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Abstract

Adaptation refers to the biological phenomenon where living systems change
their internal states in response to changes in their environments in order to
maintain certain key functions critical for their survival and fitness. Adapta-
tion is one of the most ubiquitous and arguably one of the most fundamental
properties of living systems. It occurs throughout all biological scales, from
adaptation of populations of species over evolutionary time to adaptation of
a single cell to different environmental stresses during its life span. In this
article, we review some of the recent progress made in understanding molec-
ular mechanisms of cellular-level adaptation. We take the minimalist (or the
physicist) approach and study the simplest systems that exhibit generic adap-
tive behaviors, namely chemotaxis in bacterium cells (Escherichia coli ) and
eukaryotic cells (Dictyostelium). We focus on understanding the basic bio-
chemical interaction networks that are responsible for adaptation dynamics.
By combining theoretical modeling with quantitative experimentation, we
demonstrate universal features in adaptation as well as important differences
in different cellular systems. Future work in extending the modeling frame-
work to study adaptation in more complex systems such as sensory neurons
is also discussed.
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1. INTRODUCTION

Living systems, from a single cell to multicellular organisms and populations of interacting species,
all have the amazing ability to adapt to changes in their environments. Adaptation allows living
systems to adjust themselves in response to persistent changes of the environment. At the evolu-
tionary timescale, adaptation allows species to evolve driven by changes in the environment. At
the timescale of the life span of a living system, the ability to adapt is critical for the system’s sur-
vival by maintaining its homeostasis under different environmental conditions. At the even shorter
timescale of individual signaling pathways, such as those for sensory signal transduction, adapta-
tion can greatly extend the range of sensitive detection and provides a way to compute/process
environmental information.

What are the possible mechanisms for adaptation in living systems? Are there any universal
principles governing interactions of the underlying living matter (biomolecules, cells, organisms)
that are responsible for the vast variety of adaptive behaviors in biology? Are there any fundamental
limitations to the performance of adaptation?

In this review, we examine some of the recent developments in addressing these questions by
combining theoretical analysis, computational modeling, and quantitative experiments for rep-
resentative sensory signaling systems, including bacterium cells (Escherichia coli ) and eukaryotic
cells (Dictyostelium discoideum). We first present a general mathematical framework for studying
adaptation dynamics. Next, we study two distinct biochemical networks for adaptation and the
corresponding biological systems that employ these networks. We then investigate the universal
properties of adaptation independent of the specific network structure. We conclude by outlining
some of the remaining challenges for future investigations.

2. ADAPTATION AS A DYNAMICAL SYSTEM: A MATHEMATICAL
FRAMEWORK

We present a general mathematical framework under which we may study adaptation. We denote
X (t) as the input (stimulus strength) and Z(t) as the output of the biochemical network, where t
is time. A change in X results in a change in Z with a fast response time. The output also depends
on a slower internal variable Y (t), which depends on X , Y , and Z. The system can be described
by two generic dynamical equations:

dZ
dt

= G(X , Y, Z),

dY
dt

= F (X , Y, Z), 1.

where F and G are the rate functions for Y and Z, respectively.
The nullclines from dZ/dt = 0 and dY/dt = 0 are given by Z = g(Y, X ) and Y = f (Z, X ),

respectively. The steady-state solution for a fixed X is determined by the intercept of the two
nullclines. Here, we express the steady-state solution as Y = Ys(X ) and Z = Zs(X ). A typical
adaptive response is shown in Figure 1a. Upon a sudden increase of the input from X to X +�X ,
the output Z first changes from Zs(X ) to a peak value of Zp(X + �X , X ) before recovering
(adapting) to its new steady-state value Zs(X +�X ) at a longer time. In the following, we describe
the basic requirements for adaptation and its characterization.

2.1. Separation of Timescales

We can define two timescales τZ ≡ −( ∂G
∂ Z )−1 and τY ≡ −( ∂ F

∂Y )−1, which characterize the timescales
for response and adaptation, respectively. To have a high sensitivity to a sudden change in its
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Figure 1
Generic adaptation behavior and responsible network motifs . (a) Illustration of adaptation dynamics of the
output Z(t) in response to a step function change in input from X to X + �X . (b) The two basic network
architectures (motifs) that can provide accurate adaptation. The red arrow lines highlight the slow
interactions critical for adaptation. The NFL and IFFL networks differ in the placement of these slow
interactions. Abbreviations: IFFL, incoherent feed-forward loop; NFL, negative feedback loop.

environment, a cell needs to first respond quickly. To maintain the high sensitivity over a wide
range of backgrounds, the cell needs to adapt to a constant environment over a longer timescale.
Indeed, one of the key requirements for adaptation is the separation of these two timescales, i.e.,
τZ � τY . This means that the controller Y adjusts the system only after the system has enough
time to respond. Due to its slow timescale, Y can also be understood as a working memory for the
signal encountered by the cell.

2.2. Response Sensitivity and Adaptation Accuracy

There are two key characteristics for adaptation. The short time response is characterized by the
response sensitivity:

S ≡ |Zp(X + �X , X ) − Zs(X )|
|�X | 2.

for small �X . The long time recovery is characterized by the adaptation error:

ε ≡ |Zs(X + �X ) − Zs(X )|
|Zp(X + �X , X ) − Zs(X )| , 3.

which measures how close the output adapts back to its original value relative to the initial response.
Adaptive behavior requires ε < 1, and perfect adaptation corresponds to ε = 0 when the adapted
output recovers to exactly its prestimulus value.

2.3. Network Requirement for Adaptation

Given the separation of timescales τZ � τY , the short time response Zp can be expressed as
Zp(X + �X , X ) ≈ g[Ys(X ), X + �X ]. For small |�X |, we can express the initial response as
|Zp(X +�X , X )−Zs(X )| ≈ |g[Ys(X ), X +�X ]−g[Ys(X ), X ]| = | ∂g

∂ X �X | and the adapted response
as |Zs(X + �X ) − Zs(X )| = |g[Ys(X + �X ), X + �X ] − g[Ys(X ), X ]| = |( ∂g

∂ X + ∂g
∂Y × dYs

dX )�X |.
Plugging these expressions into Equation 3, the requirement ε < 1 results in a necessary condition
for adaptation:

∂g
∂ X

×
(

∂g
∂Y

× dYs

dX

)
< 0. 4.
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The above requirement for adaptation has a simple intuitive interpretation: Adaptation requires
the two pathways from input to output—one direct ( ∂g

∂ X ) and one indirect through Y ( ∂g
∂Y × dYs

d X )—to
have opposite signs, i.e., one excitatory and the other inhibitory.

2.4. Two Basic Network Motifs for Adaptation

Without losing generality, we investigate the case ∂g
∂ X > 0 and ∂g

∂Y < 0. It is straightforward to
show that the other case in which ∂g

∂ X < 0 and ∂g
∂Y > 0 works similarly. From Equation 4, we

obtain the condition for adaptation:

dYs

dX
=

∂ f
∂ X + ∂ f

∂ Z
∂g
∂ X

1 − ∂ f
∂ Z

∂g
∂Y

≈ ∂ f
∂ X

+ ∂ f
∂ Z

∂g
∂ X

> 0, 5.

where the last approximation was obtained by using ∂ f
∂ Z

∂g
∂Y ∝ τZ/τY � 1.

