreciprocal transport as formulated
in the nonequilibrium steady state of a many-body system coupled to the heat bath in terms of the
Lindblad equation (26). The role of decoherence effects in nonreciprocal transport was discussed
for mesoscopic electronic devices (27). Nonreciprocal interferometers have also been proposed
(28).

It is also noted that the P and T symmetries are related to the geometric properties of the
Bloch wave functions. Namely, when both P and T symmetries are intact, the Berry curvature
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vanishes (1). In other words, the broken P and/or T is encoded by the Berry phase. A remarkable
example of this fact is the modern theory of electric polarization; i.e., the electric polarization of
the Bloch electrons is expressed by the Berry phase (29, 30).Therefore, the geometric nature of the
Bloch electrons is relevant to the nonreciprocal responses. This is also the case of Landau–Zener
tunneling where the Berry connections of conduction and valence bands give the nonreciprocal
tunneling probabilities in noncentrosymmetric crystals without T breaking (31, 32). Another
important nonreciprocal phenomenon related to the Berry phase is the nonlinear Hall effect
(NLHE) (33),where the shifted Fermi surface induces the net anomalous velocity due to the Berry
curvature dipole.Note that theNLHE does not require broken T symmetry.The combined effect
of the dissipation and the geometric nature of the electronic states such as the quantummetric and
Berry phase is relevant to the nonreciprocal transport (34).Non-Hermitian physics is also relevant
(35). Nonreciprocal transport is closely related to the ratchet problem. A quantum mechanical
particle motion in a periodic potential has been studied extensively, where the critical strength of
the dissipation separating the classical localized ground state and the extended quantum ground
state exists, i.e., the Schmid transition (36). When the periodic potential is asymmetric, the
temperature dependence of the nonlinear mobility µ2 defined by the velocity proportional to the
applied electric field E strongly depends on the dissipation strength and goes to zero at zero
temperature in the quantum regime, whereas µ2/µ1 (µ1: linear mobility) remains finite at zero
temperature in the classical regime (37, 38). This example suggests that the classical nature of the
system is needed for nonreciprocal effects to a certain degree, and the duality between the particle
nature and wave nature of quantum mechanics lies at the heart of the nonreciprocal responses.

From this viewpoint, electron correlations enhance the particle nature of the electrons leading
to the tendency for localization, which induces nonreciprocity. Actually, the Coulomb interaction,
even without T breaking, leads to the rectification effect. A classic example is the pn junction in
which the width of the depletion layer depends on the direction of the applied voltage, where the
Coulomb interaction is essential (39). Even without such an interface, the Coulomb interaction
in multiband noncentrosymmetric crystals can give nonreciprocal transport, although the effect
is usually very small (40).

3. NONRECIPROCAL EFFECTS IN SUPERCONDUCTORS

Superconductivity is one of the most “quantum” phenomena in solids showing totally dissipa-
tionless flow of electrons. Therefore, one might think that the nonreciprocal response is reduced
in superconductors. However, nonreciprocity can be enhanced in superconductors (41). For ex-
ample, the MCA is tremendously enhanced due to superconducting fluctuations as shown below.
Furthermore, nonreciprocal charge transport unique to superconductors may occur, such as the
superconducting diode effect (SDE), which is explained below.

3.1. Nonreciprocal Paraconductivity

In two-dimensional superconductors, there is a wide temperature region where the amplitude of
the order parameter develops (T < T0), and its phase becomes coherent (T < TKT). The latter
is called the Kosterlitz–Thouless (KT) transition at which the binding of vortices and antivor-
tices occurs. Near T0, there occurs an additional conductivity σ para due to the fluctuating order
parameter, which is called paraconductivity. Because the fluctuation of the order parameter is re-
garded as classical at finite temperature even though its origin is quantum mechanical, this σ para

can be analyzed in terms of the time-dependent Ginzburg–Landau theory (42). One can expand
the free energy in terms of the order parameter 9 and also its momentum p. Usually, we keep
up to the second-order terms in p, i.e., p0 and p2, because the odd-order terms are forbidden by
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time-reversal symmetry T . However, when both T and P are broken, odd-order terms are al-
lowed, which leads to the nonreciprocity. The linear term in p shifts the momentum p0, which
gives the minimum of the free energy, so p− p0 plays the same role as p. Therefore, the lowest-
order terms that give nonreciprocal transport are third order.Ginzburg–Landau (GL) free energy
has been derived explicitly for the transition metal dichalcogenide MoS2 (43) considering that its
band structure shows trigonal warping;

F =
∫
d2r9∗

[
a+ p2

4m
+ 3B

ℏ3
(p3x − 3pxp3y )

]
9+

∫
d2r

b
2
|9|4, 8.

where

3 = 93ζ (5)
28ζ (3)

gµB1SOα

π (kBT0 )2
, 9.

with α being the magnitude of the trigonal warping,1SO the Ising spin splitting due to spin–orbit
interaction, and 1z the Zeeman energy due to an external magnetic field. Employing the method
developed by Schmidt (42), one can obtain the current due to the superconducting fluctuation up
to the second order in the electric field E as

j = e2

16ℏϵ
E − πe3m3B

64ℏ3kBT0ϵ2
F (E ), 10.

with ϵ = (T − T0)/T0 and F (E ) = (E2
x − E2

y , 2ExEy ). This corresponds to MCA, and its γ -value,
γ S, is substantially enhanced compared with that of the normal state γN, γS

γN
∼
(

εF
kBT0

)3, as expected
from the change in the energy denominator from the Fermi energy εF to the superconducting gap
1SC E kBT0. Experimentally, γ is negligible in the normal state, whereas at T0 E 9K, γ (T = 9K)
reaches E1,000 T−1 A−1, which is compared with the theoretical estimate γ (T0) E 400 T−1 A−1

(43).
Below T0, the amplitude of the order parameter develops, and the defects in its phase, i.e.,

vortices, determine the resistivity.Therefore, one can classify themechanism ofMCA in supercon-
ductors into paraconductivity and vortex dynamics, and the crossover between these two should
occur as the temperature is decreased across T0.