This adaptation condition is satisfied by two basic networks with a minimum number of nonzero
interactions: (a) ∂ f/∂ Z > 0, ∂ f/∂ X = 0, and (b) ∂ f/∂ X > 0, ∂ f/∂ Z = 0. As illustrated in
Figure 1b, the first network is called the negative feedback loop (NFL) network because of the
negative feedback loop Z → Y � Z. The second network is called the incoherent feed-forward loop
(IFFL) network because the loop is formed by two feed-forward paths, X → Z and X → Y � Z,
with opposite (incoherent) signs. Indeed, an exhaustive search of all possible three-node networks
found that the NFL and IFFL are the only two basic network motifs that enable strong response
and accurate adaptation (1). In realistic biological systems, the dynamical variables are protein
concentrations in different conformational states, and interactions are carried out by enzymatic
reactions with multiple intermediate control elements (a vector �Y ).

Due to their generality, the simple dynamical system model and the basic network structures
(NFL and IFFL) provide a powerful framework to understand adaptation in a wide range of
different cellular systems including E. coli and Dictyostelium, which we describe below.

3. ADAPTATION IN BACTERIAL CHEMOTAXIS

Due to its relative simplicity, E. coli chemotaxis has served as an important model system to
study sensory adaptation. Berg & Brown first observed more than 40 years ago that upon a
sudden increase in the concentration of chemoattractant aspartate, a cell’s tumbling frequency
initially decreases, then recovers, and eventually returns back to its prestimulus level (2). The
adapted value of the tumbling frequency remains the same for a wide range of stimulus strengths
(aspartate concentrations). This accurate adaptation is remarkable given the large variations in the
concentrations of the key biomolecules among individual cells (3).

3.1. Molecular Mechanism

The quest for the molecular mechanism of adaptation motivated a large body of in-depth study
into E. coli chemotaxis. The result is a quantitative understanding of the system.

3.1.1. Signal transduction. The bacterial chemotaxis signaling pathway has been well studied
(see Reference 4 for a review on the signaling pathway). External chemical signals are sensed by
the membrane-bound chemoreceptors in a bacterium cell such as E. coli. When chemoeffector
molecules (ligands), such as amino acids and sugar molecules, bind with chemoreceptors, they
induce conformational changes of the receptor, which in turn control the kinase activity of the
cytosolic protein CheA. The chemoreceptors, histidine kinase CheA, and an adaptor protein
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CheW form extended two-dimensional clusters with up to thousands of proteins in them (5). These
receptor clusters, containing many directly and indirectly coupled receptors, are responsible for
signal amplification in the system (see Reference 6 for a recent review on modeling). The activated
CheA first autophosphorylates and then passes the phosphate group onto the response regulator
proteins CheY and CheB. The phosphorylated CheY (CheY-P) can bind with the motor switch
protein FliM to control the bacterial flagellar motor’s rotational direction and thus the cell’s
motility. This constitutes the linear part of the signal transduction in bacterial chemotaxis.

3.1.2. Adaptation mechanism. The linear signal transduction pathway described above allows
the cell to sense and respond. However, the range of stimulus concentrations over which a cell can
respond is limited by the sensitivity range of the chemoreceptor, which is finite (less than one order
of magnitude). The bacterial chemosensory system functions in an environment with a wide range
of chemoeffector concentrations because of adaptation. We now know that at the molecular level,
bacterial chemoreceptors adapt by covalent modification, i.e., methylation and demethylation of
four specific amino-acid residues catalyzed by the enzymes CheR and CheB-P, respectively. Recep-
tor adaptation dynamically adjusts its sensitive range according to the background and allows the
receptor to detect changes in the environment using the most sensitive part of its response curve.

3.2. The Standard Model of Bacterial Chemotaxis

The state of a given receptor can be represented by three variables: its activity a , its ligand oc-
cupancy status l determined by the ligand concentration [L], and its methylation level m. For a
simple two-state (active and inactive) model for a receptor with five methylation levels and ligand
binding status (ligand-bound and vacant), there are 2 × 2 × 5 = 20 states with 4 × 9 × 2 = 72
reactions among them. Mathematical models based on the transitions between these discrete states
were used to study the dynamics and robustness of the system (7–9). Here, we use a simple coarse-
grained model to describe the dynamics of the averaged properties of the system. Following the
convention developed in the previous section, we define the output Z ≡ < a> and controller
Y ≡ < m >, which are both continuous variables. The input is the ligand concentration X ≡ [L]
(the correspondence between the different variables is summarized in Table 1). Below, we develop
the simplest mathematical model for these averaged variables guided by separation of timescales
and quantitative experiments.

3.2.1. Fast-response dynamics. For bacterial chemotaxis, both the ligand binding dynamics and
kinase activity dynamics are faster than the receptor methylation process. Therefore, at a timescale
faster than the methylation time, we can consider the dynamics of the output Z with a fixed Y :

dZ
dt

= −[Z − g(Y, X )]/τZ, 6.

Table 1 Notational correspondence for bacterial and eukaryotic chemotaxis

This review Bacterial chemotaxis Eukaryotic chemotaxis

Input X Ligand concentration [L] Ligand concentration (R)

Internal Y Methylation level m Activator/Inhibitor (RasGEF, RasGAP)

Output Z Receptor activity a Output (RasGTP)

Abbreviations: RasGap, RasGTPase-activating protein; RasGEF, Ras guanine nucleotide exchange factor; RasGTP, Ras
guanosine triphosphate.
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where τZ is a fast timescale that depends on both the ligand binding and kinase activation dy-
namics. In steady state, we have Z = g(Y, X ). The functional form of g(Y, X ) can be determined
experimentally by measuring the input–output relationship (Z versus X ) in genetically engineered
cells with a fixed value of Y (10, 11). Experimentally, this input–output relationship was found to
follow a sigmoidal form with a large Hill coefficient. Theoretically, this input-output dependence
can be explained by a Monod–Wyman–Changeux (MWC) model (11–13), for a large cluster of
highly cooperative (all-or-none) receptors or by an Ising-type model in which receptors interact
with their nearest neighbors in an extended lattice of receptors (14–16) . The MWC model leads
to a simple analytical result, which we use here:

g(Y, X ) =
[

1 + e N fm(Y )
(

1 + X/Ki

1 + X/Ka

)N
]−1

, 7.

where N is the number of highly correlated receptors in the cluster and Ka and Ki are the
dissociation constants for the active and inactive receptors, respectively, with Ka 	 Ki . The
effects of receptor methylation are given by the free-energy difference fm(Y ) between active and
inactive states for a receptor that is not bound to the ligand. Experimental data reveals that this
energy difference depends (roughly) linearly on Y : fm(Y ) ≈ −α(Y − m0), with α ≈ 1.7 (17, 18).

3.2.2. Slow-adaptation dynamics. From Equation 7, it is clear that varying Y shifts the sensi-
tivity of the input–output response. How does the system adjust its receptor methylation level in
response to changes in the environment to enable adaptation? Details of the enzymatic reactions
(methylation and demethylation) and their kinetic rates are not well known. However, significant
insights into the methylation dynamics were gained by the systems-level adaptation behavior. For
E. coli chemotaxis, adaptation is highly accurate with an error ε ∼1–4%; i.e., the adapted value of
Z activity is independent of the input X and adaptation is nearly perfect. A simple way to achieve
perfect adaptation is to have the methylation rate function F depend only on Z:

dY
dt

= F (Z), 8.

where F does not depend on Y and X explicitly. In steady state, we have F (Zs) = 0, which results
in an adapted activity Zs = F−1(0) that is independent of the input X . This perfect adaptation
mechanism is related to the integral control system in engineering (19).

For E. coli chemotaxis, receptor methylation increases kinase activity ∂g
∂Y > 0, thus dF (Z)

dZ < 0 (at
least near Z = Zs) is required to maintain stability of the adapted state. Given that the interactions
between the output (Z) and the controller (Y ) have opposite signs dF (Z)

dZ × ∂g
∂Y < 0, it is clear

that bacterial chemotaxis adaptation is carried out by a negative feedback loop (NFL) network.
Combining the fast and slow dynamical equations, Equations 6 and 8 constitute the “standard
model of bacterial chemotaxis” (20), which can be used to predict responses to arbitrary input
signals (18, 21).

3.3. Comparison with Quantitative Experiments

One major recent advance in bacterial chemotaxis research was the Förster Resonance Energy
Transfer (FRET) assay for studying E. coli chemotaxis signaling pathway in vivo. Figure 2a shows
a typical response to a strong stimulus (10). These quantitative input–output measurements for
wild-type (WT) cells as well as different mutants have been instrumental for model development.
For simple step-function stimuli (addition and removal) as shown in Figure 2a, the standard
model can be analyzed by using the nullcline analysis and exploiting the separation of timescales,
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Figure 2
Comparison between predictions of the standard model of bacterial chemotaxis and quantitative experiments. (a) Response of Escherichia
coli to step up and step down (addition and removal, respectively) of attractant MeAsp concentrations (X1 and X2). The response (kinase
activity) is measured by using FRET [data from Sourjik & Berg (10)]. (b) Nullcline analysis of the dynamical equations for bacterial
chemotaxis. The lettered time points (A–E) correspond to those in panel a. The solid gray lines are the Z nullclines, Z = g(Y, X1) and
Z = g(Y, X2), for different inputs X1 and X2(> X1), respectively. The horizontal dashed line is the Y nullcline expressed as F (Z) = 0,
corresponding to a constant value of Z (Z = Zs ). The green solid arrow lines show the fast responses caused by changes (addition and
removal) of input X between X1 and X2. The blue dashed arrow lines show the slow adaptive dynamics along the Z nullclines. (c) The
responses to oscillatory signals (top panel ) are characterized by the response amplitude |A| and the phase shift φ. Both dependences of
|A| (middle panel ) and φ (bottom panel ) on the input frequency ν quantitatively agree with predictions from the standard model. The
results show that the system computes the time derivative of the signal at low frequencies (shaded region), where ν < νm ≈ 0.006 Hz.
The gradient computation can be seen directly by defining H ≡ A/(iν AL), which remains roughly constant in the shaded region
(dashed blue line in the middle panel ). Panel c is adapted from Reference 18. Abbreviation: FRET, Förster resonance energy transfer.

as shown in Figure 2b. Furthermore, the standard model can be used to predict responses to more
complex time-varying signals for direct comparison with quantitative experiments.

3.3.1. Responses to time-varying signals. The standard model has been tested in predicting the
responses to ramps and oscillatory signals (see Reference 6 for a recent review). Briefly, by fitting
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the measured responses to exponential ramps with the model prediction (18, 20), the intracellular
rate function F (Z) can be uniquely determined. Once F (Z) is determined, the standard model can
be used to predict responses to any time-varying signals without any adjustable parameters. For
an exponentiated sine-wave signal X (t) = X0 exp[AL sin(2πνt)], the standard model predicts that
the response is Z(t) = Zs + Re(A), where the complex response A = |A| exp[i (2πνt −φ)] with the
amplitude |A| and a phase delay φ is given by

|A| = NZs(1 − Zs)√
1 + (νm/ν)2

AL, φ = π − tan−1(νm/ν), 9.

where νm = −αNZs(1 − Zs)F ′(Zs)/2π is a characteristic adaptation frequency. The predicted
amplitude and phase from Equation 9 agree quantitatively with experiments as shown in Figure 2c
(18). By taking the Fourier transform of the signal’s time derivative B ≡ iν AL and factoring it
out from the response, we obtain the systems time-derivative-filtering function H(ν) ≡ A/B =
NZs(1 − Zs)(iν + νm)−1. As shown in Figure 2c, |H(ν)| is roughly constant for ν � νm, which
clearly shows that E. coli computes time derivatives of the signal at frequencies lower than the
adaptation frequency νm.

3.3.2. Responses to realistic signals in free-moving cells. Besides predicting responses of
immobile cells to prescribed time-varying signals, the standard model has been used to understand
intracellular signaling dynamics of free-moving cells (22, 23). The combination of the standard
model for the signaling pathway and a quantitative model for the flagellar motor response has
yielded significant insights and quantitative predictions on how motile cells behave in spatial-
temporally varying environments. These predictions have been tested in microfluidic experiments
with stationary, standing-wave, and traveling-wave gradients (24–26).

4. ADAPTATION IN EUKARYOTIC CHEMOTAXIS

Adaptation is not limited to bacterial chemotaxis but is also critically involved in eukaryotic chemo-
taxis. A number of eukaryotic cells respond to chemical gradients and direct their motion to higher
chemoattractant concentrations (27–29). Chemotaxis plays an essential role in several biological
processes, including wound healing (30), embryology (31, 32) and cancer cell migration (33).
Just as in the case of bacterial chemotaxis, the external chemoattractant molecules bind to surface
receptors, activating intracellular signaling pathways that involve a multitude of biochemical com-
ponents (34). The precise molecular mechanisms for eukaryotic chemotaxis are still under debate
(28, 34–36), but many of the pathway components are identified. Furthermore, these pathways are
mostly conserved across different cell types, making it possible to use experimentally accessible
model systems (37–39). One of the best-studied model systems is D. discoideum, a social amoe-
boid that uses chemotaxis to form aggregation centers following starvation (40, 41). Dictyostelium
cells move fast and are relatively easy to manipulate in a laboratory setting. Furthermore, many
fluorescent reporters are available, making it possible to quantify response kinetics and amplitudes.