Theoretically, MCA in two-dimensional superconductors has been studied systematically for
T ≫ T0 (normal state), T > T0 (paraconductivity) and TKT < T < T0 (vortices) in the cases of
(a) a Rashba superconductor, (b) a superconductor on the surface state of a topological insulator,
and (c) transition metal dichalcogenides with Ising-type spin splitting, e.g., MoS2 as shown in
Figure 1 (44). The MCA at T < T0 depends on cases (a), (b), and (c), and also on the mechanism.
In the cases of (a) and (b), MCA is induced by an in-plane magnetic field, whereas it is induced by
an out-of-plane magnetic field in case (c). Accordingly, the KT transition survives in (a) and (b),
whereas it becomes a crossover and the system remains resistive due to the vortices created by the
external magnetic field in (c). Here, the ratchet mechanism for vortex motion assumes the classical
diffusion motion of vortices under the asymmetric potential. In cases (a) and (b), the divergence of
γ S is predicted at both T0 from below and TKT from above, which originate from the modification
of the superfluidity density ρS by the current I.

Experimentally, superconductivity in a Bi2Te3/FeTe interface has been studied (45). This
two-dimensional superconductivity is classified as case (b), and shows a typical KT transition.
MCA due to an in-plane magnetic field is observed, and γ shows critical behavior near TKT as
γ ∼ (T − TKT)−3/2 in agreement with the prediction (44). Gate-tuned SrTiO3 is considered to be
a Rashba superconductor [type (a)] and actually shows a very large MCA (46). It shows a crossover
acrossT0 from paraconductivity to the vortex region asT is lowered. γ is typically∼104 T−1 A−1 in
the former region and∼106 T−1 A−1 in the latter. Recently,MCA in the interface of Bi2Te3/PbTe2
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Figure 1

Nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors. There are three temperature regions
(a, b, and c) classified by the mean-field superconducting transition temperature T0 and KT transition temperature TKT. Three cases
are considered according to the symmetry. Figure adapted from Reference 44. Abbreviations: KT, Kosterlitz–Thouless;
SC, superconductor; TI, topological insulator; TMD, transition metal dichalcogenide.

has been observed (47). The temperature and magnetic field dependence was analyzed in terms
of thermally excited vortices and those created by the external magnetic field. In PbTaSe2, the
nonreciprocal transport is observed even at B = 0, which is attributed to the asymmetric Hall
effect of vortex–antivortex string pairs (48). MCA due to vortex motion was observed also in
CsV3Sb5 (49). The centrosymmetric structure and symmetric electronic phases in this material
indicate that the superconducting pairing breaks inversion symmetry. Application of MCA in the
superconductor NbSe2 to antennas from 5 to 900 MHz has been reported, which is also driven
by vortex motion driven by AC electric field under an asymmetric pinning potential (50).

3.2. Bulk Diode

Although we have discussed nonreciprocal normal transport with a focus on the MCA, the nonre-
ciprocal nature of superconducting response also attracts recent attention. This is realized when
the critical current density along one direction Jc+ > 0 is different from that along the op-
posite direction Jc− < 0 in terms of their magnitudes, namely, Jc+ ̸= |Jc−|. Below, we assume
Jc+ > |Jc−| without any loss of generality. When we tune the magnitude of electric current den-
sity to lie between Jc+ and |Jc−|, the electric current flows in one direction with zero resistance
R+ = 0 (supercurrent), whereas it flows in the opposite direction with finite resistance R− > 0
(normal current), as illustrated in Figure 2. This unidirectional property of superconductivity

www.annualreviews.org • Nonreciprocal Phenomena 69



CO15_Art04_Nagaosa ARjats.cls February 20, 2024 10:16

Supercurrent

Ohmic current

y

x

h
+ | j|

e

e

e

e

e
e

– | j|

Figure 2

Schematic figure for the SDE. The system shows zero and finite resistance for the rightward and leftward
currents, respectively. The directionality of the SDE is reversed when the magnetic field is reversed.
Figure adapted from Reference 51. Abbreviation: SDE, superconducting diode effect.

has been recently called the SDE, and its discovery in the Nb/V/Ta superlattice has triggered
vast research (52). Recent studies have observed the SDE in various superconductors, such as
Rashba heterostructures (53, 54), transition metal dichalcogenides (55, 56), twisted multilayer
graphene (57), conventional superconductors (58–63), and high-temperature cuprate supercon-
ductors (64). The SDE realizes perfect rectification in the sense that R−/R+ = ∞ and attracts
attention as a candidate for an ideal diode.

Experimental platforms of the SDE are classified into bulk superconductors, as introduced
above, and Josephson junctions (65). We focus on the bulk diode in this section. Various mecha-
nisms of the bulk SDE have been studied in recent literature. Some of them essentially rely on the
quality and geometry of samples, for example, the asymmetry of surfaces (59), asymmetric layer
structures (61), and the asymmetric pinning centers (58). Such extrinsic mechanisms would be
important when the critical current is determined by the vortex dynamics. A typical mechanism
is the asymmetry of the vortex surface barrier and the corresponding critical current for vortex
penetration (59, 66). Let us assume that the critical current density governed by one surface is jc
and that by the opposite surface is jc + δjc > jc. Under the external and/or stray magnetic field, the
Meissner current ∓ js asymmetrically modifies the critical current density as jc ± ∓ js = jc for small
js and jc+ + js = jc + δjs and jc− + js = jc for large js. This mechanism is ubiquitous in the sense that
neither inversion symmetry breaking in the bulk, spin–orbit coupling, magnetization, nor finite-
momentum Cooper pairs are needed. Indeed, the SDE by this mechanism has been observed in
centrosymmetric superconductors (59, 60, 63) and in early studies (67–70). Conversely, it is hard
to obtain information on the superconducting state via the SDE governed by this mechanism.