How do eukaryotic cells employ chemotaxis? Just like bacteria, eukaryotic cells are able to adapt
themselves to their changing surroundings as they move up the gradient. The logic is the same as
for bacteria: With an adaptive approach, cells can maintain their responsiveness over a wider range
of background concentrations (42, 43). Nevertheless, there are a number of important differences
between bacterial chemotaxis and chemotaxis in eukaryotes. These differences are primarily due
to the contrasting modes of motion between the two cell types as well as their size disparities.
Instead of swimming, eukaryotic cells crawl and migrate by extending their membrane at the
front of the cell while retracting the back of the cell (27, 44, 45). The resulting migration speed
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a b

Figure 3
(a) Example of spatial asymmetry breaking in a neutrophil exposed to a gradient (toward the upper right). Shown are the distribution of
actin (left) and phosphorylated myosin light chain (right) as revealed by fluorescent staining. Adapted from Reference 53 with
permission. (Copyright 2009. The American Association of Immunologists, Inc.) (b) Spatial symmetry breaking in a Dictyostelium cell in
a gradient pointing to the right. The localization of activated Ras (RasGTP) is visualized using a Ras-binding domain fused to green
fluorescent protein (RBD-GFP).

can range from less than 1 µm/min for macrophages and fibroblasts (46, 47) to approximately
10 µm/min for neutrophils and Dictyostelium cells (48, 49), which is considerably slower than the
typical swimming speed of bacteria (∼25 µm/s; 2). Chemotaxing eukaryotic cells are, in general,
also much larger than bacteria and their 2-µm size, ranging from 10 µm in diameter (neutrophils
and Dictyostelium) to roughly 100 µm for elongated fibroblasts. Taken together, the much smaller
speed and larger cell sizes preclude eukaryotic cells from using the time measurement mechanisms
employed by swimming bacteria. Instead, these cells use spatial directional sensing mechanisms,
in which the cell’s symmetry is broken, leading to a distinct back and front that can be visualized
using fluorescent markers (Figure 3) (50–52).

How might adaptation help eukaryotic cells during chemotaxis? Several experimental studies
have shown that cells can detect very small gradients (54). For example, Dictyostelium cells can
respond to concentration differences of approximately 1% across the cell body (55, 56). In addition,
these cells respond to gradients with a large range of background concentrations, defined here
as the spatially averaged concentration experienced by a cell. Thus, cells cannot determine their
direction based on a fixed operating point as this would make them responsive only over a very
small concentration range. Instead, cells must be able to compare bound receptor levels at their
front and back independent of the background concentration. As suggested by several studies, this
comparison will be facilitated by adaptation that ensures that the difference between front and
back is independent of background levels (57–59). Importantly, experiments monitoring FRET
between two subunits of the receptors have demonstrated that this adaptation occurs downstream
from the chemoattractant receptors (60).

4.1. Experimental Evidence for Adaptation

Early experiments, using observations of morphological changes or cell population assays, have
suggested that cells can adapt to changing stimuli (61, 62). A more quantitative analysis of adap-
tation has been made possible by the recent introduction of microfluidics, coupled to improved
microscopy. These experimental techniques make it possible to study the dynamics of markers in
single cells exposed to carefully controlled environments (48, 52, 56, 63–67). Recently, the dynam-
ics of activated Ras, Ras guanosine triphosphate (RasGTP), was measured using the fluorescent
reporter Ras-binding domain fused to green fluorescent protein (RBD-GFP) (68, 69) following
step stimuli of chemoattractant. This signaling component was chosen because it is immediately
downstream from the G protein–coupled chemoattractant receptors, with Ras likely activating a
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Figure 4
Adaptation measured in Dictyostelium cells. Adapted from Reference 68 with permission. (a) Snapshots of a cell undergoing a sudden
increase in chemoattractant concentration at t = 0 s (visualized in red ). Activated Ras is visualized using RBD-GFP, which shows a
transient translocation to the membrane. (b) The RBD-GFP cytosolic fluorescence intensity, I (t), normalized by the fluorescence
intensity before stimulation, as a function of time for different amounts of stimulation. Note that the time for peak response decreases
when the stimulus strength increases. (c) The RBD-GFP cytosolic fluorescence intensity as a function of stimulus strength shows
perfect adaptation. (d ) Incoherent feed-forward network topology consistent with experimental data: chemoattractant binds to
receptors R, which activate both RasGEF and RasGAP. These two enzymes then activate (GEF) and inactivate (GAP) Ras.
(e) Experimental results (RBD-GFP dose-response curves, symbols) and the results of the incoherent feed-forward network using model
parameters obtained by fitting (lines). The results are plotted in terms of the maximum decrease in cytosolic RBD-GFP fluorescence,
Ipeak, for different pretreatment concentrations, Cpre. Abbreviations: GAP, GTPase-activating protein; GEF, guanine nucleotide
exchange factor; RBD-GFP, Ras-binding domain–green fluorescent protein.

range of downstream effectors. Thus, its response should be a more direct readout of adaptation
than components that are further downstream and which can be part of multiple feed-forward and
feedback loops.

Takeda et al. (68) found that without a change in the external cAMP (cyclic adenosine
monophosphate) concentration, RBD-GFP is found to be uniformly distributed in the cytosol
(Figure 4a). Upon a sudden increase in external cAMP concentration, however, RBD-GFP rapidly
localizes to the membrane, followed by a gradual return to the cytosol (Figure 4b). Ras dynamics
was quantified following concentration increases of several orders of magnitude (0.1 nM to 1 µM),
and cytosolic RBD-GFP was found to return to its prestimulus level after approximately 35 s, indi-
cating perfect adaptation (Figure 4c). Furthermore, as can be observed from Figure 4b, the time
of the peak response decreases for increasing concentration changes. Similar qualitative behavior
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was found in a study by Wang et al. (70), which examined the dynamics of PI3K (phosphoinositide
3-kinase) activation using a fluorescent phosphatidylinositol 3,4,5-trisphosphate (PIP3) specific
biosensor following a step change in cAMP.

4.2. Network Topology for Adaptation in Eukaryotic Chemotaxis

The finding that activated Ras dynamics adapts perfectly suggests that one of the two basic network
motifs described above and shown in Figure 1b (NFL or IFFL) should be at the heart of the
signaling network. Indeed, the quantitative data from the Takeda et al. experiment allows ruling
out the NFL network and is consistent only with the IFFL motif. This can be most readily seen by
examining the dynamics of the adaptation as a function of stimulus size. For the NFL motif, the
timescales of reaching the maximum response and the subsequent return to basal levels increase
(sometimes significantly) as the stimulus size is increased. This can be intuitively understood by
realizing that the NFL motif works through a feedback loop. Consequently, a larger stimulus
results in larger deviations from equilibrium, requiring more time to return to basal levels.

However, for the IFFL motif the response time can actually decrease upon increasing stimulus
strength. This can be seen by analytically examining the dynamics of the response as a function
of stimulus strength using simple zero-order forms for the output Z and the internal variable Y :

dZ
dt

= kZ X (1 − Z) − k−ZYZ,

dY
dt

= kY X − k−Y Y . 10.