However, the intrinsic nature of superconductivity determines the depairing critical current,
where the superconducting condensation energy and kinetic energy of the supercurrent are bal-
anced. Therefore, the SDE due to the depairing critical current is called the intrinsic SDE.
Experimentally, the depairing critical current can be realized in narrow samples compared with
the Pearl length,3= 2λ2/d with penetration depth λ and sample thickness d (71–73). The intrin-
sic SDE has been intensively studied in recent theoretical works (51, 74–80) and revealed to be
closely related to the quantum properties of superconductors. Therefore, we discuss the intrinsic
SDE in the following part of this subsection.

The intrinsic SDE can be described by the GL theory, which is reliable near the transition
temperature, T ≃ Tc, as usual. Here, we assume the superconducting order parameter with phase
gradient along one direction, ψ(x) = ψeiqx, for simplicity. The GL free energy in the momentum
space representation is given by

f (q,ψ ) = α(q)|ψ |2 + β (q)
2

|ψ |4, 11.
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with

α(q) = α0 + α1q+ α2q2 + α3q3 + α4q4, β (q) = β0 + β1q+ β2q2. 12.

The odd-order terms, α1, α3, and β1, are allowed when P and T symmetries are broken. The
present experiments on the bulk SDE have been carried out in this setup with broken T symmetry
by an external magnetic field (52, 54, 55, 58–60, 62), ferromagnet/superconductor heterostruc-
ture (53, 56, 59, 60, 63), and valley polarization due to underlying electronic instability (57, 78).
By contrast, the Josephson diode effect ( JDE) has been reported sometimes in a T symmetric
system (65) and is discussed in the next subsection. The GL free energy is minimized for each q
as

f (q) = f
(
q,
√

−α(q)/β (q)
)

= − α(q)2

2β (q)
, 13.

when α(q) < 0. The electric current J(q) is calculated by J(q) = −2�qf (q), and the Cooper pairs’
momentum in the equilibrium q0 is obtained by solving the vanishing current condition, J(q0) = 0.
A finite-q superconducting state may be stable in equilibrium under broken P and T symmetries,
owing to the first-order terms in q. This is called the helical superconducting state in noncen-
trosymmetric superconductors under magnetic fields (81, 82) and the anapole superconducting
state in spontaneously symmetry-breaking superconductors (83). A typical example is the Rashba
superconductor under an in-plane magnetic field, modeled by Equation 4, where the asymmetric
band dispersion along the kx axis makes the Cooper pairs’ momentum, q = q0x̂, finite.

The critical current in the +x direction Jc+ is determined by the maximum of J(q), whereas
that in the opposite −x direction Jc− is by the minimum. To estimate Jc+ and Jc−, it is conve-
nient to expand α(q) and β(q) for deviation from the equilibrium value at T = Tc by defining
δq a q − q0,

α(q) = α′
0 + α′

2δq
2 + α′

3δq
3, β (q) = β ′

0 + β ′
1δq+ β ′

2δq
2. 14.

The linear term in α(q) disappears in this expansion. The nonreciprocity of the critical current,
namely, the SDE, is represented by 1Jc = Jc− − |Jc−|, and it is obtained as

1Jc =
(

16
27β ′

0α
′
2
α′
3 − 8

9β ′2
0

β ′
1

)
α′2
0 . 15.

As we see in Equation 15, the nonreciprocal critical current arises from α′
3 and β ′

1. Because a
finite value of q0 combined with α4 and β2 makes α′

3 and β
′
1 finite, the finite-momentum Cooper

pairing in equilibrium is closely related to the SDE. However, the finite momentum q0 is not
necessary for the SDE, because it is also caused by the α3 term, for example. Thus, details depend
on the symmetry of systems. The generalized GL theory for the SDE (79) is applicable for all
the noncentrosymmetric point group symmetry, and the SDE in the low magnetic field region
is described by the “spin–orbit coupling” of Cooper pairs. Importantly, the SDE occurs in all the
21 noncentrosymmetric point groups, although the Cooper pairs’ momentum can be zero in three
of them, namely, nongyrotropic point groups, Td,D3h, and C3h.

An index for the performance of the SDE is defined as r a (Jc+ − |Jc−|)/(Jc+ + |Jc−|) and is
called the diode quality factor. The diode quality factor is tiny near the transition temperature
for two reasons. First, as shown in Equation 15, the nonreciprocal critical current follows
the scaling behavior 1Jc ∝ (Tc − T )2, which is higher order than the known scaling of the
depairing critical current Jc± ∝ (Tc − T )3/2, leading to a vanishing diode quality factor at Tc,
r∝ (Tc − T )1/2. Second, in the isotropic Rashba superconductor, the SDE accidentally vanishes in
the GL region (76). Therefore, anisotropic band dispersion, anisotropic Cooper pairing, and/or
low temperature much below Tc is necessary for a sizable SDE.
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a   s-wave Rashba superconductor b   d-wave Rashba superconductor
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Figure 3

The diode quality factor r is plotted by color in the magnetic-field temperature phase diagram of (a) the
s-wave superconducting state and (b) the d-wave superconducting state in the Rashba–Zeeman model.
Nonreciprocal transition lines are also shown; red (blue) lines show Tc under the electric current +j (−j) for
several magnitudes j. Figure adapted with permission from Reference 79.

To discuss the intrinsic SDE in the whole temperature and magnetic-field region, we show
the results of mean-field theory for the Rashba–Zeeman model, an analog of Equation 4 on the
square lattice (51, 79). The diode quality factor is plotted as a function of the magnetic field and
temperature in Figure 3. In the figure, we compare the s-wave Rashba superconductor and d-wave
one. As expected from the above discussion, the diode quality factor is tiny in the s-wave super-
conductor at low magnetic fields near Tc, whereas it is enhanced in the d-wave superconductor
due to the anisotropy of pair potential. In both cases, the diode quality factor is sizable, r ≃ 0.15,
at low temperatures and high magnetic fields.

A more pronounced behavior is the sign reversal of the SDE in the moderate magnetic-field
region. This sign reversal is caused by a crossover in the helical superconducting state (51), where
the Cooper pairs’ equilibrium momentum q0 drastically increases. Thus, the observation of this
sign reversal would be an experimental verification of the helical superconducting state, which
has been long awaited after the theoretical prediction (81, 82). The sign reversal (polarity oscilla-
tion) in the SDE is indeed found in the Nb/V/Ta superlattice (54). However, the strength of the
sign-reversal magnetic field is an order smaller than the theoretical prediction, and thus, further
studies are desired. It is theoretically shown that the sign-reversal phenomenon is suppressed in
moderately disordered superconductors (80), and therefore, a clean superconductor is desirable
from this point of view. By contrast, the diode quality factor is enhanced by moderate disorders,
and therefore, there is an optimum disorder to realize a significant SDE (80). The crossover phe-
nomenon in the helical superconducting state also leads to an unusual phase diagram under the
supercurrent, as shown in Figure 3. Accompanied by the sign reversal of the SDE, the critical
temperature of superconductivity shows a significant nonreciprocity in the sense that Tc under
the current +J is different from that under −J. For a current direction, the superconductivity
even shows a reentrant behavior similar to heavy fermion superconductors (84) (see Figure 3).

3.3. Josephson Diode

A Josephson junction with a weak link between the two superconductors offers a laboratory to
study the interference of the phases of the order parameters. Namely, the phase difference ϕ be-
tween the two superconductors and the superconducting current I through the junction are related
by the free energy F(ϕ) as I = − 2e

ℏ
∂F (ϕ)
∂ϕ

because of the canonical conjugate relation between the
transferred chargeQ and ϕ. Usually F(ϕ) ∝ −cosϕ, and hence I= Ic sinϕ with Ic being the critical
current above which the resistivity emerges. However, when the two sides of the Josephson junc-
tion are not symmetric, the critical current Ic+ for positive direction and Ic− for negative direction
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can be different; i.e., the Josephson diode effect ( JDE) can occur. An early proposal for the JDE
considered the junction between the electron-doped (n-type) and hole-doped (p-type) Mott insu-
lators (85). The transition between the Mott insulating state and superconducting state can lead
to the rectification effect under the bias voltage. Recently, the JDE has been revisited theoretically
considering the asymmetry of the Coulomb energy associated with the charge transfer Q, i.e., the
odd-order terms inQ (86).The charging energy corresponds to the kinetic energy of the dynamics
of ϕ, but this can be neglected in the overdamped case. The “inertia” of ϕ leads to the hysteresis
behavior of the current–voltage relation, and two critical currents Ic1 and Ic2 are defined. These
critical currents depend on the direction with asymmetry of the Coulomb energy. Note that these
two theoretical proposals do not require time-reversal symmetry breaking.

More recently, a general theory of the JDE has been proposed (87), where the JDE is classified
into two types, i.e., (a) with broken P symmetry and (b) with broken P and T symmetries,
corresponding to the classification of nonreciprocal responses in Reference 1. In type (a),
Ic(V ) ̸= Ic(−V ) because the spin–orbit interaction at the tunneling barrier depends on the voltage
V across the junction in addition to the original P-symmetry breaking. In type (b), Ic+ ̸= Ic− or
Ic(B) ̸= Ic(−B) with B being the external magnetic field. An example is the magnetized electrons
at the tunneling barrier, where the external magnetic field can change the magnitude of the
magnetization and, hence, the Josephson coupling.

Another route to the JDE is the asymmetric free energy F(ϕ). For example,F(ϕ) = −J1 cosϕ +
J2 sin 2ϕ leads to I = − 2e

ℏ (J1 sinϕ + 2J2 cos 2ϕ), and the minimum and maximum values of I are
Ic+ ∼= 2e

ℏ (J1 + 2J2 ) and −Ic− ∼= − 2e
ℏ (J1 − 2J2 ) up to the first order in J2. Therefore, the J2-term

gives Ic+ ̸= Ic−. Note that the time-reversal operation T reverses the sign of ϕ because of the
complex conjugation, and the J2-term requires the T -symmetry breaking. A possible model for
this scenario is the JDE of d-wave superconductor/ferromagnetic insulator/d-wave superconduc-
tor on a three-dimensional topological insulator, where the direction of the d-wave lobes breaks
P symmetry (88). The current–phase relation is influenced by the Majorana and Andreev bound
states, and the quality factor η = Ic+−Ic−

Ic++Ic− reaches a value as large as |η| E 0.4 by tuning the angles of
the d-wave lobes. A universal mechanism has been proposed in the diode effect in short Josephson
junctions (89).The quality factor η defined above reaches up to 0.4, which arises from the Doppler
shift of the Andreev bound state energies and the asymmetric current from the continuum. They
also propose a scheme for finite-momentum pairing without spin–orbit interaction.