The steady-state values are Ys = kY X/k−Y and Zs = (k−Y kZ)/(k−Y kZ + kY k−Z), illustrating that
Zs is independent of X , the hallmark of perfect adaptation. To approximate the dynamics of
recovery, we assume that activation is much faster than inhibition so that we can use the quasi-
steady approximation resulting in

1
X

dZ
dt

= kZ(1 − Z) − kY k−Z

k−Y
Z. 11.

Thus, the recovery timescale increases with X, which is consistent with the experimental results.
To further determine whether the incoherent feed-forward topology is consistent with the

experiments, Takeda et al. fitted the experimental data to a model containing an IFFL motif. The
model is based on the biochemistry of Ras: Ras is activated by RasGEFs (guanine nucleotide ex-
change factors) and inactivated by RasGAPs (GTPase activating proteins). Thus, in the adaptation
scheme of Figure 1, RasGAP is the equivalent of “Y”, activated Ras is the equivalent of “Z”, and
the chemoattractant concentration plays the role of “X” (see also Table 1). To account for the
role of RasGEF, an additional node between the chemoattractant concentration and activated Ras
(i.e., X and Z) was inserted. In addition, receptor kinetics was incorporated using experimentally
determined values for the binding dynamics. The resulting topology, shown in Figure 4d, has
the same qualitative features as the IFFL motif of Figure 1. The output of the model was tested
using a subset of experimental data points, and the values of the parameters were adjusted using
a fitting procedure (68). The final model was able to reproduce all experimental results; for ex-
ample, the dose-response curves of the model and of the experiments show good agreement (see
Figure 4e). The experimental curves in this figure were obtained using cells that were exposed
to different and constant chemoattractant concentrations for prolonged times (denoted by Cpre).
Other comparisons, involving full time traces and sudden decreases of cAMP concentrations, also
show satisfactory agreement between experiment and model, indicating that the IFFL motif is
responsible for adaptation.
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A similar conclusion was reached by Wang et al., who used a different stimulus protocol to
distinguish between the two possible network motifs. Specifically, they used a linear ramp signal
X = X0 + βt, where β represents the increase in chemoattractant concentration per unit time.
Their experiments show that PI3K activity adapts, independent of the value of β (70). This
experimental finding is consistent with the IFFL network, for which it is possible to obtain an
exact expression for Y as a function of time:

Y (t) = kY

k−Y

[
X0 + βt + β

k−Y
(e−k−Y t − 1)

]
. 12.

Thus, for large t, both Y and X will increase linearly and will be proportional to the slope of the
signal ramp. Therefore, the output Z will not depend on the signal and will adapt perfectly. Note,
however, that in general this adaptation is slower than when a step stimulus is applied. In contrast,
the NFL motif does not adapt in response to a linear ramp. Thus, combined with the study of
Takeda et al., these results imply that adaptation in eukaryotic and bacterial chemotaxis operate
using different mechanisms: IFFL for eukaryotes and NFL for bacteria.

4.3. Connection to Directional Sensing Models

Even though the topology of the chemotactic pathway was found to be different than the well-
established bacterial chemotaxis pathway, its discovery was not a complete surprise because it was
already incorporated into proposed models for eukaryotic chemotaxis. These models do not only
have to deal with the response to uniform concentration changes but they also need to explain the
spatial asymmetry observed when cells are placed in a gradient (see Figure 3). One of the early
models for directional sensing is the local excitation, global inhibition (LEGI) model, originally
proposed by Parent & Devreotes (57). It contains the IFFL topology and assumes that excitation
occurs locally and rapidly and that inhibition is slower and more global, modeled by including a
diffusive term for the inhibitor (GAP in Figure 4d ). The main idea here is that the inhibitor will
cancel out the effect of the average receptor occupancy, whereas the local excitation will allow
for response to local variations away from the mean (58). Adaptation will then result in a larger
response at the side of the cell that is directed toward, rather than to the side pointed away from,
the chemoattractant source.

Even though the LEGI model displays perfect adaptation and creates a spatial asymmetry in
the presence of a chemoattractant gradient, it is not able to fully capture eukaryotic chemotaxis.
The problem is that the generated asymmetry is always smaller than the asymmetry from the
gradient. In other words, the LEGI mechanism is not able to amplify an external signal and,
instead, simply reads off the external gradient. Several models have been proposed to provide
the necessary amplification. For example, a variant of the LEGI model incorporates the idea of
zeroth-order ultrasensitivity (71). It no longer assumes that the enzymes that control the readout
component are unlimited, resulting in a reaction that is modeled by the full Michaelis–Menten
kinetics. Then, for certain parameter values, the readout component of the network can rapidly
switch between a low and high state, resulting in the desired amplification (72). Another gradient-
sensing model uses a modular approach and postulates that the output of a LEGI module feeds
into an excitable module (73, 74). A model cell placed in a gradient will produce a LEGI response
that is higher at the front than at the back of the cell. Carefully choosing the model parameters
results in excitations that occur more frequently at the front of the cell. Obviously, this model
is still able to adapt perfectly and can generate a large response owing to its excitable nature.
The fact that cell responses can be described by excitable features was also noted by other studies
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(75–78) and is motivated by the transient and stochastic protrusions and retractions of membrane
extensions of cells as well as the signaling “patches” following cAMP stimulation (79, 80).

4.4. Scale-Invariant Adaptive Response

In addition to being perfectly adaptive, the response of the LEGI model to sudden stimulus
changes can also be scale invariant. A response is said to be scale invariant if its dynamics depends
solely on the ratio between the pre- and poststimulus level. In other words, scale invariance implies
that a stimulus change from X0 to X1 gives the same response as a stimulus change from pX0 to
pX1. Such a “fold-change detection” has been investigated theoretically (81–83) and has been
demonstrated experimentally in E. coli chemotaxis (84). In a more recent study, general necessary
and sufficient rules for scale invariance were obtained for three-node network topologies (85).
Furthermore, this study investigated whether the topology found in Reference 68 (and shown in
Figure 4b) exhibits scale invariance. Examining the basic IFFL model of Equation 10 reveals that
it is not perfectly scale invariant: Changing the input X → pX in the core model will lead to
Y → pY . The equation for the output, however, shows that Z depends nontrivially on both X
and Y , leading to dynamics that is not scale invariant. However, in the limit where the output
dynamics is very fast, we can use the quasi–steady state approximation. Then, Z is given by its
steady-state value, which can be easily verified to be invariant under a fold change in the input.

The full adaptation model, detailed in Reference 68, only displays scale invariance for inter-
mediate values of cAMP stimuli. This is shown in Figure 5, where we plot the response of the full
model, measured as the level of RBD-GFP, to various changes in external cAMP concentrations.
For intermediate values of cAMP, the curves for 1–10 nM and 2–20 nM steps are nearly indistin-
guishable, indicating scale invariance (Figure 5b; see also Reference 85). For smaller and for larger
values of cAMP, however, the response is no longer scale invariant, as can be seen in Figure 5a,c.
The reason for the absence of scale invariance for small values of cAMP is that the steady-state
approximation breaks down (for an in-depth discussion of the necessary conditions for scale invari-
ance, we refer to Reference 85). By contrast, for large values of cAMP, the equation of the receptor
occupancy in the full model is no longer linearly dependent on the chemoattractant concentration
because of receptor saturation. The resulting nonlinear dependence on the cAMP concentration
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Response of the adaptation model of Reference 68 to different stimulus steps. Only the responses in panel b are precisely scale invariant.
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leads to responses that are not scale invariant. These model predictions should be testable using
the microfluidics system of Takeda et al. in which the concentration is stepped systematically.