The JDE was first experimentally observed in Reference 65. The I − V characteristics show
hysteretic behavior, and the difference in the critical current 1Ic between the opposite directions
is an even function of the magnetic field B and finite even at B = 0. Wu et al. (65) argue that
this effect can come from the nonreciprocal tunneling probability. Also the Josephson diode with
memory based on an Nb superconductor was demonstrated at B = 0 (90). The diode efficiency
is greater than 70%, which comes from the broken P and T symmetries by the self-field effect
from nonuniform bias and a trapped Abrikosov vortex. Zero-field polarity-switchable Josephson
diodes have also been realized where a proximity-magnetized Pt layer by ferrimagnetic insulating
Y3Fe5O12 induces the Rashba spin–orbit interaction (91). The quality factor reaches up to 35%
at T = 2 K.

The search for the finite-momentum pairing is a long-standing keen issue, which can be rel-
evant also to the Josephson junction. Related to this issue, a giant JDE has been realized in the
finite-momentum pairing formed from a type-II Dirac semimetal,NiTe2 (92).The nonreciprocity
depends sensitively on the magnitude and direction of the magnetic field, which was interpreted as
the Zeeman shift of spin-helical topological surface states and the consequent finite-momentum
pairing state. It has been demonstrated that the highly transparent Josephson junctions fabri-
cated on InAs quantum wells show the supercurrent rectification (93). The mechanism is that the
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Josephson inductance L shows the MCA described as

L = L0[1 + γLez(B× I )], 16.

instead of the resistivity in Equation 3. Given the current–phase relation I = Ic0 f (φ), and the
relation

L = V
(
dI
dt

)−1

= ℏ
2eIc0

(
d f (φ)
dφ

)−1

= ℏ
2e

dφ(I )
dI

, 17.

Equation 16 leads to the MCA for supercurrent.

4. NONRECIPROCAL OPTICS

Onsager’s reciprocal theorem, Equation 2, applied for optical response can describe nonre-
ciprocal optical responses in which the direction of the propagation of light is specified by q.
For example, the natural circular dichroism in noncentrosymmetric materials is described by
ϵij(q,ω,B= 0) ∝ εijkqk with εijk being the totally antisymmetric tensor. However, magneto-optical
effects such as the Faraday effect and Kerr rotation are described by ϵij(q = 0, ω, B) ∝ εijkBk, and
the magnetochiral effect by 1ϵii(q, ω, B) ∝ γ ijkqjBk. All of these are linear responses, but here
we discuss the nonlinear and nonreciprocal optical responses in noncentrosymmetric quantum
materials (94–96). According to the classification in Reference 1, the nonreciprocal optical
responses are categorized as (a) only P is broken, (b) both P and T are broken, and (c) both P
and T are broken, while PT is not broken. We discuss case (a) in Section 4.1, cases (b) and (c) in
Section 4.2, and the nonreciprocal optical responses in superconductors in Section 4.3.

4.1. Nonmagnetic Systems

In noncentrosymmetric materials, one expects a second-order nonlinear optical response of the
current density Ja with respect to the electric field of light E as described by

Ja(ω1 + ω2 ) = σ
(2)
abc (ω1,ω2 )Eb(ω1 )Ec(ω2 ), 18.

where σ (2)
abc is the second-order nonlinear optical conductivity. The P-symmetry breaking is of-

ten detected by second harmonic generation (SHG), where ω1 = ω2 = ω. In contrast, the case of
ω1 = −ω2 = ω leads to the DC response. The direct (DC) photocurrent I is usually driven by the
applied DC electric field, which accelerates the photocarriers under light irradiation. Therefore,
I ∝ |E(ω)|2EDC, a third-order nonlinear optical process. Recently, intensive studies, both experi-
mentally and theoretically, have been done on the bulk photovoltaic effect, where the DC current
second order in the electric field of light E(ω) without any DC electric field is induced (97–103).

In particular, the second-order nonlinear response for linearly polarized light is given by the
formula (104):

σ
(2)
abb (ω,−ω) = − e3

ℏ3ω2

∫
dkd

(2π )d

[∑
n,m

fnm(∂kavb)nmvb,mn

ℏω − ϵmn + iδ
19.

+
∑

n,m,ℓ̸=n

va,nℓvb,ℓmvb,mn

ϵnℓ

(
fnm

ℏω − ϵmn + iδ
− fℓm

ℏω − ϵmℓ − iδ

)]
+ (ω ↔ −ω),

where −e is the electron charge; the subscripts n, m, and ℓ specify the energy bands; and
fnm = f (ϵn) − f (ϵm) with the Fermi distribution function and ϵnm = ϵn − ϵm. Here, the energy
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broadening δ is introduced phenomenologically. This expression is obtained in the velocity
gauge, where va = ∂kaH (k) along the a direction on the k-independent basis. The matrix element
va,nm = ⟨un|va|um⟩ is related to that of the position operator ra as

va,nm = iϵnmra,nm. 20.

In the length gauge, the matrix element ra,nm and its derivatives are used in the formulation (101),
but the velocity gauge and length gauge are equivalent when all the bands are taken into account.
Note that ⟨un|�kva|um⟩ is different from �k⟨un|va|um⟩ because the Bloch wave functions depend
on k.

In the presence of the T symmetry, Equation 19 is reduced to the following simple expression,
which is called shift current:

Jabbshift = − πe3

ℏ3ω2
|Eb(ω)|2

∑
nm

∫
[dk] fnm|vb,nm|2Rab,mnδ(ℏω − ϵmn ). 21.

The quantity Rab,mn is named shift vector and explicitly given by

Rab,mn =
[
∂

∂ka
Im(log vb,nm ) + aa,m − aa,n

]
. 22.

The shift vector has a clear physical meaning, i.e., the shift of the center of the wave packet as-
sociated with the interband transition because the Berry connection aa,n represents the intracell
coordinate. The first term in Equation 22 recovers the gauge invariance of the shift vector.

Shift current is closely related to the polarization current in ferroelectrics (29, 30, 105). In these
geometric formulations, the electric polarization is given by the time integral of the polarization
current and the integral of the Berry connection over the occupied states. The shift current is
regarded as the change in the polarization due to the interband transitions, but the essential dif-
ference is that shift current can be direct current, whereas the polarization current is always AC.
In order to support the steady DC shift current, relaxation is essential but not explicitly taken into
account in the original perturbative treatment (100).

In order to study this issue, a two-band model has been treated in the Floquet formalism com-
bined with Keldysh Green’s function method (103). In this formulation, the optical transition is
treated as the hybridization of the two bands 1 and 2 as

HF =
(
ϵ1 + ω −iA∗v12
iAv21 ϵ2

)
, 23.

where A and ω are the vector potential and frequency of light. Note here that the truncation of
the Hilbert space into two dimensions is assumed at the level of k-independent basis such as the
tight-binding model. This leads to a similar expression for the shift current (Equations 21 and 22)
restricted to the two bands and with an additional factor

(0/2)/
√
E2|v12|2/ω2 + 02/4, 24.

where E is the magnitude of the electric field E and 0 represents the relaxation that has no
preference of direction. This factor represents the competition between the stimulated emission
E2|v12|2/ω2, which cancels the shift of the wave functions, and the neutral relaxation 02/4. In
the limit of weak electric field E, this factor becomes 1, and apparently the relaxation plays no
role but is essential for the steady-state DC current. This factor predicts the saturation behavior
of the shift current as E is increased, i.e., crossover from ∝E2 to ∝E. This crossover has been
experimentally demonstrated in addition to the excellent agreement of the incident light energy
dependence with the first-principles calculation in the polar semiconductor SbSI (106).
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Considering that the shift current is similar to the polarization current, it does not require
the photocarriers. Therefore, it can also be induced by the photoexcitation of the exciton without
the DC external electric field. This possibility has been explored theoretically (107), and was later
extended to the electromagnon in magnetic insulators (108). The idea is that both the polarization
current and the shift current come from the virtual electron–hole excitation, and the mechanism
to create this virtual transition in nonequilibrium steady state can induce the shift current. As for
the exciton shift current, photocurrent has been observed at a peak energy of an exciton resonance
in a semiconductor CdS (109). Furthermore, the phonon excitation in the ferroelectric material
BaTiO3 has been studied recently (110). The phonon excitation in the THz region induces virtual
interband transitions via the electron–phonon interaction in thisP-broken system. It is found that
the photocurrent does not depend on the external DC electric field, indicating that it is not from
the photocarriers.

Another important issue is if the itinerant nature of the electronic states is essential for the shift
current or not. Related to this issue, a recent experiment has revealed the robustness of the shift
current against the disorder in the polar semiconductor SbSI (111). Even though the dark conduc-
tivity changes 7–8 orders of magnitude by varying the disorder strength, the photocurrent at zero
bias remains almost unchanged (111). This strongly suggests that the shift current is supported
also by localized states. The shift current in the disordered Rice–Mele model has been calculated
numerically (112), and it is robust against localization as long as the nature of the conduction
and valence bands is not mixed due to the disorder potential, which is in qualitative agreement
with the experiment in SbSI (111). Materials showing a shift current are growing in number,
including Weyl semimetals (113), transition metal dichalcogenides (114), and superconductors
(115).

4.2. Magnetic Systems

Next, we discuss nonreciprocal optical responses in magnetic systems with broken T sym-
metry. We keep focusing on the second-order responses. Recent studies have shown some
optical responses characteristic of magnetic systems, such as those categorized under the mag-
netophotogalvanic effect (MPGE) or spin-driven photocurrent. The photocurrent in magnetic
systems is often accompanied by a finite photo-spin-current, enabling ultrafast spin manipulation.
Therefore, the MPGE is also studied from the perspective of opto-spintronics.

Here, we review the classification of the photocurrent in P-broken T -symmetric systems and
P- and T -broken PT -symmetric systems. They correspond to cases (a) and (c) in the classifi-
cation of nonreciprocal responses (Section 4.1). Table 1 lists the photocurrent obtained by the
dipole approximation and relaxation-time approximation. In case (b), P-, T -, and PT -broken
systems, all the responses in the table may occur. The Berry curvature dipole term and Drude

Table 1 Classification of photocurrent responses in metals, insulators, and superconductors
with T symmetry or PT symmetry

System T -symmetric systems PT -symmetric systems
Metal Berry curvature dipole (116) ⟲ Drude term (117) ↕
Metal and
insulator

Electric injection current (101) ⟲ Magnetic injection current (118) ↕
Shift current (100, 101) ↕ Gyration current (119, 120) ⟲

Superconductor Berry curvature derivative (121) ⟲ Nonreciprocal superfluid density (121) ↕
Drude derivative (121) ⟲

Abbreviations: ⟲, circularly polarized-light-induced photocurrent; ↕, linearly polarized-light-induced photocurrent.
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Table 2 Director Xµ and dipole-transition amplitude T νλ for the resonant photocurrenta

Xµ T νλ

Electric injection current 1µ �νλ

Shift current Rµ gνλ

Magnetic injection current 1µ gνλ

Gyration current Rµ± gνλ,�νλ

aThe directors are group velocity difference 1µ, shift vector Rµ, and chiral shift vector Rµ±. The transition amplitude is
characterized by the band-resolved quantum metric gνλ and Berry curvature �νλ. Table adapted from Reference 119.

term are counterparts of nonreciprocal transport discussed in Section 2, namely, the NLHE and
MCA (122). Thus, they vanish in insulators but are allowed in metals. The injection current and
shift current are resonant contributions and appear in insulators as well. In the systems with-
out Kramers’ degeneracy, these contributions lead to the photocurrent conductivity given by the
overall formula

σµνλ(�) ∝
∫

dkX µT νλ fmnδ (ℏ�− ϵmn ), 25.

with director X µ and transition amplitude T νλ. The definitions of fmn and ϵmn are given in
Section 4.1. The list of X µ and T νλ is shown inTable 2. The formula is modified in the presence
of Kramers’ degeneracy (119), which is the case for spinful PT -symmetric systems.