5. THE EFFECT OF ADAPTATION: THE WEBER-FECHNER LAW

Why is adaptation so essential in biology? The general answer is that adaptation allows a living
system to function normally in a wide range of backgrounds. For sensory systems, this qualita-
tive explanation is related to the well-known empirical Weber–Fechner (WF) law, which states
that the response (or perception) of an adaptive sensory system is proportional to the relative
change in stimulus. In the following, we describe a general scaling theory for adaptive response
to demonstrate the WF law.

5.1. A General Scaling Theory for Adaptive Response

As we discussed in Section 2, for a system adapted to an external stimulus level X , the fast response
to a sudden change of stimulus to X + �X can be obtained by assuming that the internal variable
Y remains roughly unchanged Y ≈ Ys(X ) due to its relatively slow dynamics. Based on the
general observation that the primary effect of adaptation is to shift the response curve without
changing its shape, we hypothesize that adaptation mainly normalizes the input by a scaling factor
K [Ys(X )] ≡ Ks(X ). The peak value can then be written as

Zp (X + �X , X ) ≈ R

{
X + �X
K [Ys(X )]

}
≡ R

[
X + �X

Ks(X )

]
, 13.

where R is the response function and Ks(X ) is the scaling factor that depends on the background
X through its direct dependence on Ys.

The adapted output Zs(X ) at the background level X is given by Zs(X ) = R[X/Ks (X )], from
which we can compute the sensitivity S:

S(X ) ≡
∣∣∣∣∣�Z
�X

∣∣∣∣∣ ≡
∣∣∣∣∣ Zp(X + �X , X ) − Zs(X )

�X

∣∣∣∣∣ = Ks(X )−1 R′[X/Ks(X )], 14.

where R′ is the derivative of R.
In order to adapt over a wide range of backgrounds, the scaled stimulus strength X/Ks(X )

should remain approximately constant for a wide range of X . To satisfy this condition, Ks needs
to depend roughly linearly on X :

Ks(X ) ≈ K0 + λX , 15.

where K0 and λ are constants. Perfect adaptation corresponds to K0 = 0, where the adapted output
Zs(X ) = R(λ−1) is independent of X . The case of no adaptation corresponds to λ = 0, where Ks

does not change with X .
By using Equation 15 for Ks(X ), we can compute the sensitivity from Equation 14:

S(X ) = (K0 + λX )−1 R′
(

X
K0 + λX

)
→ C0 X −1 16.

for X 	 K0/λ with C0 ≡ λ−1 R′(λ−1) being a constant. From Equation 16, we have |�Z| = C0
|�X |

X ,
which is exactly the WF law.

The WF law dictates that the sensory response only depends on the relative change of the
stimulus, which is related to the fold-change detection idea that has been studied recently in
both bacterial chemotaxis (84) and eukaryotic chemotaxis (68, 85), as discussed in the previous
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section. Here, we find that the WF law holds regardless of details of the specific system such as
its response function R as long as the scaling hypothesis (Equation 13) and the condition for Ks

variation (Equation 15) hold.

5.2. The Weber-Fechner Law in Different Sensory Systems

Next, we show the validity of the scaling hypothesis in both bacterial chemotaxis and eukaryotic
chemotaxis and how the WF law can be applied to study adaptive sensory systems in general.

5.2.1. Bacterial chemotaxis. As described in Section 3, an E. coli cell adapts to an environment
with background chemical concentration X by adjusting its chemoreceptor methylation level to
Ys(X ), which restores its preferred activity Zs. When the concentration changes suddenly to a
new level X + �X , the immediate response is given by Equation 7. Within the range of receptor
sensitivity Ki � X � Ka , we can simplify Equation 7:

Zp (X + �X , X ) =
{

1 +
[

X + �X
Ks (X )

]N }−1

, 17.

which satisfies the scaling hypothesis of Equation 13 with the response function R taking the
form of a Hill function with a Hill coefficient N . By determining Ys using the perfect adaptation
condition Zp(X , X ) = Zs, the scaling factor is given by Ks(X ) = Ki exp[α(Ys−m0)] = (Z−1

s −1)
1
N X ,

which depends linearly on X , confirming the condition of Equation 15 for perfect adaptation. By
using the expression for Ks(X ) in Equation 14, we can determine the sensitivity:

S(X ) ≈ NZs(1 − Zs)X −1, 18.

which is valid for X 	 Ki . Equation 18 is exactly the WF law in bacterial chemotaxis.
For a nonadaptive mutant cell, e.g., a cell with its receptor methylation level fixed, the scaling

factor Ks remains a constant independent of the input X : Ks(X ) = Kna. From Equation 14, the
sensitivity for nonadaptive cells can be computed Sna(X ) ≈ NK N

na X −(N +1) for X 	 Kna, which
decays much faster than that for the adaptive cell given in Equation 18.

5.2.2. Eukaryotic chemotaxis. For eukaryotic chemotaxis, adaptation is achieved by an IFFL
network, the dynamics for which are described by Equation 10. We can compute the response
by first using the quasi-equilibrium condition to determine the internal variable Ys ≈ kY

k−Y
X at a

background X . After the input changes from X to X + �X , the output Z starts to increase and
the peak response can be found by setting dZ/dt = 0 in Equation 10, which results in

Zp(X + �X , X ) ≈ kZ(X + �X )
kZ(X + �X ) + k−ZYs

= u
u + 1

, 19.

where u = (X +�X )/Ks(X ). The scaling factor Ks(X ) = k−Zk−1
Z Ys = k−ZkY

k−Y kZ
X depends linearly on

X in agreement with the perfect adaptation condition in Equation 15. The sensitivity at background
X can be easily determined:

S(X ) = (1 − Zs)Zs X −1, 20.

which follows the WF law. For nonadaptive mutants with a fixed Y , it is easy to show that the
sensitivity decays as X−2, which is faster than that of the WT cells.

From Equations 18 and 20, we show that the scaling hypothesis for adaptive response holds, and
the WF law is universal for adaptive systems independent of the underlying biochemical network
structure (NFL or IFFL).
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5.2.3. Sensory neurons. The general scaling model for adaptive response can be used to de-
scribe adaptive systems even in cases in which the detailed adaptation mechanisms are not fully
understood. The functional form of the response function R can be measured by nonadaptive
mutants in which Ks remains a constant independent of the background. Once R is determined,
then all responses of the adaptive WT cells in a given background can be determined by just two
parameters, K0 and λ. This approach has been used successfully to explain response sensitivities
in both the rhodopsin and the olfactory neurons (86).