Although the director of the shift current is the shift vector introduced in Section 4.1, it is the
chiral shift vector (119, 120), a counterpart in the PT -symmetric system, for the gyration (chiral
shift) current. However, the velocity difference 1µ

mn(k) = vµmm(k) − vµnn(k) is the director for the
injection current.Thus, the shift current and injection current have essentially different characters.
The shift current and gyration current are polarization currents related to the positional shift,
whereas the injection current is related to the particle/hole motion due to the group velocity.
As is known for the linear response, the transition amplitude also originates from the geometric
properties of Bloch electrons, given by the band-resolved quantummetric gµνmn and Berry curvature
�µν
mn defined as

gµνmn = 1
2
(aµmna

ν
nm + aµmna

ν
nm ), 26.

�µν
mn = i (aµmna

ν
nm − aνmna

µ
mn ). 27.

Therefore, it is naturally expected that the resonant photocurrent is enhanced in topological
materials. This has been actually shown for tilted Dirac/Weyl fermions (119, 120). The photocur-
rent conductivity is divergent when the chemical potential lies close to the Dirac/Weyl points.
The gyration current in the absence of Kramers’ degeneracy can also be described by another
geometric quantity, the symplectic Christoffel symbol (120).

Note that nonreciprocal optical responses may appear from mechanisms beyond the
relaxation-time approximation. For example, second-order optical responses due to an extrinsic
mechanism (21) and those carried by excitons (107) and electromagnons (108) have been studied.

An experimental search for the bulk MPGE has been carried out in recent studies, and it was
observed in several setups, such as semiconductors (123, 124) and Dirac electrons (125) in the
magnetic field, a ferromagnetic topological insulator (126), a magnetic multilayer (127), magnetic
van der Waals heterostructures (128), and magnetic metamaterial (129). In Reference 129, con-
trol of the photogalvanic effect by polarization states of light and magnetization of electrons is
demonstrated in a metamaterial, giving solid evidence for the bulk MPGE.Magnetically induced
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response to the linearly polarized light is dominant, possibly corresponding to the magnetic in-
jection current inTable 1. However, the long-wavelength approximation is not generally justified
in metamaterials, leaving the microscopic origin unresolved.

4.3. Superconductors

Superconductors show anomalous electromagnetic properties that are absent in other materials.
Indeed, the zero electric resistivity and the Meissner effect are fundamental properties defin-
ing superconductivity. Although these are linear responses, we may expect anomalous nonlinear
responses as well.

In Table 1, we see the photocurrent unique to superconductors, such as that arising from the
Berry curvature derivative (BCD) and nonreciprocal superfluid density (NRSF). These contribu-
tions arise from essential properties of superconductors; Bogoliubov quasiparticles are formed by
the hybridization of electrons and holes. Because the electrons and holes have opposite electric
charges, the vector potential derivative of the Bogoliubov–de Gennes (BdG) Hamiltonian is not
equivalent to the momentum derivative, and thus, the (higher-order) current operators are

Jα1 ···αn = (−1)n
∂nHBdG(k,A)
∂Aα1 · · · ∂Aαn

∣∣∣
A=0

̸= ∂nHBdG(k,0)
∂kα1 · · · ∂kαn . 28.

The equality on the right-hand side is satisfied in the Bloch Hamiltonian in the normal state, and
therefore, several terms vanish after the integration of momentum in the Brillouin zone (130).
However, such a cancellation may not occur in superconductors, and as a consequence, anomalous
terms appear in the electromagnetic response functions. Thus, we obtain anomalous nonrecipro-
cal responses unique to superconductors (121). The zero resistivity and Meissner effect are also
attributed to the same origin.

The anomalous nonreciprocal responses cause not only the photocurrent but also the SHG and
difference-frequency generation. In T -symmetric systems, anomalous nonreciprocal responses are
given by the conductivity derivative (121),

σ sCD
αβγ (ω1 + ω2,ω1,ω2 ) = − i

4

(
1
ω1
∂λβσ

(λ)
αγ + 1

ω2
∂λγ σ

(λ)
αβ

) ∣∣∣
λ=0

, 29.

where σ (λ)
αβ is the normal linear conductivity, and λ is a virtual variable corresponding to the vector

potential. For the photocurrent,ω1 = −ω2 =�, in the low-frequency region, this term is reduced
to the BCD,

σ BCD
αβγ (�) = i

4�
ϵβγ δ∂λα

(∑
a

�λδ
a fa

) ∣∣∣
λ=0

, 30.

with the total Berry curvature
∑

a�
λδ
a fa in the λ space. The BCD ∂λα

(∑
a�

λδ
a fa

)
is an axial

rank-2 tensor and, thus, allowed in the gyrotropic point group. Note that the BCD is similar to
the Berry curvature dipole (33) but different. Therefore, the BCD does not vanish in the gapped
superconducting state.