6. NONEQUILIBRIUM THERMODYNAMICS OF ADAPTATION

Inside a living cell, all biological functions are carried out by biochemical reactions with a relatively
small number of molecules (much smaller than Avogadro’s number). The stochastic nature of
molecular reactions and diffusion gives rise to significant fluctuations in biochemical reactions.
Another general feature of living systems is that they are far from equilibrium. Living matter is
highly dissipative. Chemical free energy harvested by metabolic processes powers interactions of
living matter in different biochemical networks to achieve various biological functions. How do
we describe the nonequilibrium thermodynamics of a small living system? How can a cell function
accurately in the face of these noisy biochemical reactions? In the following, we address these
questions in the context of cellular sensory adaptation.

6.1. Breakdown of Detailed Balance

To understand the effect of noise in adaptation dynamics, we introduce the Langevin dynamics
by including noise in the simple dynamical equations described in Section 2:

dZ
dt

= G(X , Y, Z) + ηZ,
dY
dt

= F (X , Y, Z) + ηY, 21.

〈ηZ(t + t′)ηZ(t′)〉 = �Zδ(t), 〈ηY (t + t′)ηY (t′)〉 = �Y δ(t), 22.

where ηY and ηZ are noise terms due to the stochastic nature of the underlying biochemical
reactions. In general, the noise strength �Y and �Z can depend on the variables (X , Y, Z).

For an equilibrium system with an energy functional E(X , Y, Z), its dynamics is driven by the
local gradient of E(X , Y, Z) in addition to thermal fluctuations. For example, in its simplest form,
we can have G = − ∂E

∂ Z , and F = − ∂E
∂Y with the noise strength �Y = �Z = 2kBT, where kBT is

the thermal energy of the heat bath with which the system is in equilibrium. It is easy to show that
the equilibrium Langevin equation leads to the Boltzmann distribution exp(− E

kBT ). Independent
of the specific form of E(X , Y, Z), the constraint ∂G

∂Y = ∂ F
∂ Z is satisfied by all equilibrium systems as

a result of the detailed balance (87).
However, as we discussed in Section 2, in adaptive systems these two cross derivative terms

( ∂G
∂Y and ∂ F

∂ Z ) have different signs and thus cannot be equal:

∂G
∂Y

�= ∂ F
∂ Z

, 23.

which means that detailed balance is violated in adaptation, and the underlying biochemical reac-
tions are driven out of equilibrium by energy dissipation.

6.2. The Energy–Speed–Accuracy Trade-Off

How does the system use free energy to achieve adaptation, and how does the energy dissipation
relate to and limit the performance of adaptation? To answer these questions, we investigate
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the key biochemical reactions underlying the two adaptation circuit motifs—NFL and IFFL—as
shown in Figure 6a.

For adaptation in E. coli chemotaxis, each state of the chemoreceptor is characterized by a pair
of order parameters (s, m): s = 0, 1 corresponding to the active and inactive states of the receptor,
respectively, and the receptor methylation level m = 1, 2 (only two adjacent levels are considered
here). The biochemical transition rates between the four states are given in Figure 6a(i) with
all the counterclockwise (CCW) and clockwise (CW) rates labeled by kl and k−l , respectively
(l = 1, 2, 3, 4).

For a fixed receptor methylation level, the transitions between the active and inactive states
of the receptor are governed by the free-energy levels of the two states; i.e., k2

k−2
= exp[E(0, 2) −

E(1, 2)], k4
k−4

= exp[E(1, 1) − E(0, 1)], where E(s , m) = s fm(m) is the free-energy level of state

www.annualreviews.org • Mechanisms of Adaptation in Cells 199



CO09CH10_Tu ARI 13 February 2018 8:53

(s , m) with fm(m) = −α(m − m0) the methylation free energy (see Section 3). The rates for
receptor methylation and demethylation, however, do not satisfy detailed balance. In particular,
in order to carry out negative feedback control, the methylation rate for the inactive receptor
should be enhanced relative to the demethylation rate, and the demethylation rate should be
increased relative to the methylation rate for the active receptor; i.e., k1

k−1
> exp[E(0, 1) − E(0, 2)]

and k3
k−3

> exp[E(1, 2) − E(1, 1)]. These two nonequilibrium processes are facilitated by two
enzymes—CheR for methylation and CheB-P for demethylation reactions.

We can define a “reversibility” parameter � for the whole reaction cycle,

� ≡
∏

cw k∏
ccw k

=
4∏

l=1

k−l

kl
, 24.

which determines whether the full reaction cycle is in thermal equilibrium with its environment.
For � �= 1, the system is dissipative and its steady state is a nonequilibrium steady state (NESS),
which needs to be maintained by a finite rate of free-energy consumption.

For the adaptation network in E. coli, the negative feedback control is carried out by suppressing
the “undesirable” backward reactions, which can be characterized by a small parameter γ < 1:
k−1 = γ k(0)

−1 and k−3 = γ k(0)
−3, where the equilibrium backward rates k(0)

−1 and k(0)
−3 satisfy detailed

balance with their corresponding forward rates, resulting in an irreversible parameter � = γ 2.
For an equilibrium system with � = 1, the system does not adapt (see Figure 6b). Adaptation
only occurs when � decreases below a critical value �c < 1. The adaptation error decreases as �

decreases below �c. The adaptation error can be expressed as: ε = εc + ε0γ , where ε0 is an O(1)
constant that depends on details of the system. The saturation error at γ → 0 is given by εc,
which depends on other system parameters. εc can be made arbitrarily small by proper design of
the system (88). For those systems with εc ≈ 0, perfect adaptation (ε = 0) can be achieved when
γ = 0.

The entropy production rate of the system can be computed: Ṡ = ∑
l (Jl+ − Jl−) ln(Jl+/Jl−),

where Jl± are the forward and backward probability fluxes for the lth reaction. From Ṡ, we can
determine a minimum free-energy dissipation rate Ẇ = kBTṠ to maintain the adapted state,
where the thermal energy unit kBT of the environment can be set to unity. It can be shown that
the dissipation rate increases with the adaptation speed ωadp ≡ τ−1

adp with τadp the adaptation time:
Ẇ = −c 0ωadp ln(γ ), with c0 a system dependent O(1) constant.

By varying γ, i.e., the strength of the negative feedback control, we can relate the cost of
adaptation as characterized by the minimum free-energy dissipation rate (Ẇ ) with its performance
characterized by its speed (ωadp) and accuracy (ε):

Ẇ = c0 × ωadp × ln

(
ε0

ε − εc

)
, 25.

which is called the energy–speed–accuracy (ESA) trade-off relationship as shown in Figure 6c.
The ESA relationship seems to be general for adaptive systems. Equation 25 was found to

be valid for the IFFL network in eukaryotic chemotaxis (89). Similar to adaptation by neg-
ative feedback control in bacterial chemotaxis, two opposing enzymes, GEF and GAP, acti-
vate and deactivate Ras, respectively, through two different paths in eukaryotic chemotaxis as
shown in Figure 6a(ii). Free energy is continuously consumed in the adapted steady state to
suppress the “undesirable” reverse reactions and drive a sustained cycling flux among the four
states.
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The free energy is provided by the hydrolysis of high-energy biomolecules that are coupled
with these cycles, e.g., ATP or GTP for the phosphorylation–dephosphorylation cycle in
eukaryotic chemotaxis and S-adenosylmethionine (SAM) for the methylation–demethylation
cycle in bacterial chemotaxis. Measurements of the adaptation dynamics in energy-deprived E.
coli cells are consistent with the ESA relationship (88).