When the T symmetry is broken, another response appears (121),

σNRSF
αβγ (ω1 + ω2,ω1,ω2 ) = 1

2ω1ω2
f αβγ , 31.

which comes from the NRSF, f αβγ = ∂λα∂λβ ∂λγ Fλ, obtained by the third-order derivative of free
energy. Because the second-order derivative ραβs = ∂λα∂λβFλ is the superfluid density, the NRSF
can be regarded as the nonreciprocal correction to the superfluid density. As the superfluid density
governs the Meissner effect, the NRSF makes the Meissner effect nonreciprocal in the sense
that the Meissner response comprises a unidirectional component with respect to the magnetic
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a   Normal state b   SC state c   Comparison of normal and SC states

ε1k ε2k E1k E2k
Type A
transition Type B

transition

Figure 4

Illustration of optical transitions that may lead to the nonreciprocal optical responses. (a) Optical transition in the normal state.
(b) Optical transitions in the superconducting state. Energy bands of Bogoliubov quasiparticles in single-band noncentrosymmetric
superconductors are shown by Eik. The type A and type B transitions contribute to the resonant nonreciprocal responses. The type A is
Eik ↔ −E jk (i ̸= j), which has a counterpart in the normal state. The type B is Eik ↔ −Eik, which is unique to superconductors. Thus,
the superconducting nonreciprocal response needs the type B optical transition. (c) The comparison between the normal and
superconducting states. Figure adapted from Reference 132. Abbreviation: SC, superconducting.

field (131). This is called the nonreciprocal Meissner effect. The NRSF f̂ is a totally symmetric
rank-3 tensor and odd parity for the symmetry operations P and T . Therefore, the NRSF can be
finite only when both P and T symmetries are broken. A detailed symmetry argument based on
the point group is given in Reference 121.

Let us stress that the nonreciprocal optical responses due to the conductivity derivative and
NRSF show low-frequency divergence,σ sCD

αβγ ∝ 1/ω and σNRSF
αβγ ∝ 1/ω2. In contrast to the resonant

contributions, which are also present in the normal state (Sections 4.1 and 4.2), topological struc-
ture in Bogoliubov quasiparticles is not needed for the divergent responses in the superconducting
state. In this sense, the divergent nonreciprocal responses are ubiquitous in superconductors.
Thus, giant photocurrent and SHG are expected to occur in the in-gap frequency region, typically
from the sub-THz to THz range.

Microscopic conditions beyond symmetry arguments must be satisfied to obtain finite optical
responses unique to superconductors. This can be intuitively understood by considering reso-
nant contributions, for which interband optical transition is needed to occur. Figure 4 illustrates
the spectrum of Bogoliubov quasiparticles in noncentrosymmetric superconductors. The type B
optical transition does not have a counterpart in the normal state, although the type A optical
transition can be reduced to the normal optical transition by an adiabatic change from a super-
conducting state to a normal state. Therefore, some microscopic conditions have to be satisfied
to allow the type B transition leading to the superconducting nonreciprocal responses. This ex-
pectation is verified by a microscopic calculation based on the BdGHamiltonian (132), which has
clarified microscopic conditions in noncentrosymmetric superconductors with T symmetry.1 It is
shown that the coexistence of interband Cooper pairs and intraband Cooper pairs is necessary.
Furthermore, evaluating interband/intraband Cooper pairs in single-band noncentrosymmetric
superconductors by superconducting fitness (134, 135), we see that spin-triplet Cooper pairs are
necessary to cause nonreciprocal optical responses unique to superconductors (132). Because of
this fact, nonreciprocal optics may be useful for probing spin-triplet Cooper pairs, which also play
essential roles in superconducting spintronics (136) and topological superconductivity (137, 138),
and so on.

Experimentally, a nonreciprocal optical phenomenon has been reported in a thin film of
NbN (139). The SHG induced by supercurrent injection was observed and attributed to the

1See Reference 133 for the linear optical response in centrosymmetric superconductors.
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ratchetmotion of the vortices. By contrast, the nonreciprocal optical responses arising from the in-
trinsic properties of superconductors have not been identified to the best of our knowledge. Thus,
experimental studies of superconducting nonreciprocal optics are a subject of current interest, and
further research is awaited.

5. SUMMARY AND FUTURE PERSPECTIVES

Wehave discussed the nonreciprocal transport and optical phenomena in quantummaterials.This
field is newly and rapidly developing, expanding its horizon both theoretically and experimentally.
Electronics is generally based on the nonlinear responses of electrons, e.g., diodes and transistors
utilize the nonlinearity. Recently, most research focuses on bulk properties, although some are
studying interfaces or junctions as discussed in Section 3.3. Momentum space geometry plays a
major role in the nonreciprocal response of bulk states as repeatedly stated in this article. The
generalization into spatially inhomogeneous structures, i.e., the coexistence of geometric struc-
tures in both momentum and real spaces, will be the next targets of research. In this case, the Berry
connection in the phase space, i.e., six-dimensional r, k space, can play the central role (140). This
includes artificial structures such as interfaces, surfaces, junctions, etc. Especially, the physical pro-
cesses at the contacts with the electrodes are now well understood for the shift current, where the
polarization current–like dc current in the bulk turns into the usual electron currents in the leads.

Another direction is the real time–dependent quantum phenomena. Most of this article fo-
cuses on steady-state properties independent of time, but the transient dynamics also contains a
lot of information on the electronic states. Recent experimental advances in time-resolved spec-
troscopies such as angle-resolved photoemission spectroscopy (ARPES) are very useful in this
respect, revealing new insight into the quantum dynamics.

Lastly, there still remain many issues unexplored in correlated electronic systems. This is a
hard problem, even in the ground state or in thermal equilibrium, and hence the extension to
the nonequilibrium seems even more difficult. However, a theoretical approach has been pro-
posed, which is successful in some problems (141). It is likely that the time-dependent quantum
dynamics of the correlated electrons can reveal important information that cannot be obtained by
equilibrium properties, including new insight from linear response.
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