The general ESA relationship provides a fundamental physical limit for an important biological
function: adaptation. It also provides insights into designing biochemical circuits to achieve optimal
performance with limited resources. The effect of energy dissipation on other key characteristics
of adaptation has also been studied. In particular, free-energy dissipation was found to suppress
fluctuation of the adapted activity without affecting the short time response of the system, a
violation of the fluctuation dissipation relationship in equilibrium systems (90).

7. ADAPTATION IN OTHER BIOLOGICAL SYSTEMS

Adaptation in cells is not limited to chemotaxis signaling. For example, it was recently found that
the bacterial flagellar switch can adapt to the intracellular CheY-P level by adjusting the number
of FliM molecules at the switch complex (91, 92). Adaptation also plays a key role in a variety
of homeostatic processes, e.g., adaptation to hyperosmotic shocks in budding yeast Saccharomyces
cerevisiae cells. In a recent study, Muzzey et al. measured nuclear enrichment of the MAP kinase
Hog1 and found it to adapt perfectly, meaning that the steady-state pre- and poststimulus levels
were identical (93). This study also argued for the presence of an integrator and found, through
a set of carefully chosen experiments either in mutant strains or for different stimulus protocols,
that a single integrating mechanism that involves Hog1 kinase activity and that regulates glycerol
synthesis is responsible for the observed adaptation.

All sensory neurons show adaptive behaviors. Although the full molecular mechanism is
unclear, some key steps in the adaptation pathway are known. For example, in olfactory sensing
in mammalian neurons (94, 95), odorant binding induces activation of adenylyl cyclase (AC),
which causes an inbound calcium (Ca+2) flux. The intracellular calmodulin (CaM) interacts
with enriched calcium to form Ca-CaM, which activates AC phosphorylase calmodulin kinase II
(CAMKII) that eventually phosphorylates and deactivates AC. For light sensing in mammalian
neurons (96–98), light activates the G–protein coupled receptor (photon sensor) that decreases
the cellular level of cyclic guanosine monophosphate (cGMP) and inhibits the inbound calcium
(Ca+2) flux, which eventually turns on the octopus rhodopsin kinase (ORK) to phosphorylate
and deactivate the photon sensor. Finally, the adaptation mechanism for hair cells might involve
Ca+2, although this is still controversial (99, 100). All these neuron adaptation examples have
the existence of multiple timescales in common. Thus, it is highly likely that a nested network
consisting of both NFL and IFFL motifs is employed in neuron adaptation. It should thus be
interesting to use the dynamical systems approach described here together with quantitative
single-cell measurements to determine the underlying network architecture for adaptation in
more complex systems such as sensory neurons.

As a final example of adaptation, we would like to point out that it does not have to be limited
to single cells but can also occur at the tissue, organ, or whole-body level. One example of perfect
adaptation at the body level can be found in the control of calcium levels in mammals. These levels
need to be well controlled and must be within a small range of values. El-Samad et al. described
how an integral control feedback mechanism is able to achieve these requirements and proposed
a biologically plausible model for calcium homeostasis (101). Specifically, they showed that a
previously proposed and simple feedback control mechanism is not sufficient to robustly control
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calcium levels and that the addition of an integrator, much like the one schematically shown in
Figure 1, is able to ensure calcium levels that are independent of the perturbation. When applied
to data from cows that give birth, representing a large calcium perturbation, the model was able
to capture the perfect adaptation observed in the animals. As one can imagine, however, obtaining
large amounts of quantitative data at animal scales is a complicated and time-consuming task,
illustrating why chemotaxis of single cells is a favorite system for the study of adaptation.

8. REPRISE

In this paper, we reviewed the two basic molecular mechanisms, NFL and IFFL, for cellular
adaptation exemplified by the bacterial and eukaryotic chemotaxis signaling pathways, respec-
tively. Despite their different network architectures, they share many common and universal
characteristics in their dynamics, energetics, and scaling behavior. To display adaptive dynam-
ics, both pathways require a separation of timescales with a fast response and a slow recovery.
Both operate out of thermal equilibrium, continuously dissipating (consuming) free energy to
maintain the adapted steady state. The power consumption sets a limit for the adaptation per-
formance characterized by adaptation speed and accuracy. Adaptation maintains a high sensi-
tivity over a wide range of backgrounds, which is directly responsible for the WF scaling law
observed in different sensory systems. There are, however, notable differences in the dynam-
ics of these two networks. Although both the response and the recovery timescales in the IFFL
network decrease with the signal strength, they increase with or are independent of the input
in the NFL network. These differences can be exploited to determine the underlying molecu-
lar mechanism for adaptation from input–output measurements. Indeed, the theoretical frame-
work we described here should be useful to understand more complicated adaptive systems in
biology.

SUMMARY POINTS

1. There are two distinct basic biochemical networks that lead to accurate adaptation—the
negative feedback loop (NFL) network and the incoherent feed-forward loop (IFFL)
network.

2. Both NFL and IFFL networks operate with at least two separate timescales—a fast
response time and a slow recovery (adaptation) time.

3. Adaptation in bacterial chemotaxis involves an NFL network motif. Adaptation in eu-
karyotic chemotaxis involves an IFFL network motif.

4. The timescales in IFFL decrease with the signal intensity, whereas the NFL timescales
increase with the signal or show no dependence.

5. A general scaling theory of adaptive response is developed to derive the Weber-Fechner
law in both bacterial chemotaxis and eukaryotic chemotaxis systems.

6. Both bacterial chemotaxis and eukaryotic chemotaxis can show scale-invariant responses
or fold-change detection due to adaptation.

7. Adaptation costs energy. The adapted state continuously consumes energy to maintain
its stability. There is a universal trade-off relationship between the energy dissipation
rate and the adaptation speed and accuracy.
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FUTURE ISSUES

1. Probing adaptive motifs in complex signaling pathways requires fast and quantifiable
perturbation to intracellular components. The recently developed optogenetic methods
(102), which use light to reversibly activate specific components within a pathway (103–
106), may be employed to decipher pathway topologies.

2. Quantitative experimental techniques, including microfluidics that generate time-varying
stimuli (52, 54, 56, 67, 107), can be used together with modeling to determine key model
parameters and their cell-to-cell variability.

3. The current modeling framework can be extended to study complex biochemical net-
works with multiple timescales and nested IFFL and NFL motifs, such as those involved
in adaptation in sensory neurons.
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